Nomenclature: CXCR2

Family: Chemokine receptors

Annotation status:  image of a green circle Annotated and expert reviewed. Please contact us if you can help with updates. 

This receptor has a proposed ligand; see the Latest Pairings page for more information.

Contents

Gene and Protein Information
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 360 2q35 CXCR2 chemokine (C-X-C motif) receptor 2 25,34
Mouse 7 359 1 C3 Cxcr2 chemokine (C-X-C motif) receptor 2 6
Rat 7 359 9q33 Cxcr2 chemokine (C-X-C motif) receptor 2 11
Previous and Unofficial Names
Names References
IL-8R2
IL8Rβ
IL8RB 25
KC receptor 6
IL8RB
IL-8 receptor type II
IL-8 receptor β
CMKAR2
CD182
interleukin 8 receptor, beta
C-X-C chemokine receptor type 2
CXC-R2
CXCR-2
GRO/MGSA receptor
IL-8R B
Interleukin 8 receptor beta
chemokine (C-X-C) receptor 2
high affinity interleukin-8 receptor B
CD128
IL-8Rh
IL-8rb
Gpcr16
IL8RA
Database Links
ChEMBL Target
Ensembl Gene
Entrez Gene
GPCRDB
GeneCards
GenitoUrinary Development Molecular Anatomy Project
HomoloGene
Human Protein Reference Database
InterPro
KEGG Gene
OMIM
PharmGKB Gene
PhosphoSitePlus
Protein Ontology (PRO)
RefSeq Nucleotide
RefSeq Protein
TreeFam
UniGene Hs.
UniProtKB
Wikipedia
Natural/Endogenous Ligand(s)
CXCL1 {Sp: Human} , CXCL1 {Sp: Mouse} , CXCL1 {Sp: Rat}
CXCL2 {Sp: Human} , CXCL2 {Sp: Mouse} , CXCL2 {Sp: Rat}
CXCL3 {Sp: Rat} , CXCL3 {Sp: Human} , CXCL3 {Sp: Mouse}
CXCL5 {Sp: Mouse} , CXCL5 {Sp: Rat} , CXCL5 {Sp: Human}
CXCL6 {Sp: Human}
CXCL7 {Sp: Human}
CXCL8 {Sp: Human}
Comments: macrophage derived lectin is a proposed ligand, single publication
Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
[125I]CXCL8 (human) Hs Full agonist 9.0 – 9.4 pKd 16,38
pKd 9.0 – 9.4 (Kd 3.98x10-10 – 1.02x10-9 M) [16,38]
[125I]KC-Tyr Mm Full agonist 8.4 pKd 6
pKd 8.4 [6]
CXCL6 {Sp: Human} Hs Full agonist 7.0 pKd 44
pKd 7.0 [44]
CXCL8 {Sp: Human} Hs Full agonist 8.8 – 9.5 pKi 4,16,25,41,43
pKi 8.8 – 9.5 [4,16,25,41,43]
CXCL1 {Sp: Human} Hs Full agonist 8.4 – 9.7 pKi 16,25,43
pKi 8.4 – 9.7 [16,25,43]
CXCL1 {Sp: Human} Mm Full agonist 8.1 pKi 6
pKi 8.1 [6]
CXCL1 {Sp: Rat} Mm Full agonist 7.2 – 8.8 pKi 6
pKi 8.8 [6]
pKi 7.2 [6]
CXCL8 {Sp: Human} Mm Full agonist 6.4 pKi 6
pKi 6.4 [6]
CXCL3 {Sp: Human} Hs Full agonist 7.8 – 9.2 pIC50 3
pIC50 7.8 – 9.2 [3]
CXCL2 {Sp: Human} Hs Full agonist 7.0 – 9.1 pIC50 3
pIC50 7.0 – 9.1 [3]
CXCL5 {Sp: Human} Hs Full agonist 6.9 – 9.0 pIC50 3
pIC50 6.9 – 9.0 [3]
CXCL7 {Sp: Human} Hs Full agonist 6.3 – 9.3 pIC50 3
pIC50 6.3 – 9.3 [3]
View species-specific agonist tables
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
SB 225002 Hs Antagonist 7.7 pIC50 40
pIC50 7.7 [40]
SK&F 83589 Hs Antagonist 6.3 pIC50 40
pIC50 6.3 [40]
Primary Transduction Mechanisms
Transducer Effector/Response
Gi/Go family Adenylate cyclase inhibition
Calcium channel
Comments:  The βγ subunit of the Gi G protein is necessary for chemotaxis [35] and calcium mobilisation [16].
References:  13,16,35
Tissue Distribution
Neutrophils.
Species:  Human
Technique:  Western blotting.
References:  27
Mast cells.
Species:  Human
Technique:  RNAse protection assay and flow cytometry.
References:  36
CNS: hippocampus, dentate nucleus, pontine nuclei, locus coeruleus, paraventricular nucleus, and in the anterior horn, interomediolateral cell column, and Clarke's column of the spinal cord.
Species:  Human
Technique:  Immunohistochemistry.
References:  19
Polymorphonuclear neutrophils.
Species:  Human
Technique:  Flow cytometry.
References:  10
Bronchial epithelial cells.
Species:  Human
Technique:  RT-PCR and flow cytometry.
References:  12
Urinary tract epithelial cells.
Species:  Human
Technique:  Immunohistochemistry.
References:  14
Chondrocytes.
Species:  Human
Technique:  Flow cytometry.
References:  29
Umbilical vein endothelial cells (HUVECs).
Species:  Human
Technique:  immunocytochemistry.
References:  26
Basophils.
Species:  Human
Technique:  Flow cytometry.
References:  20,37
Basophils.
Species:  Human
Technique:  RT-PCR.
References:  20
Peritoneal exudate cells.
Species:  Mouse
Technique:  Northern blotting.
References:  6
Alveolar macrophages.
Species:  Mouse
Technique:  Immunohistochemistry.
References:  33
Hippocampal neurons.
Species:  Rat
Technique:  RT-PCR.
References:  30
Lung, speen, neutrophil.
Species:  Rat
Technique:  RNase protection assay and Northern blotting.
References:  11
Expression Datasets

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays
Measurement of chemotaxis of human mast cells, HMC-1, endogenously expressing the CXCR2 receptor.
Species:  Human
Tissue:  HMC-1 cells.
Response measured:  Chemotaxis.
References:  36
Measurement of intracellular Ca2+ levels in HEK 293 cells transfected with the human CXCR2 receptor.
Species:  Human
Tissue:  HEK 293 cells.
Response measured:  Increase in intracellular Ca2+.
References:  25,44-45
Measurement of intracellular Ca2+ levels in HEK 293 cells transfected with the rat CXCR2 receptor.
Species:  Rat
Tissue:  HEK 293 cells.
Response measured:  Increase in intracellular Ca2+.
References:  11
Measurement of chemotaxis of mouse peripheral blood leukocytes endogenously expressing the CXCR2 receptor.
Species:  Mouse
Tissue:  Peripheral blood leukocytes.
Response measured:  Chemotaxis.
References:  6
Measurement of Ca2+ levels in Jurkat cells transfected with the human CXCR2 receptor.
Species:  Human
Tissue:  Jurkat cells.
Response measured:  Ca2+ mobilisation.
References:  22-23,42
Measurement of elastase released by human neutrophils endogenously expressing the CXCR2 receptor.
Species:  Human
Tissue:  Neutrophils.
Response measured:  Release of elastase.
References:  22-23,42
Measurement of focal adhesion kinase (FAK) activity and chemotaxis of HEK 293 and RBL cells transfected with the CXCR2 receptor.
Species:  Human
Tissue:  HEK 293 and RBL cells.
Response measured:  FAK phosphorylation and chemotaxis.
References:  13
Measurement of chemotaxis of HEK 293 cells transfected with the human CXCR2 receptor.
Species:  Human
Tissue:  HEK 293 cells.
Response measured:  Chemotaxis.
References:  13,44
Measurement of cAMP levels in CHO cells transfected with the human CXCR2 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Inhibition of cAMP accumulation.
References:  16
Physiological Functions
Chemotaxis.
Species:  Human
Tissue:  Mast cells.
References:  36
Chemotaxis.
Species:  Human
Tissue:  Neutrophils.
References:  40
Hypertrophic differentiation.
Species:  Human
Tissue:  Chondrocytes.
References:  29
Cell proliferation and inhibition of apoptosis.
Species:  Human
Tissue:  Umbilical vein endothelial cells.
References:  26
Cutaneous wound repair.
Species:  Mouse
Tissue:  In vivo.
References:  9,32
Chemotaxis.
Species:  Human
Tissue:  Microvascular endothelial cells (HMVECs).
References:  2
Neovascularisation (angiogenesis).
Species:  Rat
Tissue:  Cornea.
References:  2
Neutrophil recruitment.
Species:  Mouse
Tissue:  In vivo.
References:  8,15,17,24,32
Transendothelial movement of mast cell progenitors into intestinal tissue.
Species:  Mouse
Tissue:  In vivo (small intestine).
References:  1
Macrophage recruitment.
Species:  Rat
Tissue:  In vivo (kidney).
References:  46
Macrophage recruitment.
Species:  Mouse
Tissue:  In vivo.
References:  5
Physiological Consequences of Altering Gene Expression
CXCR2 knockout mice exhibit impaired corneal neovascular (angiogenic) response.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  2
CXCR2 receptor knockout mice exhibit a decreased number of mast cell progenitors found in the small intestine.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  1
CXCR2 knockin mice have been developed, where the mouse CXCR2 receptor is replaced by human CXCR2. This mouse model demonstrates that both the mouse and human forms of the receptor are functionally equivalent. This model allows us to test the role of the human receptor using animal studies.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  31
CXCR2 receptor knockout mice exhibit delayed cutaneous wound healing (delayed epithelialisation and decreased neovascularisation). They have defective neutrophil recruitment as well as altered monocyte recruitment and Il-1β secretion.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  9
CXCR2 knockout mice exhibit impaired neutrophil recruitment during inflammatory responses.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  8,15,17,21,24,32
CXCR2 receptor knockout mice exhibit decreased airway hyperreactivity in response to respiratory syncytial virus (RSV) infection compared to wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  33
CXCR2 knockout mice subjected to ischaemia-reperfusion exhibit reduced myocardial infarct size and reduced inflammatory cell recruitment compared to wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  39
CXCR2 receptor knockout mice exhibit a dysfunctional neutrophil response to infection. The neutrophils are unable to cross epithelial barriers and therefore accumulate in large quantities the subepithelial tissue. Unable to clear the infection, the mice develop swollen kidneys, neutrophil abscesses, high numbers of bacteria and renal scarring.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  14,18
CXCR2 knockout mice exhibit enhanced numbers of myeloid progenitor cells in the femur, spleen and blood.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  7
Phenotypes, Alleles and Disease Models Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0002334 abnormal airway responsiveness PMID: 11801688 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
involves: 129S2/SvPas * C57BL/6J
MGI:105303  MP:0002397 abnormal bone marrow morphology PMID: 8036519 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0008721 abnormal chemokine level PMID: 11801688 
Cxcr2tm1Mwm|Dstncorn1 Dstncorn1/Dstncorn1,Cxcr2tm1Mwm/Cxcr2tm1Mwm
involves: 129S2/SvPas * A/WySn * BALB/c * brachy stock
MGI:105303  MGI:1929270  MP:0001312 abnormal cornea morphology PMID: 18628996 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0003009 abnormal cytokine secretion PMID: 11714818 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0002465 abnormal eosinophil physiology PMID: 11801688 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
involves: 129S2/SvPas * C57BL/6J
MGI:105303  MP:0008111 abnormal granulocyte differentiation PMID: 8036519 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0008751 abnormal interleukin level PMID: 11801688  14707102 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0002442 abnormal leukocyte physiology PMID: 15356099 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
involves: 129S2/SvPas * C57BL/6J
MGI:105303  MP:0002348 abnormal lymph node medulla PMID: 8036519 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0000920 abnormal myelination PMID: 12176324 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
involves: 129S2/SvPas * C57BL/6J
MGI:105303  MP:0001601 abnormal myelopoiesis PMID: 8036519 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
involves: 129S2/SvPas * BALB/c
MGI:105303  MP:0001601 abnormal myelopoiesis PMID: 16094689 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0002463 abnormal neutrophil physiology PMID: 11801688  15466624 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
involves: 129S2/SvPas * BALB/c
MGI:105303  MP:0002463 abnormal neutrophil physiology PMID: 16094689 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0008042 abnormal NK T cell physiology PMID: 11123307 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0002281 abnormal respiratory mucosa goblet cell morphology PMID: 12626595 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0000955 abnormal spinal cord morphology PMID: 12176324 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
involves: 129S2/SvPas * C57BL/6J
MGI:105303  MP:0002357 abnormal spleen white pulp morphology PMID: 8036519 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0002444 abnormal T cell physiology PMID: 11801688 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0005465 abnormal T-helper 1 physiology PMID: 11801688 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0005466 abnormal T-helper 2 physiology PMID: 11801688 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
B6.Cg-Il8rb
MGI:105303  MP:0003448 altered tumor morphology PMID: 14978086 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0005542 corneal vascularization PMID: 14707102 
Cxcr2tm1Mwm|Dstncorn1 Dstncorn1/Dstncorn1,Cxcr2tm1Mwm/Cxcr2tm1Mwm
involves: 129S2/SvPas * A/WySn * BALB/c * brachy stock
MGI:105303  MGI:1929270  MP:0005542 corneal vascularization PMID: 18628996 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0002335 decreased airway responsiveness PMID: 12626595 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
involves: 129S2/SvPas * BALB/c
MGI:105303  MP:0001265 decreased body size PMID: 16094689 
Cxcr2tm1(IL8RB)Dktr Cxcr2tm1(IL8RB)Dktr/Cxcr2tm1(IL8RB)Dktr
involves: 129S2/SvPas * C57BL/6
MGI:105303  MP:0003918 decreased kidney weight PMID: 16094689 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
B6.Cg-Il8rb
MGI:105303  MP:0001273 decreased metastatic potential PMID: 14978086 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0000954 decreased oligodendrocyte progenitor number PMID: 12176324 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0009764 decreased sensitivity to induced morbidity/mortality PMID: 14500678 
Cxcr2tm1(IL8RB)Dktr Cxcr2tm1(IL8RB)Dktr/Cxcr2tm1(IL8RB)Dktr
involves: 129S2/SvPas * C57BL/6
MGI:105303  MP:0004953 decreased spleen weight PMID: 16094689 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0005398 decreased susceptibility to fungal infection PMID: 11801688 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0003436 decreased susceptibility to induced arthritis PMID: 19109198 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
involves: 129S2/SvPas * BALB/c
MGI:105303  MP:0004956 decreased thymus weight PMID: 16094689 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
B6.Cg-Il8rb
MGI:105303  MP:0003447 decreased tumor growth/size PMID: 14978086 
Cxcr2tm1Mwm|Tg(TRAMP)8247Ng Cxcr2tm1Mwm/Cxcr2tm1Mwm,Tg(TRAMP)8247Ng/?
involves: 129S2/SvPas * BALB/c * C57BL/6
MGI:105303  MGI:2680364  MP:0003447 decreased tumor growth/size PMID: 16941672 
Cxcr2+|Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2+
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0002908 delayed wound healing PMID: 10951241 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0002908 delayed wound healing PMID: 10951241 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
involves: 129S2/SvPas * C57BL/6J
MGI:105303  MP:0008542 enlarged cervical lymph nodes PMID: 8036519 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
involves: 129S2/SvPas * C57BL/6J
MGI:105303  MP:0000702 enlarged lymph nodes PMID: 8036519 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
involves: 129S2/SvPas * C57BL/6J
MGI:105303  MP:0000691 enlarged spleen PMID: 8036519 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
involves: 129S2/SvPas * BALB/c
MGI:105303  MP:0000240 extramedullary hematopoiesis PMID: 16094689 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
involves: 129S2/SvPas * C57BL/6J
MGI:105303  MP:0008720 impaired neutrophil migration PMID: 8036519 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0008720 impaired neutrophil migration PMID: 11069247  11714818 
Cxcr2+|Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2+
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0008719 impaired neutrophil recruitment PMID: 10951241 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0008719 impaired neutrophil recruitment PMID: 10951241  11046063  15385471 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
involves: 129S2/SvPas * C57BL/6J
MGI:105303  MP:0005014 increased B cell number PMID: 8036519 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
involves: 129S2/SvPas * C57BL/6J
MGI:105303  MP:0008596 increased circulating interleukin-6 level PMID: 8036519 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
involves: 129S2/SvPas * BALB/c
MGI:105303  MP:0004928 increased epididymis weight PMID: 16094689 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
involves: 129S2/SvPas * BALB/c
MGI:105303  MP:0000322 increased granulocyte number PMID: 16094689 
Cxcr2tm1(IL8RB)Dktr Cxcr2tm1(IL8RB)Dktr/Cxcr2tm1(IL8RB)Dktr
involves: 129S2/SvPas * C57BL/6
MGI:105303  MP:0000322 increased granulocyte number PMID: 16094689 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0002497 increased IgE level PMID: 11801688 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
involves: 129S2/SvPas * BALB/c
MGI:105303  MP:0003917 increased kidney weight PMID: 16094689 
Cxcr2tm1(IL8RB)Dktr Cxcr2tm1(IL8RB)Dktr/Cxcr2tm1(IL8RB)Dktr
involves: 129S2/SvPas * C57BL/6
MGI:105303  MP:0000218 increased leukocyte cell number PMID: 16094689 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
involves: 129S2/SvPas * C57BL/6J
MGI:105303  MP:0000219 increased neutrophil cell number PMID: 8036519 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
involves: 129S2/SvPas * BALB/c
MGI:105303  MP:0004909 increased seminal vesicle weight PMID: 16094689 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
involves: 129S2/SvPas * BALB/c
MGI:105303  MP:0004952 increased spleen weight PMID: 16094689 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0002412 increased susceptibility to bacterial infection PMID: 11069247 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0005027 increased susceptibility to parasitic infection PMID: 11714818 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
C.129S2(B6)-Cxcr2/J
MGI:105303  MP:0002418 increased susceptibility to viral infection PMID: 14707102 
Cxcr2tm1Mwm Cxcr2tm1Mwm/Cxcr2tm1Mwm
involves: 129S2/SvPas * C57BL/6J
MGI:105303  MP:0010373 myeloid hyperplasia PMID: 8036519 
Cxcr2tm1(IL8RB)Dktr Cxcr2tm1(IL8RB)Dktr/Cxcr2tm1(IL8RB)Dktr
involves: 129S2/SvPas * C57BL/6
MGI:105303  MP:0002768 small adrenal glands PMID: 16094689 
Cxcr2tm1(IL8RB)Dktr Cxcr2tm1(IL8RB)Dktr/Cxcr2tm1(IL8RB)Dktr
involves: 129S2/SvPas * C57BL/6
MGI:105303  MP:0000601 small liver PMID: 16094689 
Biologically Significant Variants
Type:  Single nucleotide polymorphism.
Species:  Human
Description:  The Cys785 -> Thr polymorphism may be associated with a reduced risk of developing chronic obstructive pulmonary disease.
References:  28
Available Assays
DiscoveRx PathHunter® CHO-K1 CXCR2 β-Arrestin Cell Line (Cat no. 93-0202C2)
PathHunter® eXpress CXCR2 HEK 293 β-Arrestin GPCR Assay (Cat no. 93-0202E1CP0M)
PathHunter® HEK 293 CXCR2 β-Arrestin Cell Line (Cat no. 93-0202C1)
more info

REFERENCES

1. Abonia JP, Austen KF, Rollins BJ, Joshi SK, Flavell RA, Kuziel WA, Koni PA, Gurish MF. (2005) Constitutive homing of mast cell progenitors to the intestine depends on autologous expression of the chemokine receptor CXCR2. Blood105: 4308-4313. [PMID:15705791]

2. Addison CL, Daniel TO, Burdick MD, Liu H, Ehlert JE, Xue YY, Buechi L, Walz A, Richmond A, Strieter RM. (2000) The CXC chemokine receptor 2, CXCR2, is the putative receptor for ELR+ CXC chemokine-induced angiogenic activity. J Immunol165: 5269-5277. [PMID:11046061]

3. Ahuja SK, Murphy PM. (1996) The CXC chemokines growth-regulated oncogene (GRO) alpha, GRObeta, GROgamma, neutrophil-activating peptide-2, and epithelial cell-derived neutrophil-activating peptide-78 are potent agonists for the type B, but not the type A, human interleukin-8 receptor. J Biol Chem271: 20545-20550. [PMID:8702798]

4. Bertini R, Allegretti M, Bizzarri C, Moriconi A, Locati M, Zampella G, Cervellera MN, Di Cioccio V, Cesta MC, Galliera E, Martinez FO, Di Bitondo R, Troiani G, Sabbatini V, D'Anniballe G, Anacardio R, Cutrin JC, Cavalieri B, Mainiero F, Strippoli R, Villa P, Di Girolamo M, Martin F, Gentile M, Santoni A, Corda D, Poli G, Mantovani A, Ghezzi P, Colotta F. (2004) Noncompetitive allosteric inhibitors of the inflammatory chemokine receptors CXCR1 and CXCR2: prevention of reperfusion injury. Proc Natl Acad Sci U S A101: 11791-11796. [PMID:15282370]

5. Boisvert WA, Santiago R, Curtiss LK, Terkeltaub RA. (1998) A leukocyte homologue of the IL-8 receptor CXCR-2 mediates the accumulation of macrophages in atherosclerotic lesions of LDL receptor-deficient mice. J. Clin. Invest.101: 353-363. [PMID:9435307]

6. Bozic CR, Gerard NP, von Uexkull-Guldenband C, Kolakowski LF, Conklyn MJ, Breslow R, Showell HJ, Gerard C. (1994) The murine interleukin 8 type B receptor homologue and its ligands. Expression and biological characterization. J Biol Chem269: 29355-29358. [PMID:7961909]

7. Broxmeyer HE, Cooper S, Cacalano G, Hague NL, Bailish E, Moore MW. (1996) Involvement of Interleukin (IL) 8 receptor in negative regulation of myeloid progenitor cells in vivo: evidence from mice lacking the murine IL-8 receptor homologue. J Exp Med184: 1825-1832. [PMID:8920870]

8. Del Rio L, Bennouna S, Salinas J, Denkers EY. (2001) CXCR2 deficiency confers impaired neutrophil recruitment and increased susceptibility during Toxoplasma gondii infection. J Immunol167: 6503-6509. [PMID:11714818]

9. Devalaraja RM, Nanney LB, Du J, Qian Q, Yu Y, Devalaraja MN, Richmond A. (2000) Delayed wound healing in CXCR2 knockout mice. J Invest Dermatol115: 234-244. [PMID:10951241]

10. Doroshenko T, Chaly Y, Savitskiy V, Maslakova O, Portyanko A, Gorudko I, Voitenok NN. (2002) Phagocytosing neutrophils down-regulate the expression of chemokine receptors CXCR1 and CXCR2. Blood100: 2668-2671. [PMID:12239185]

11. Dunstan CA, Salafranca MN, Adhikari S, Xia Y, Feng L, Harrison JK. (1996) Identification of two rat genes orthologous to the human interleukin-8 receptors. J Biol Chem271: 32770-32776. [PMID:8955112]

12. Farkas L, Hahn MC, Schmoczer M, Jentsch N, Krätzel K, Pfeifer M, Schulz C. (2005) Expression of CXC chemokine receptors 1 and 2 in human bronchial epithelial cells. Chest128: 3724-3734. [PMID:16304340]

13. Feniger-Barish R, Yron I, Meshel T, Matityahu E, Ben-Baruch A. (2003) IL-8-induced migratory responses through CXCR1 and CXCR2: association with phosphorylation and cellular redistribution of focal adhesion kinase. Biochemistry42: 2874-2886. [PMID:12627953]

14. Godaly G, Hang L, Frendéus B, Svanborg C. (2000) Transepithelial neutrophil migration is CXCR1 dependent in vitro and is defective in IL-8 receptor knockout mice. J Immunol165: 5287-5294. [PMID:11046063]

15. Gonçalves AS, Appelberg R. (2002) The involvement of the chemokine receptor CXCR2 in neutrophil recruitment in LPS-induced inflammation and in Mycobacterium avium infection. Scand J Immunol55: 585-591. [PMID:12028561]

16. Hall DA, Beresford IJ, Browning C, Giles H. (1999) Signalling by CXC-chemokine receptors 1 and 2 expressed in CHO cells: a comparison of calcium mobilization, inhibition of adenylyl cyclase and stimulation of GTPgammaS binding induced by IL-8 and GROalpha. Br J Pharmacol126: 810-818. [PMID:10188995]

17. Hall LR, Diaconu E, Patel R, Pearlman E. (2001) CXC chemokine receptor 2 but not C-C chemokine receptor 1 expression is essential for neutrophil recruitment to the cornea in helminth-mediated keratitis (river blindness). J Immunol166: 4035-4041. [PMID:11238651]

18. Hang L, Frendéus B, Godaly G, Svanborg C. (2000) Interleukin-8 receptor knockout mice have subepithelial neutrophil entrapment and renal scarring following acute pyelonephritis. J Infect Dis182: 1738-1748. [PMID:11069247]

19. Horuk R, Martin AW, Wang Z, Schweitzer L, Gerassimides A, Guo H, Lu Z, Hesselgesser J, Perez HD, Kim J, Parker J, Hadley TJ, Peiper SC. (1997) Expression of chemokine receptors by subsets of neurons in the central nervous system. J Immunol158: 2882-2890. [PMID:9058825]

20. Iikura M, Miyamasu M, Yamaguchi M, Kawasaki H, Matsushima K, Kitaura M, Morita Y, Yoshie O, Yamamoto K, Hirai K. (2001) Chemokine receptors in human basophils: inducible expression of functional CXCR4. J Leukoc Biol70: 113-120. [PMID:11435493]

21. Johnston RA, Mizgerd JP, Shore SA. (2005) CXCR2 is essential for maximal neutrophil recruitment and methacholine responsiveness after ozone exposure. Am J Physiol Lung Cell Mol Physiol288: L61-L67. [PMID:15361358]

22. Jones SA, Dewald B, Clark-Lewis I, Baggiolini M. (1997) Chemokine antagonists that discriminate between interleukin-8 receptors. Selective blockers of CXCR2. J Biol Chem272: 16166-16169. [PMID:9195914]

23. Jones SA, Wolf M, Qin S, Mackay CR, Baggiolini M. (1996) Different functions for the interleukin 8 receptors (IL-8R) of human neutrophil leukocytes: NADPH oxidase and phospholipase D are activated through IL-8R1 but not IL-8R2. Proc Natl Acad Sci U S A93: 6682-6686. [PMID:8692878]

24. Kielian T, Barry B, Hickey WF. (2001) CXC chemokine receptor-2 ligands are required for neutrophil-mediated host defense in experimental brain abscesses. J Immunol166: 4634-4643. [PMID:11254722]

25. Lee J, Horuk R, Rice GC, Bennett GL, Camerato T, Wood WI. (1992) Characterization of two high affinity human interleukin-8 receptors. J Biol Chem267: 16283-16287. [PMID:1379593]

26. Li A, Dubey S, Varney ML, Singh RK. (2002) Interleukin-8-induced proliferation, survival, and MMP production in CXCR1 and CXCR2 expressing human umbilical vein endothelial cells. Microvasc Res64: 476-481. [PMID:12453441]

27. Ludwig A, Ehlert JE, Flad HD, Brandt E. (2000) Identification of distinct surface-expressed and intracellular CXC-chemokine receptor 2 glycoforms in neutrophils: N-glycosylation is essential for maintenance of receptor surface expression. J Immunol165: 1044-1052. [PMID:10878382]

28. Matheson MC, Ellis JA, Raven J, Walters EH, Abramson MJ. (2006) Association of IL8, CXCR2 and TNF-alpha polymorphisms and airway disease. J Hum Genet, : -. [PMID:16429233]

29. Merz D, Liu R, Johnson K, Terkeltaub R. (2003) IL-8/CXCL8 and growth-related oncogene alpha/CXCL1 induce chondrocyte hypertrophic differentiation. J Immunol171: 4406-4415. [PMID:14530367]

30. Meucci O, Fatatis A, Simen AA, Bushell TJ, Gray PW, Miller RJ. (1998) Chemokines regulate hippocampal neuronal signaling and gp120 neurotoxicity. Proc Natl Acad Sci U S A95: 14500-14505. [PMID:9826729]

31. Mihara K, Smit MJ, Krajnc-Franken M, Gossen J, Rooseboom M, Dokter W. (2005) Human CXCR2 (hCXCR2) takes over functionalities of its murine homolog in hCXCR2 knockin mice. Eur J Immunol35: 2573-2582. [PMID:16094689]

32. Milatovic S, Nanney LB, Yu Y, White JR, Richmond A. (2003) Impaired healing of nitrogen mustard wounds in CXCR2 null mice. Wound Repair Regen11: 213-219. [PMID:12753603]

33. Miller AL, Strieter RM, Gruber AD, Ho SB, Lukacs NW. (2003) CXCR2 regulates respiratory syncytial virus-induced airway hyperreactivity and mucus overproduction. J Immunol170: 3348-3356. [PMID:12626595]

34. Murphy PM, Tiffany HL. (1991) Cloning of complementary DNA encoding a functional human interleukin-8 receptor. Science253: 1280-1283. [PMID:1891716]

35. Neptune ER, Bourne HR. (1997) Receptors induce chemotaxis by releasing the betagamma subunit of Gi, not by activating Gq or Gs. Proc Natl Acad Sci U S A94: 14489-14494. [PMID:9405640]

36. Nilsson G, Mikovits JA, Metcalfe DD, Taub DD. (1999) Mast cell migratory response to interleukin-8 is mediated through interaction with chemokine receptor CXCR2/Interleukin-8RB. Blood93: 2791-2797. [PMID:10216072]

37. Ochensberger B, Tassera L, Bifrare D, Rihs S, Dahinden CA. (1999) Regulation of cytokine expression and leukotriene formation in human basophils by growth factors, chemokines and chemotactic agonists. Eur J Immunol29: 11-22. [PMID:9933081]

38. Richardson RM, Marjoram RJ, Barak LS, Snyderman R. (2003) Role of the cytoplasmic tails of CXCR1 and CXCR2 in mediating leukocyte migration, activation, and regulation. J Immunol170: 2904-2911. [PMID:12626541]

39. Tarzami ST, Miao W, Mani K, Lopez L, Factor SM, Berman JW, Kitsis RN. (2003) Opposing effects mediated by the chemokine receptor CXCR2 on myocardial ischemia-reperfusion injury: recruitment of potentially damaging neutrophils and direct myocardial protection. Circulation108: 2387-2392. [PMID:14568904]

40. White JR, Lee JM, Young PR, Hertzberg RP, Jurewicz AJ, Chaikin MA, Widdowson K, Foley JJ, Martin LD, Griswold DE, Sarau HM. (1998) Identification of a potent, selective non-peptide CXCR2 antagonist that inhibits interleukin-8-induced neutrophil migration. J. Biol. Chem.273: 10095-10098. [PMID:9553055]

41. Wilson S, Wilkinson G, Milligan G. (2005) The CXCR1 and CXCR2 receptors form constitutive homo- and heterodimers selectively and with equal apparent affinities. J Biol Chem280: 28663-28674. [PMID:15946947]

42. Wolf M, Delgado MB, Jones SA, Dewald B, Clark-Lewis I, Baggiolini M. (1998) Granulocyte chemotactic protein 2 acts via both IL-8 receptors, CXCR1 and CXCR2. Eur J Immunol28: 164-170. [PMID:9485196]

43. Wu L, Ruffing N, Shi X, Newman W, Soler D, Mackay CR, Qin S. (1996) Discrete steps in binding and signaling of interleukin-8 with its receptor. J Biol Chem271: 31202-31209. [PMID:8940121]

44. Wuyts A, Proost P, Lenaerts JP, Ben-Baruch A, Van Damme J, Wang JM. (1998) Differential usage of the CXC chemokine receptors 1 and 2 by interleukin-8, granulocyte chemotactic protein-2 and epithelial-cell-derived neutrophil attractant-78. Eur J Biochem255: 67-73. [PMID:9692902]

45. Wuyts A, Van Osselaer N, Haelens A, Samson I, Herdewijn P, Ben-Baruch A, Oppenheim JJ, Proost P, Van Damme J. (1997) Characterization of synthetic human granulocyte chemotactic protein 2: usage of chemokine receptors CXCR1 and CXCR2 and in vivo inflammatory properties. Biochemistry36: 2716-2723. [PMID:9054580]

46. Zernecke A, Weber KS, Erwig LP, Kluth DC, Schröppel B, Rees AJ, Weber C. (2001) Combinatorial model of chemokine involvement in glomerular monocyte recruitment: role of CXC chemokine receptor 2 in infiltration during nephrotoxic nephritis. J Immunol166: 5755-5762. [PMID:11313419]

To cite this database page, please use the following:

Israel F. Charo, Rebecca Hills, Richard Horuk, Kouji Matsushima, Philip M. Murphy, Joost J. Oppenheim.
Chemokine receptors: CXCR2. Last modified on 31/01/2013. Accessed on 16/04/2014. IUPHAR database (IUPHAR-DB), http://www.iuphar-db.org/DATABASE/ObjectDisplayForward?objectId=69.

Contact us | Print | Back to top | Help
Copyright © 2014 IUPHAR