Nomenclature: Nav1.5

Family: Voltage-gated sodium channels

Annotation status:  image of a green circle Annotated and expert reviewed. Please contact us if you can help with updates. 

Contents

Gene and Protein Information
Species TM P Loops AA Chromosomal Location Gene Symbol Gene Name Reference
Human 24 4 2016 3p21 SCN5A sodium channel, voltage-gated, type V, alpha subunit
Mouse 24 4 2020 9 F3-F4 Scn5a sodium channel, voltage-gated, type V, alpha
Rat 24 4 2019 8q32 Scn5a sodium channel, voltage-gated, type V, alpha subunit 9,24
Previous and Unofficial Names
h1
skm II
cardiac sodium channel
Nav1.5
SkM II
CMD1E
LQT3
HB1
HBBD
PFHB1
IVF
HB2
HH1
SSS1
CDCD2
CMPD2
ICCD
sodium channel, voltage-gated, type V, alpha (long QT syndrome 3)
long QT syndrome 3
SCAL
sodium channel protein cardiac muscle subunit alpha
sodium channel protein type 5 subunit alpha
sodium channel protein type V subunit alpha
sodium channel, voltage-gated, type 5, alpha subunit
sodium channel, voltage-gated, type V, alpha
sodium channel, voltage-gated, type V, alpha polypeptide
voltage-gated sodium channel Nav1.5c
voltage-gated sodium channel subunit alpha Nav1.5
SkM2
Nav1.5c
mH1
Database Links
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
GeneCards
GenitoUrinary Development Molecular Anatomy Project
HomoloGene
Human Protein Reference Database
InterPro
KEGG Gene
OMIM
Orphanet Gene
PharmGKB Gene
PhosphoSitePlus
Protein Ontology (PRO)
RefSeq Nucleotide
RefSeq Protein
TreeFam
UniGene Hs.
UniProtKB
Wikipedia
Associated Proteins
Heteromeric Pore-forming Subunits
Name References
Not determined
Auxiliary Subunits
Name References
β4 6,11,17
β3 6-7,10-11
β2 6,11,44
β1 2,6,10-11,15,45
Other Associated Proteins
Name References
Not determined
Associated Protein Comments
Subunit associations are based on co-localization, co-expression in heterologous cells, and co-immunoprecipitation. No biochemical data on Nav1.5 purified from cardiac tissue are available.
Functional Characteristics
Fast inactivation (1 ms)
Ion Selectivity and Conductance Comments
Single channel conductance for Nav1.5 is ~20 pS and is not reported to be depended on species [1956,2884,2885]
Voltage Dependence
  V0.5 (mV)  τ (msec)  Reference  Cell type  Species 
Activation  25.9 - 16 HEK-293, tsA-201 Rat
Inactivation  60.4 - 16
Comments  Cs aspartate as the major intracellular solute.
  V0.5 (mV)  τ (msec)  Reference  Cell type  Species 
Activation  -44.0 - 30 HEK 293 cells Human
Inactivation  -87.0 - 30
Comments  Cs fluoride as major intracellular solute
  V0.5 (mV)  τ (msec)  Reference  Cell type  Species 
Activation  -41.0 - 43 HEK 293 cells Rat
Inactivation  -89.0 - 43
Activators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Concentration range (M) Holding voltage (mV) Reference
aconitine Hs Agonist - - 3x10-5 - 1x10-4 -140.0 19,42
Conc range: 3x10-5 - 1x10-4 M [19,42]
Holding voltage: -140.0 mV
batrachotoxin Rn Agonist 7.6 pKd - Physiological 31
pKd 7.6 (Kd 2.51x10-8 M) [31]
Holding voltage: Physiological
veratridine Rn Agonist 6.3 pEC50 - -30.0 37
pEC50 6.3 (EC50 5.01x10-7 M) [37]
Holding voltage: -30.0 mV
View species-specific activator tables
Gating inhibitors
Key to terms and symbols Click column headers to sort
Ligand Sp. Action Affinity Units Concentration range (M) Holding voltage (mV) Reference
α-scorpion toxin Rn Antagonist 7.7 pKd - Physiological 25
pKd 7.7 [25]
Holding voltage: Physiological
ATX-II Hs Antagonist 7.3 pEC50 - -80.0 22
pEC50 7.3 [22]
Holding voltage: -80.0 mV
AFT-II Hs Antagonist 7.2 pEC50 - -80.0 22
pEC50 7.2 [22]
Holding voltage: -80.0 mV
Bc-III Hs Antagonist 6.5 pEC50 - -80.0 22
pEC50 6.5 [22]
Holding voltage: -80.0 mV
View species-specific gating inhibitor tables
Channel Blockers
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Concentration range (M) Holding voltage (mV) Reference
tetrodotoxin Hs - - - 2x10-6 -
Conc range: 2x10-6 M
saxitoxin Rn Antagonist 7.4 pKd - -80.0 5,43
pKd 7.4 [5,43]
Holding voltage: -80.0 mV
tetrodotoxin Rn Antagonist 5.8 pKd - -80.0 5,43
pKd 5.8 [5,43]
Holding voltage: -80.0 mV
lidocaine Hs Antagonist 4.8 pKd - -70.0 – -55.0 21
pKd 4.8 [21]
Holding voltage: -70.0 – -55.0 mV
amiodarone Rn Antagonist 5.7 pIC50 - Physiological 33
pIC50 5.7 [33]
Holding voltage: Physiological
quinidine Rn Antagonist 4.4 – 5.0 pIC50 - Physiological 8,32
pIC50 4.4 – 5.0 [8,32]
Holding voltage: Physiological
lidocaine Rn Antagonist 4.2 pIC50 - Physiological 8
pIC50 4.2 [8]
Holding voltage: Physiological
View species-specific channel blocker tables
Tissue Distribution
Heart.
Species:  Mouse
Technique:  Immunohistochemistry
References:  11-12
Developing skeletal muscle.
Species:  Rat
Technique:  Northern Blot
References:  9
Heart (intercalated disks in ventricular myocytes).
Species:  Rat
Technique:  Immunohistochemistry
References:  4
Physiological Functions
Action potential generation and conduction.
Species:  Human
Tissue:  Heart
References:  27,40
Action potential generation and conduction.
Species:  Mouse
Tissue:  Heart
References:  12,24
Physiological Consequences of Altering Gene Expression
The SCN5A -/+ mouse shows a phenotype resembling Lenègre's disease, including age-related lengthening of the P-wave and PR- and QRS-interval duration.
Species:  Mouse
Tissue:  Heart
Technique:  Various
References:  27
Phenotypes, Alleles and Disease Models Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Scn5atm1Agrc Scn5atm1Agrc/Scn5atm1Agrc
involves: 129/Sv * C57BL/6J
MGI:98251  MP:0002972 abnormal cardiac muscle contractility PMID: 11972032 
Scn5atm1Pec Scn5atm1Pec/Scn5atm1Pec
involves: Swiss
MGI:98251  MP:0001544 abnormal cardiovascular system physiology PMID: 11533705 
Scn5a+|Scn5atm1Agrc Scn5atm1Agrc/Scn5a+
involves: 129/Sv * C57BL/6J
MGI:98251  MP:0001629 abnormal heart rate PMID: 11972032 
Scn5atm1Agrc Scn5atm1Agrc/Scn5atm1Agrc
involves: 129/Sv * C57BL/6J
MGI:98251  MP:0005294 abnormal heart ventricle morphology PMID: 11972032 
Scn5a+|Scn5atm1Agrc Scn5atm1Agrc/Scn5a+
involves: 129/Sv * C57BL/6J
MGI:98251  MP:0003137 abnormal impulse conducting system conduction PMID: 11972032 
Scn5a+|Scn5atm1Pec Scn5atm1Pec/Scn5a+
involves: Swiss
MGI:98251  MP:0003137 abnormal impulse conducting system conduction PMID: 11533705 
Scn5a+|Scn5atm1Agrc Scn5atm1Agrc/Scn5a+
involves: 129/Sv
MGI:98251  MP:0003137 abnormal impulse conducting system conduction PMID: 15809371 
Scn5a+|Scn5atm1Clhh Scn5atm1Clhh/Scn5a+
involves: 129 * 129S/SvEv * C57BL/6J
MGI:98251  MP:0003137 abnormal impulse conducting system conduction PMID: 16403066 
Scn5a+|Scn5atm1Care Scn5atm1Care/Scn5a+
FVB.129P2-Scn5a
MGI:98251  MP:0003137 abnormal impulse conducting system conduction PMID: 17145985 
Scn5a+|Scn5atm1Agrc Scn5atm1Agrc/Scn5a+
involves: 129/Sv * C57BL/6J
MGI:98251  MP:0004215 abnormal myocardial fiber physiology PMID: 11972032 
Scn5a+|Scn5atm1Clhh Scn5atm1Clhh/Scn5a+
involves: 129 * 129S/SvEv * C57BL/6J
MGI:98251  MP:0004215 abnormal myocardial fiber physiology PMID: 16403066 
Scn5a+|Scn5atm1Care Scn5atm1Care/Scn5a+
FVB.129P2-Scn5a
MGI:98251  MP:0004215 abnormal myocardial fiber physiology PMID: 17145985 
Scn5a+|Scn5atm1Care Scn5atm1Care/Scn5a+
FVB.129P2-Scn5a
MGI:98251  MP:0006142 abnormal sinoatrial node conduction PMID: 17145985 
Scn5atm1Agrc Scn5atm1Agrc/Scn5atm1Agrc
involves: 129/Sv * C57BL/6J
MGI:98251  MP:0004067 abnormal trabecula carnea morphology PMID: 11972032 
Scn5a+|Scn5atm1Pec Scn5atm1Pec/Scn5a+
involves: Swiss
MGI:98251  MP:0010505 abnormal T wave PMID: 11533705 
Scn5a+|Scn5atm1Agrc Scn5atm1Agrc/Scn5a+
involves: 129/Sv
MGI:98251  MP:0003141 cardiac fibrosis PMID: 15809371 
Scn5atm1Agrc Scn5atm1Agrc/Scn5atm1Agrc
involves: 129/Sv * C57BL/6J
MGI:98251  MP:0001698 decreased embryo size PMID: 11972032 
Scn5atm1Clhh Scn5atm1Clhh/Scn5atm1Clhh
involves: 129 * 129S/SvEv * C57BL/6J
MGI:98251  MP:0001698 decreased embryo size PMID: 16403066 
Scn5a+|Scn5atm1Pec Scn5atm1Pec/Scn5a+
involves: Swiss
MGI:98251  MP:0005333 decreased heart rate PMID: 11533705 
Scn5a+|Scn5atm1Agrc Scn5atm1Agrc/Scn5a+
involves: 129/Sv
MGI:98251  MP:0005333 decreased heart rate PMID: 15809371 
Scn5a+|Scn5atm1Care Scn5atm1Care/Scn5a+
FVB.129P2-Scn5a
MGI:98251  MP:0005333 decreased heart rate PMID: 17145985 
Scn5atm1Agrc Scn5atm1Agrc/Scn5atm1Agrc
involves: 129/Sv * C57BL/6J
MGI:98251  MP:0004567 decreased myocardial fiber number PMID: 11972032 
Scn5atm1Agrc Scn5atm1Agrc/Scn5atm1Agrc
involves: 129/Sv * C57BL/6J
MGI:98251  MP:0006207 embryonic lethality during organogenesis PMID: 11972032 
Scn5atm1Pec Scn5atm1Pec/Scn5atm1Pec
involves: Swiss
MGI:98251  MP:0006207 embryonic lethality during organogenesis PMID: 11533705 
Scn5atm1Clhh Scn5atm1Clhh/Scn5atm1Clhh
involves: 129 * 129S/SvEv * C57BL/6J
MGI:98251  MP:0006207 embryonic lethality during organogenesis PMID: 16403066 
Scn5a+|Scn5atm1Clhh Scn5atm1Clhh/Scn5a+
involves: 129 * 129S/SvEv * C57BL/6J
MGI:98251  MP:0009763 increased sensitivity to induced morbidity/mortality PMID: 16403066 
Scn5a+|Scn5atm1Pec Scn5atm1Pec/Scn5a+
involves: Swiss
MGI:98251  MP:0001636 irregular heartbeat PMID: 11533705 
Scn5atm1Clhh Scn5atm1Clhh/Scn5atm1Clhh
involves: 129 * 129S/SvEv * C57BL/6J
MGI:98251  MP:0001636 irregular heartbeat PMID: 16403066 
Scn5a+|Scn5atm1Clhh Scn5atm1Clhh/Scn5a+
involves: 129 * 129S/SvEv * C57BL/6J
MGI:98251  MP:0001636 irregular heartbeat PMID: 16403066 
Scn5atm1Clhh Scn5atm1Clhh/Scn5atm1Clhh
involves: 129 * 129S/SvEv * C57BL/6J
MGI:98251  MP:0001651 necrosis PMID: 16403066 
Scn5atm1(SCN5A)Rdn Scn5atm1(SCN5A)Rdn/Scn5atm1(SCN5A)Rdn
involves: 129S6/SvEvTac
MGI:98251  MP:0002169 no abnormal phenotype detected PMID: 17083109 
Scn5a+|Scn5atm1Clhh Scn5atm1Clhh/Scn5a+
involves: 129 * 129S/SvEv * C57BL/6J
MGI:98251  MP:0002082 postnatal lethality PMID: 16403066 
Scn5a+|Scn5atm1Pec Scn5atm1Pec/Scn5a+
involves: Swiss
MGI:98251  MP:0002083 premature death PMID: 11533705 
Scn5atm1Care Scn5atm1Care/Scn5atm1Care
FVB.129P2-Scn5a
MGI:98251  MP:0002080 prenatal lethality PMID: 17145985 
Scn5a+|Scn5atm1Agrc Scn5atm1Agrc/Scn5a+
involves: 129/Sv * C57BL/6J
MGI:98251  MP:0003896 prolonged PR interval PMID: 11972032 
Scn5a+|Scn5atm1Agrc Scn5atm1Agrc/Scn5a+
involves: 129/Sv
MGI:98251  MP:0003896 prolonged PR interval PMID: 15809371 
Scn5a+|Scn5atm1Care Scn5atm1Care/Scn5a+
FVB.129P2-Scn5a
MGI:98251  MP:0003896 prolonged PR interval PMID: 17145985 
Scn5a+|Scn5atm1Agrc Scn5atm1Agrc/Scn5a+
involves: 129/Sv * C57BL/6J
MGI:98251  MP:0004071 prolonged P wave PMID: 11972032 
Scn5a+|Scn5atm1Agrc Scn5atm1Agrc/Scn5a+
involves: 129/Sv
MGI:98251  MP:0004071 prolonged P wave PMID: 15809371 
Scn5a+|Scn5atm1Agrc Scn5atm1Agrc/Scn5a+
involves: 129/Sv
MGI:98251  MP:0010392 prolonged QRS complex duration PMID: 15809371 
Scn5a+|Scn5atm1Care Scn5atm1Care/Scn5a+
FVB.129P2-Scn5a
MGI:98251  MP:0010392 prolonged QRS complex duration PMID: 17145985 
Scn5a+|Scn5atm1Pec Scn5atm1Pec/Scn5a+
involves: Swiss
MGI:98251  MP:0003233 prolonged QT interval PMID: 11533705 
Scn5a+|Scn5atm1Agrc Scn5atm1Agrc/Scn5a+
involves: 129/Sv
MGI:98251  MP:0003233 prolonged QT interval PMID: 15809371 
Scn5a+|Scn5atm1Care Scn5atm1Care/Scn5a+
FVB.129P2-Scn5a
MGI:98251  MP:0003233 prolonged QT interval PMID: 17145985 
Scn5a+|Scn5atm1Clhh Scn5atm1Clhh/Scn5a+
involves: 129 * 129S/SvEv * C57BL/6J
MGI:98251  MP:0002064 seizures PMID: 16403066 
Scn5a+|Scn5atm1Agrc Scn5atm1Agrc/Scn5a+
involves: 129/Sv * C57BL/6J
MGI:98251  MP:0008950 ventricular tachycardia PMID: 11972032 
Scn5a+|Scn5atm1Clhh Scn5atm1Clhh/Scn5a+
involves: 129 * 129S/SvEv * C57BL/6J
MGI:98251  MP:0008950 ventricular tachycardia PMID: 16403066 
Clinically-Relevant Mutations and Pathophysiology
Disease:  Brugada Syndrome
OMIM:  601144
Orphanet:  130
Role: 
Drugs: 
References:  3
Click column headers to sort
Type Species Molecular location Description Reference
Missense Human A1924T 26
Missense Human Y1795H 23
Missense Human T1620M 3
Missense Human R1512W 26
Missense Human G1262S 34
Missense Human R1232W 3
Missense Human R1193Q 35,38
Missense Human E1053K 18
Missense Human A735V 35
Missense Human R367H 35
Truncation Human W1421X 20
Disease:  Long QT Syndrome, type 3
OMIM:  603830
Orphanet:  101016
Role: 
Drugs: 
References:  40
Click column headers to sort
Type Species Molecular location Description Reference
Deletion Human K1505-P1506-Q1507 40
Missense Human R1826H 1
Missense Human Y1795C 23
Missense Human E1784K 13,41
Missense Human R1664H 39
Missense Human R1623Q 14
Missense Human N1325S 39
Missense Human A997S 1
Missense Human S941N 29
Disease:  Atrial cardiomyopathy with heart block
OMIM:  108770
Orphanet:  1344
References: 
Mutations not determined
Disease:  Lenègre's disease
OMIM:  113900
Orphanet:  871
Role: 
References:  27
Click column headers to sort
Type Species Molecular location Description Reference
Deletion Human Exon 22 (IVS22DS+2 T-C) 28
Frameshift Human A1771+ 28
Missense Human D1595N 36
Missense Human G298S 36
Disease:  Cardiomyopathy, dilated, 1E; CMD1E
OMIM:  601154
Orphanet:  154
References: 
Mutations not determined
Disease:  Ventricular fibrillation during myocardial infarction, susceptibility to
OMIM:  603829
Orphanet:  228140
References: 
Mutations not determined
Disease:  Sick sinus syndrome 1, autosomal recessive; SSS1
OMIM:  608567
Orphanet:  166282, 871
References: 
Mutations not determined
Disease:  Atrial fibrillation, familial, 10; ATFB10
OMIM:  614022
Orphanet:  334
References: 
Mutations not determined
Disease:  Sudden infant death syndrome, susceptibility to
OMIM:  272120
References: 
Mutations not determined
Biologically Significant Variants
Type:  Splice variant
Species:  Human
Description:  Isoform c
Amino acids:  2016
Nucleotide accession: 
Protein accession: 
Type:  Splice variant
Species:  Human
Description:  Isoform b
Amino acids:  2015
Nucleotide accession: 
Protein accession: 
Type:  Splice variant
Species:  Human
Description:  Isoform a
Amino acids:  2016
Nucleotide accession: 
Protein accession: 
Type:  Splice variant
Species:  Human
Description:  Isoform d
Amino acids:  1998
Nucleotide accession: 
Protein accession: 

REFERENCES

1. Ackerman MJ, Siu BL, Sturner WQ, Tester DJ, Valdivia CR, Makielski JC, Towbin JA. (2001) Postmortem molecular analysis of SCN5A defects in sudden infant death syndrome. JAMA286 (18): 2264-9. [PMID:11710892]

2. Biskup C, Zimmer T, Benndorf K. (2004) FRET between cardiac Na+ channel subunits measured with a confocal microscope and a streak camera. Nat. Biotechnol.22 (2): 220-4. [PMID:14730318]

3. Chen Q, Kirsch GE, Zhang D, Brugada R, Brugada J, Brugada P, Potenza D, Moya A, Borggrefe M, Breithardt G, Ortiz-Lopez R, Wang Z, Antzelevitch C, O'Brien RE, Schulze-Bahr E, Keating MT, Towbin JA, Wang Q. (1998) Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature392 (6673): 293-6. [PMID:9521325]

4. Cohen SA. (1996) Immunocytochemical localization of rH1 sodium channel in adult rat heart atria and ventricle. Presence in terminal intercalated disks. Circulation94 (12): 3083-6. [PMID:8989112]

5. Cribbs LL, Satin J, Fozzard HA, Rogart RB. (1990) Functional expression of the rat heart I Na+ channel isoform. Demonstration of properties characteristic of native cardiac Na+ channels. FEBS Lett.275 (1-2): 195-200. [PMID:2175715]

6. Dhar Malhotra J, Chen C, Rivolta I, Abriel H, Malhotra R, Mattei LN, Brosius FC, Kass RS, Isom LL. (2001) Characterization of sodium channel alpha- and beta-subunits in rat and mouse cardiac myocytes. Circulation103 (9): 1303-10. [PMID:11238277]

7. Fahmi AI, Patel M, Stevens EB, Fowden AL, John JE, Lee K, Pinnock R, Morgan K, Jackson AP, Vandenberg JI. (2001) The sodium channel beta-subunit SCN3b modulates the kinetics of SCN5a and is expressed heterogeneously in sheep heart. J. Physiol. (Lond.)537 (Pt 3): 693-700. [PMID:11744748]

8. Hill RJ, Duff HJ, Sheldon RS. (1989) Class I antiarrhythmic drug receptor: biochemical evidence for state-dependent interaction with quinidine and lidocaine. Mol. Pharmacol.36 (1): 150-9. [PMID:2546048]

9. Kallen RG, Sheng ZH, Yang J, Chen LQ, Rogart RB, Barchi RL. (1990) Primary structure and expression of a sodium channel characteristic of denervated and immature rat skeletal muscle. Neuron4 (2): 233-42. [PMID:2155010]

10. Ko SH, Lenkowski PW, Lee HC, Mounsey JP, Patel MK. (2005) Modulation of Na(v)1.5 by beta1-- and beta3-subunit co-expression in mammalian cells. Pflugers Arch.449 (4): 403-12. [PMID:15455233]

11. Maier SK, Westenbroek RE, McCormick KA, Curtis R, Scheuer T, Catterall WA. (2004) Distinct subcellular localization of different sodium channel alpha and beta subunits in single ventricular myocytes from mouse heart. Circulation109 (11): 1421-7. [PMID:15007009]

12. Maier SK, Westenbroek RE, Schenkman KA, Feigl EO, Scheuer T, Catterall WA. (2002) An unexpected role for brain-type sodium channels in coupling of cell surface depolarization to contraction in the heart. Proc. Natl. Acad. Sci. U.S.A.99 (6): 4073-8. [PMID:11891345]

13. Makita N, Behr E, Shimizu W, Horie M, Sunami A, Crotti L, Schulze-Bahr E, Fukuhara S, Mochizuki N, Makiyama T, Itoh H, Christiansen M, McKeown P, Miyamoto K, Kamakura S, Tsutsui H, Schwartz PJ, George AL, Roden DM. (2008) The E1784K mutation in SCN5A is associated with mixed clinical phenotype of type 3 long QT syndrome. J. Clin. Invest.118 (6): 2219-29. [PMID:18451998]

14. Makita N, Shirai N, Nagashima M, Matsuoka R, Yamada Y, Tohse N, Kitabatake A. (1998) A de novo missense mutation of human cardiac Na+ channel exhibiting novel molecular mechanisms of long QT syndrome. FEBS Lett.423 (1): 5-9. [PMID:9506831]

15. Malhotra JD, Thyagarajan V, Chen C, Isom LL. (2004) Tyrosine-phosphorylated and nonphosphorylated sodium channel beta1 subunits are differentially localized in cardiac myocytes. J. Biol. Chem.279 (39): 40748-54. [PMID:15272007]

16. Mantegazza M, Yu FH, Catterall WA, Scheuer T. (2001) Role of the C-terminal domain in inactivation of brain and cardiac sodium channels. Proc. Natl. Acad. Sci. U.S.A.98 (26): 15348-53. [PMID:11742069]

17. Medeiros-Domingo A, Kaku T, Tester DJ, Iturralde-Torres P, Itty A, Ye B, Valdivia C, Ueda K, Canizales-Quinteros S, Tusié-Luna MT, Makielski JC, Ackerman MJ. (2007) SCN4B-encoded sodium channel beta4 subunit in congenital long-QT syndrome. Circulation116 (2): 134-42. [PMID:17592081]

18. Mohler PJ, Rivolta I, Napolitano C, LeMaillet G, Lambert S, Priori SG, Bennett V. (2004) Nav1.5 E1053K mutation causing Brugada syndrome blocks binding to ankyrin-G and expression of Nav1.5 on the surface of cardiomyocytes. Proc. Natl. Acad. Sci. U.S.A.101 (50): 17533-8. [PMID:15579534]

19. Nilius B, Boldt W, Benndorf K. (1986) Properties of aconitine-modified sodium channels in single cells of mouse ventricular myocardium. Gen. Physiol. Biophys.5 (5): 473-84. [PMID:2433183]

20. Niu DM, Hwang B, Hwang HW, Wang NH, Wu JY, Lee PC, Chien JC, Shieh RC, Chen YT. (2006) A common SCN5A polymorphism attenuates a severe cardiac phenotype caused by a nonsense SCN5A mutation in a Chinese family with an inherited cardiac conduction defect. J. Med. Genet.43 (10): 817-21. [PMID:16707561]

21. Nuss HB, Tomaselli GF, Marbán E. (1995) Cardiac sodium channels (hH1) are intrinsically more sensitive to block by lidocaine than are skeletal muscle (mu 1) channels. J. Gen. Physiol.106 (6): 1193-209. [PMID:8786356]

22. Oliveira JS, Redaelli E, Zaharenko AJ, Cassulini RR, Konno K, Pimenta DC, Freitas JC, Clare JJ, Wanke E. (2004) Binding specificity of sea anemone toxins to Nav 1.1-1.6 sodium channels: unexpected contributions from differences in the IV/S3-S4 outer loop. J. Biol. Chem.279 (32): 33323-35. [PMID:15169781]

23. Rivolta I, Abriel H, Tateyama M, Liu H, Memmi M, Vardas P, Napolitano C, Priori SG, Kass RS. (2001) Inherited Brugada and long QT-3 syndrome mutations of a single residue of the cardiac sodium channel confer distinct channel and clinical phenotypes. J. Biol. Chem.276 (33): 30623-30. [PMID:11410597]

24. Rogart RB, Cribbs LL, Muglia LK, Kephart DD, Kaiser MW. (1989) Molecular cloning of a putative tetrodotoxin-resistant rat heart Na+ channel isoform. Proc. Natl. Acad. Sci. U.S.A.86 (20): 8170-4. [PMID:2554302]

25. Rogers JC, Qu Y, Tanada TN, Scheuer T, Catterall WA. (1996) Molecular determinants of high affinity binding of alpha-scorpion toxin and sea anemone toxin in the S3-S4 extracellular loop in domain IV of the Na+ channel alpha subunit. J. Biol. Chem.271 (27): 15950-62. [PMID:8663157]

26. Rook MB, Bezzina Alshinawi C, Groenewegen WA, van Gelder IC, van Ginneken AC, Jongsma HJ, Mannens MM, Wilde AA. (1999) Human SCN5A gene mutations alter cardiac sodium channel kinetics and are associated with the Brugada syndrome. Cardiovasc. Res.44 (3): 507-17. [PMID:10690282]

27. Royer A, van Veen TA, Le Bouter S, Marionneau C, Griol-Charhbili V, Léoni AL, Steenman M, van Rijen HV, Demolombe S, Goddard CA, Richer C, Escoubet B, Jarry-Guichard T, Colledge WH, Gros D, de Bakker JM, Grace AA, Escande D, Charpentier F. (2005) Mouse model of SCN5A-linked hereditary Lenègre's disease: age-related conduction slowing and myocardial fibrosis. Circulation111 (14): 1738-46. [PMID:15809371]

28. Schott JJ, Alshinawi C, Kyndt F, Probst V, Hoorntje TM, Hulsbeek M, Wilde AA, Escande D, Mannens MM, Le Marec H. (1999) Cardiac conduction defects associate with mutations in SCN5A. Nat. Genet.23 (1): 20-1. [PMID:10471492]

29. Schwartz PJ, Priori SG, Dumaine R, Napolitano C, Antzelevitch C, Stramba-Badiale M, Richard TA, Berti MR, Bloise R. (2000) A molecular link between the sudden infant death syndrome and the long-QT syndrome. N. Engl. J. Med.343 (4): 262-7. [PMID:10911008]

30. Sheets MF, Hanck DA. (1999) Gating of skeletal and cardiac muscle sodium channels in mammalian cells. J. Physiol. (Lond.)514 ( Pt 2): 425-36. [PMID:9852324]

31. Sheldon RS, Cannon NJ, Duff HJ. (1986) Binding of [3H]batrachotoxinin A benzoate to specific sites on rat cardiac sodium channels. Mol. Pharmacol.30 (6): 617-23. [PMID:2431264]

32. Sheldon RS, Duff HJ, Thakore E, Hill RJ. (1994) Class I antiarrhythmic drugs: allosteric inhibitors of [3H] batrachotoxinin binding to rat cardiac sodium channels. J. Pharmacol. Exp. Ther.268 (1): 187-94. [PMID:8301556]

33. Sheldon RS, Hill RJ, Cannon NJ, Duff HJ. (1989) Amiodarone: biochemical evidence for binding to a receptor for class I drugs associated with the rat cardiac sodium channel. Circ. Res.65 (2): 477-82. [PMID:2546697]

34. Shin DJ, Jang Y, Park HY, Lee JE, Yang K, Kim E, Bae Y, Kim J, Kim J, Kim SS, Lee MH, Chahine M, Yoon SK. (2004) Genetic analysis of the cardiac sodium channel gene SCN5A in Koreans with Brugada syndrome. J. Hum. Genet.49 (10): 573-8. [PMID:15338453]

35. Vatta M, Dumaine R, Varghese G, Richard TA, Shimizu W, Aihara N, Nademanee K, Brugada R, Brugada J, Veerakul G, Li H, Bowles NE, Brugada P, Antzelevitch C, Towbin JA. (2002) Genetic and biophysical basis of sudden unexplained nocturnal death syndrome (SUNDS), a disease allelic to Brugada syndrome. Hum. Mol. Genet.11 (3): 337-45. [PMID:11823453]

36. Wang DW, Viswanathan PC, Balser JR, George AL, Benson DW. (2002) Clinical, genetic, and biophysical characterization of SCN5A mutations associated with atrioventricular conduction block. Circulation105 (3): 341-6. [PMID:11804990]

37. Wang G Dugas M Armah BI Honerjäger P. (1990) Sodium channel comodification with full activator reveals veratridine reaction dynamics. Mol Pharmacol.37 (2): 144-148. [PMID:2154667]

38. Wang Q, Chen S, Chen Q, Wan X, Shen J, Hoeltge GA, Timur AA, Keating MT, Kirsch GE. (2004) The common SCN5A mutation R1193Q causes LQTS-type electrophysiological alterations of the cardiac sodium channel. J. Med. Genet.41 (5): e66. [PMID:15121794]

39. Wang Q, Shen J, Li Z, Timothy K, Vincent GM, Priori SG, Schwartz PJ, Keating MT. (1995) Cardiac sodium channel mutations in patients with long QT syndrome, an inherited cardiac arrhythmia. Hum. Mol. Genet.4 (9): 1603-7. [PMID:8541846]

40. Wang Q, Shen J, Splawski I, Atkinson D, Li Z, Robinson JL, Moss AJ, Towbin JA, Keating MT. (1995) SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell80 (5): 805-11. [PMID:7889574]

41. Wei J, Wang DW, Alings M, Fish F, Wathen M, Roden DM, George AL. (1999) Congenital long-QT syndrome caused by a novel mutation in a conserved acidic domain of the cardiac Na+ channel. Circulation99 (24): 3165-71. [PMID:10377081]

42. Wright SN. (2002) Comparison of aconitine-modified human heart (hH1) and rat skeletal (mu1) muscle Na+ channels: an important role for external Na+ ions. J Physiol.3 (538): 759-771. [PMID:11826163]

43. Zeng D Kyle JW Martin RL Ambler KS Hanck DA. (1996) Cardiac sodium channels expressed in a peripheral neurotumor-derived cell line, RT4-B8. Am J Physiol.270 (5): C1522-31. [PMID:8967455]

44. Zimmer T, Benndorf K. (2007) The intracellular domain of the beta 2 subunit modulates the gating of cardiac Na v 1.5 channels. Biophys. J.92 (11): 3885-92. [PMID:17369409]

45. Zimmer T, Biskup C, Bollensdorff C, Benndorf K. (2002) The beta1 subunit but not the beta2 subunit colocalizes with the human heart Na+ channel (hH1) already within the endoplasmic reticulum. J. Membr. Biol.186 (1): 13-21. [PMID:11891585]

To cite this database page, please use the following:

William A. Catterall, Alan L. Goldin, Stephen G. Waxman.
Voltage-gated sodium channels: Nav1.5. Last modified on 25/03/2014. Accessed on 31/07/2014. IUPHAR database (IUPHAR-DB), http://www.iuphar-db.org/DATABASE/ObjectDisplayForward?objectId=582.

Contact us | Print | Back to top | Help
Copyright © 2014 IUPHAR