Nomenclature: Nav1.4

Family: Voltage-gated sodium channels

Annotation status:  image of an orange circle Annotated and awaiting review. Please contact us if you can help with reviewing. 

Contents

Gene and Protein Information
Species TM P Loops AA Chromosomal Location Gene Symbol Gene Name Reference
Human 24 1 1836 17q23-25 SCN4A sodium channel, voltage-gated, type IV, alpha subunit 2,11,65
Mouse 24 1 1841 11 E1 Scn4a sodium channel, voltage-gated, type IV, alpha 1,69
Rat 24 1 1840 10q32.1 Scn4a sodium channel, voltage-gated, type IV, alpha subunit 1,58
Previous and Unofficial Names
SkM1
μ1
Nav1.4
HYKPP
HYPP
NCHVS
microI
Sodium channel voltage-gated type IV alpha polypeptide
Sodium channel, voltage-gated, type IV, alpha polypeptide
mu-1
sodium channel protein skeletal muscle subunit alpha
sodium channel protein type 4 subunit alpha
sodium channel protein type IV subunit alpha
sodium channel voltage-gated type 4 alpha polypeptide
sodium channel, voltage-gated, type 4, alpha polypeptide
sodium channel, voltage-gated, type 4, alpha subunit
sodium channel, voltage-gated, type IV, alpha
voltage-gated sodium channel subunit alpha Nav1.4
mH2
Database Links
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
GeneCards
GenitoUrinary Development Molecular Anatomy Project
HomoloGene
Human Protein Reference Database
InterPro
KEGG Gene
OMIM
Orphanet Gene
PharmGKB Gene
PhosphoSitePlus
Protein Ontology (PRO)
RefSeq Nucleotide
RefSeq Protein
TreeFam
UniGene Hs.
UniProtKB
Wikipedia
Associated Proteins
Heteromeric Pore-forming Subunits
Name References
Not determined
Auxiliary Subunits
Name References
β1 14,24
Other Associated Proteins
Name References
Not determined
Functional Characteristics
Fast inactivation (0.6 ms)
Ion Selectivity and Conductance
Species:  Rat
Rank order:  Na+ > K+ > Rb+ > Cs+
References:  57
Voltage Dependence
  V0.5 (mV)  τ (msec)  Reference  Cell type  Species 
Activation  -32.7 – -22.8 (median: -30.0) - 16,27,64,66 HEK 293 cells. Rat
Inactivation  -88.5 – -66.1 (median: -75.0) - 16,27,64,66
  V0.5 (mV)  τ (msec)  Reference  Cell type  Species 
Activation  -25.9 - 6 CHO cells. Human
Inactivation  -56.0 1.1 6
  V0.5 (mV)  τ (msec)  Reference  Cell type  Species 
Activation  -36.0 – -29.6 (median: -33.0) - 25,38 HEK-293, tsA-201 Human
Inactivation  -80.0 – -72.8 (median: -76.0) 0.6 25,38
Activators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Concentration range (M) Holding voltage (mV) Reference
grayanotoxin Rn Agonist - - 3x10-4 -120.0 26
Conc range: 3x10-4 M [26]
Holding voltage: -120.0 mV
veratridine Rn Agonist - - 2x10-4 -100.0 67
Conc range: 2x10-4 M [67]
Holding voltage: -100.0 mV
batrachotoxin Rn Agonist - - 5x10-6 -100.0 67
Conc range: 5x10-6 M [67]
Holding voltage: -100.0 mV
β-scorpion toxin TiTXγ Rn Agonist - - 5x10-8 -100.0 34
Conc range: 5x10-8 M [34]
Holding voltage: -100.0 mV
Gating inhibitors
Key to terms and symbols Click column headers to sort
Ligand Sp. Action Affinity Units Concentration range (M) Holding voltage (mV) Reference
AFT-II Hs Antagonist 7.5 pEC50 - -80.0 42
pEC50 7.5 [42]
Holding voltage: -80.0 mV
ATX-II Hs Antagonist 7.0 – 7.3 pEC50 - -100.0 – -80.0 12,42
pEC50 7.0 – 7.3 [12,42]
Holding voltage: -100.0 – -80.0 mV
Bc-III Hs Antagonist 6.1 pEC50 - -80.0 42
pEC50 6.1 [42]
Holding voltage: -80.0 mV
Channel Blockers
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Concentration range (M) Holding voltage (mV) Reference
tetrodotoxin Hs - - - 5x10-9 -
Conc range: 5x10-9 M
saxitoxin Rn Antagonist 8.4 pIC50 - -100.0 44
pIC50 8.4 (IC50 4.1x10-9 M) [44]
Holding voltage: -100.0 mV
tetrodotoxin Rn Antagonist 8.3 pIC50 - -120.0 59
pIC50 8.3 [59]
Holding voltage: -120.0 mV
tetrodotoxin Hs Antagonist 7.6 pIC50 - -120.0 11
pIC50 7.6 [11]
Holding voltage: -120.0 mV
μ-conotoxin GIIIA Rn Antagonist 7.3 – 7.7 pIC50 - -120.0 – -100.0 13,53
pIC50 7.3 – 7.7 [13,53]
Holding voltage: -120.0 – -100.0 mV
μ-conotoxin PIIIA Rn Antagonist 7.4 pIC50 - -120.0 53
pIC50 7.4 [53]
Holding voltage: -120.0 mV
μ-conotoxin GIIIA Hs Antagonist 5.9 pIC50 - -100.0 11
pIC50 5.9 (IC50 1.2x10-6 M) [11]
Holding voltage: -100.0 mV
mexiletine Hs Antagonist 3.4 pIC50 - -140.0 63
pIC50 3.4 [63]
Holding voltage: -140.0 mV
lidocaine Rn Antagonist 2.7 pIC50 - -130.0 33
pIC50 2.7 [33]
Holding voltage: -130.0 mV
View species-specific channel blocker tables
Tissue Distribution
Skeletal muscle
Species:  Rat
Technique:  RT-PCR
References:  56
Skeletal muscle
Species:  Rat
Technique:  Northern Blot
References:  58
Physiological Functions
Action potential initiation and transmission
Species:  Human
Tissue:  skeletal muscle
References:  20,59
Physiological Functions Comments
The stated role of Nv1.4 has been reported for mamalian skeletal muscles [58-59].
Phenotypes, Alleles and Disease Models Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Scn4a+|Scn4atm1Ljh Scn4atm1Ljh/Scn4a+
B6.129S4-Scn4a
MGI:98250  MP:0002106 abnormal muscle physiology PMID: 18317596 
Scn4a+|Scn4atm1.1Ljh Scn4atm1.1Ljh/Scn4a+
B6.129S4-Scn4a
MGI:98250  MP:0002106 abnormal muscle physiology PMID: 18317596 
Scn4atm1.1Ljh Scn4atm1.1Ljh/Scn4atm1.1Ljh
B6.129S4-Scn4a
MGI:98250  MP:0003084 abnormal skeletal muscle fiber morphology PMID: 18317596 
Scn4atm1Ljh Scn4atm1Ljh/Scn4atm1Ljh
B6.129S4-Scn4a
MGI:98250  MP:0003084 abnormal skeletal muscle fiber morphology PMID: 18317596 
Scn4a+|Scn4atm1Ljh Scn4atm1Ljh/Scn4a+
B6.129S4-Scn4a
MGI:98250  MP:0003084 abnormal skeletal muscle fiber morphology PMID: 18317596 
Scn4a+|Scn4atm1.1Ljh Scn4atm1.1Ljh/Scn4a+
B6.129S4-Scn4a
MGI:98250  MP:0003084 abnormal skeletal muscle fiber morphology PMID: 18317596 
Scn4atm1.1Ljh Scn4atm1.1Ljh/Scn4atm1.1Ljh
B6.129S4-Scn4a
MGI:98250  MP:0001262 decreased body weight PMID: 18317596 
Scn4atm1Ljh Scn4atm1Ljh/Scn4atm1Ljh
B6.129S4-Scn4a
MGI:98250  MP:0001262 decreased body weight PMID: 18317596 
Scn4atm1.1Ljh Scn4atm1.1Ljh/Scn4atm1.1Ljh
B6.129S4-Scn4a
MGI:98250  MP:0008770 decreased survivor rate PMID: 18317596 
Scn4atm1Ljh Scn4atm1Ljh/Scn4atm1Ljh
B6.129S4-Scn4a
MGI:98250  MP:0008770 decreased survivor rate PMID: 18317596 
Scn4a+|Scn4atm1Ljh Scn4atm1Ljh/Scn4a+
B6.129S4-Scn4a
MGI:98250  MP:0003157 impaired muscle relaxation PMID: 18317596 
Scn4a+|Scn4atm1.1Ljh Scn4atm1.1Ljh/Scn4a+
B6.129S4-Scn4a
MGI:98250  MP:0003157 impaired muscle relaxation PMID: 18317596 
Scn4a+|Scn4atm1Ljh Scn4atm1Ljh/Scn4a+
B6.129S4-Scn4a
MGI:98250  MP:0002841 impaired skeletal muscle contractility PMID: 18317596 
Scn4a+|Scn4atm1.1Ljh Scn4atm1.1Ljh/Scn4a+
B6.129S4-Scn4a
MGI:98250  MP:0002841 impaired skeletal muscle contractility PMID: 18317596 
Scn4a+|Scn4atm1Ljh Scn4atm1Ljh/Scn4a+
B6.129S4-Scn4a
MGI:98250  MP:0004037 increased muscle relaxation PMID: 18317596 
Scn4a+|Scn4atm1.1Ljh Scn4atm1.1Ljh/Scn4a+
B6.129S4-Scn4a
MGI:98250  MP:0004037 increased muscle relaxation PMID: 18317596 
Scn4atm1.1Ljh Scn4atm1.1Ljh/Scn4atm1.1Ljh
B6.129S4-Scn4a
MGI:98250  MP:0009403 increased variability of skeletal muscle fiber size PMID: 18317596 
Scn4atm1Ljh Scn4atm1Ljh/Scn4atm1Ljh
B6.129S4-Scn4a
MGI:98250  MP:0009403 increased variability of skeletal muscle fiber size PMID: 18317596 
Scn4a+|Scn4atm1Ljh Scn4atm1Ljh/Scn4a+
B6.129S4-Scn4a
MGI:98250  MP:0009403 increased variability of skeletal muscle fiber size PMID: 18317596 
Scn4a+|Scn4atm1.1Ljh Scn4atm1.1Ljh/Scn4a+
B6.129S4-Scn4a
MGI:98250  MP:0009403 increased variability of skeletal muscle fiber size PMID: 18317596 
Scn4atm1.1Ljh Scn4atm1.1Ljh/Scn4atm1.1Ljh
B6.129S4-Scn4a
MGI:98250  MP:0001513 limb grasping PMID: 18317596 
Scn4atm1Ljh Scn4atm1Ljh/Scn4atm1Ljh
B6.129S4-Scn4a
MGI:98250  MP:0001513 limb grasping PMID: 18317596 
Scn4a+|Scn4atm1Ljh Scn4atm1Ljh/Scn4a+
B6.129S4-Scn4a
MGI:98250  MP:0003646 muscle fatigue PMID: 18317596 
Scn4a+|Scn4atm1.1Ljh Scn4atm1.1Ljh/Scn4a+
B6.129S4-Scn4a
MGI:98250  MP:0003646 muscle fatigue PMID: 18317596 
Scn4atm1.1Ljh Scn4atm1.1Ljh/Scn4atm1.1Ljh
B6.129S4-Scn4a
MGI:98250  MP:0000747 muscle weakness PMID: 18317596 
Scn4atm1Ljh Scn4atm1Ljh/Scn4atm1Ljh
B6.129S4-Scn4a
MGI:98250  MP:0000747 muscle weakness PMID: 18317596 
Scn4a+|Scn4atm1Ljh Scn4atm1Ljh/Scn4a+
B6.129S4-Scn4a
MGI:98250  MP:0000747 muscle weakness PMID: 18317596 
Scn4a+|Scn4atm1.1Ljh Scn4atm1.1Ljh/Scn4a+
B6.129S4-Scn4a
MGI:98250  MP:0000747 muscle weakness PMID: 18317596 
Scn4atm1.1Ljh Scn4atm1.1Ljh/Scn4atm1.1Ljh
B6.129S4-Scn4a
MGI:98250  MP:0000751 myopathy PMID: 18317596 
Scn4atm1Ljh Scn4atm1Ljh/Scn4atm1Ljh
B6.129S4-Scn4a
MGI:98250  MP:0000751 myopathy PMID: 18317596 
Scn4a+|Scn4atm1Ljh Scn4atm1Ljh/Scn4a+
B6.129S4-Scn4a
MGI:98250  MP:0000751 myopathy PMID: 18317596 
Scn4a+|Scn4atm1.1Ljh Scn4atm1.1Ljh/Scn4a+
B6.129S4-Scn4a
MGI:98250  MP:0000751 myopathy PMID: 18317596 
Scn4atm1.1Ljh Scn4atm1.1Ljh/Scn4atm1.1Ljh
B6.129S4-Scn4a
MGI:98250  MP:0002081 perinatal lethality PMID: 18317596 
Scn4atm1Ljh Scn4atm1Ljh/Scn4atm1Ljh
B6.129S4-Scn4a
MGI:98250  MP:0002081 perinatal lethality PMID: 18317596 
Scn4atm1.1Ljh Scn4atm1.1Ljh/Scn4atm1.1Ljh
B6.129S4-Scn4a
MGI:98250  MP:0009417 skeletal muscle atrophy PMID: 18317596 
Scn4atm1Ljh Scn4atm1Ljh/Scn4atm1Ljh
B6.129S4-Scn4a
MGI:98250  MP:0009417 skeletal muscle atrophy PMID: 18317596 
Clinically-Relevant Mutations and Pathophysiology
Disease:  Paramyotonia Congenita (PMC)
OMIM:  168300
Orphanet:  684
References:  9,19,29
Click column headers to sort
Type Species Molecular location Description Reference
Missense Human F1473S 17
Missense Human G1456E 9
Missense Human R1448S 9
Missense Human R1448P 32
Missense Human R1448H 47
Missense Human R1448C 47
Missense Human L1443R 46
Missense Human T1313M 47
Missense Human L266V 68
Missense Human V1293I 21
Missense Human N1297K 18
Missense Human T1313M 15
Missense Human T1313A 7
Missense Human M1370V 41
Missense Human I1393T 3
Missense Human R1448S 5
Missense Human V1458F 30
Disease:  Hyperkalemic Periodic Paralysis (HyperPP)
OMIM:  170500
Orphanet:  682
References:  9,19,29
Click column headers to sort
Type Species Molecular location Description Reference
Missense Human M1592V 39,51
Missense Human I1495F 9
Missense Human M1493I 9
Missense Human I1490L 9
Missense Human P1158S 9
Missense Human A1156T 9,29
Missense Human T704M 39,48
Missense Human I693T 9
Missense Human L689I 9
Missense Human L689V 4
Missense Human M1360V 62
Disease:  Potassium-Aggravated Myotonia (PAM)
OMIM:  608390
Orphanet:  99734, 99735, 99736
References:  9,19,29
Click column headers to sort
Type Species Molecular location Description Reference
Missense Human V1589M 23
Missense Human G1306V 31,37
Missense Human G1306A 31
Missense Human I1160V 49
Missense Human S804F 36,50
Missense Human V445M 52
Missense Human N129K
Missense Human I141V 45
Missense Human R225W 28
Missense Human L250P 55
Missense Human G1306E 22,40
Disease:  Hypokalemic Periodic Paralysis (HypoPP)
OMIM:  613345
Orphanet:  681
References:  9,19,29
Click column headers to sort
Type Species Molecular location Description Reference
Missense Human R672S 9,54
Missense Human R672H 9,25,54
Missense Human R672G 9,54
Missense Human R669H 8-9,54
Missense Human R222W 43
Missense Human R1132Q 10
Missense Human R1135H 35
Disease:  Postsynaptic congenital myasthenic syndrome
OMIM:  614198
Orphanet:  98913
References: 
Mutations not determined
Disease:  Normokalemic Periodic Paralysis
OMIM:  170600
References:  61
Click column headers to sort
Type Species Molecular location Description Reference
Missense Human R675G/E/W 61
Disease:  Congenital Myasthenic Syndrome
OMIM:  608931
References:  60
Click column headers to sort
Type Species Molecular location Description Reference
Missense Human V1442E 60
Clinically-Relevant Mutations and Pathophysiology Comments
The majority of Nav1.4 mutations in these diseases alter the inactivation properties of the channel leading to susceptability to periods of hyperactivity (causing myotonia) or inactivation (causing paralysis).

REFERENCES

1. Ambrose C, Cheng S, Fontaine B, Nadeau JH, MacDonald M, Gusella JF. (1992) The alpha-subunit of the skeletal muscle sodium channel is encoded proximal to Tk-1 on mouse chromosome 11. Mamm. Genome3 (3): 151-5. [PMID:1352160]

2. Arnestad M, Crotti L, Rognum TO, Insolia R, Pedrazzini M, Ferrandi C, Vege A, Wang DW, Rhodes TE, George AL, Schwartz PJ. (2007) Prevalence of long-QT syndrome gene variants in sudden infant death syndrome. Circulation115 (3): 361-7. [PMID:17210839]

3. Arzel-Hézode M, Sternberg D, Tabti N, Vicart S, Goizet C, Eymard B, Fontaine B, Fournier E. (2010) Homozygosity for dominant mutations increases severity of muscle channelopathies. Muscle Nerve41 (4): 470-7. [PMID:19882638]

4. Bendahhou S, Cummins TR, Kula RW, Fu YH, Ptácek LJ. (2002) Impairment of slow inactivation as a common mechanism for periodic paralysis in DIIS4-S5. Neurology58 (8): 1266-72. [PMID:11971097]

5. Bendahhou S, Cummins TR, Kwiecinski H, Waxman SG, Ptácek LJ. (1999) Characterization of a new sodium channel mutation at arginine 1448 associated with moderate Paramyotonia congenita in humans. J. Physiol. (Lond.)518 ( Pt 2): 337-44. [PMID:10381583]

6. Bennett ES. (2004) Channel activation voltage alone is directly altered in an isoform-specific manner by Na(v1.4) and Na(v1.5) cytoplasmic linkers. J. Membr. Biol.197 (3): 155-68. [PMID:15042347]

7. Bouhours M, Sternberg D, Davoine CS, Ferrer X, Willer JC, Fontaine B, Tabti N. (2004) Functional characterization and cold sensitivity of T1313A, a new mutation of the skeletal muscle sodium channel causing paramyotonia congenita in humans. J. Physiol. (Lond.)554 (Pt 3): 635-47. [PMID:14617673]

8. Bulman DE, Scoggan KA, van Oene MD, Nicolle MW, Hahn AF, Tollar LL, Ebers GC. (1999) A novel sodium channel mutation in a family with hypokalemic periodic paralysis. Neurology53 (9): 1932-6. [PMID:10599760]

9. Cannon SC. (2002) An expanding view for the molecular basis of familial periodic paralysis. Neuromuscul. Disord.12 (6): 533-43. [PMID:12117476]

10. Carle T, Lhuillier L, Luce S, Sternberg D, Devuyst O, Fontaine B, Tabti N. (2006) Gating defects of a novel Na+ channel mutant causing hypokalemic periodic paralysis. Biochem. Biophys. Res. Commun.348 (2): 653-61. [PMID:16890191]

11. Chahine M, Bennett PB, George AL, Horn R. (1994) Functional expression and properties of the human skeletal muscle sodium channel. Pflugers Arch.427 (1-2): 136-42. [PMID:8058462]

12. Chahine M, Plante E, Kallen RG. (1996) Sea anemone toxin (ATX II) modulation of heart and skeletal muscle sodium channel alpha-subunits expressed in tsA201 cells. J. Membr. Biol.152 (1): 39-48. [PMID:8660409]

13. Chen LQ, Chahine M, Kallen RG, Barchi RL, Horn R. (1992) Chimeric study of sodium channels from rat skeletal and cardiac muscle. FEBS Lett.309 (3): 253-7. [PMID:1325372]

14. Cohen-Armon M, Sokolovsky M. (1993) Evidence for involvement of the voltage-dependent Na+ channel gating in depolarization-induced activation of G-proteins. J. Biol. Chem.268 (13): 9824-38. [PMID:8387506]

15. Dice MS, Abbruzzese JL, Wheeler JT, Groome JR, Fujimoto E, Ruben PC. (2004) Temperature-sensitive defects in paramyotonia congenita mutants R1448C and T1313M. Muscle Nerve30 (3): 277-88. [PMID:15318338]

16. Ferrera L, Moran O. (2006) Beta1-subunit modulates the Nav1.4 sodium channel by changing the surface charge. Experimental brain research172 (2): 139-50. [PMID:16432696]

17. Fleischhauer R, Mitrovic N, Deymeer F, Lehmann-Horn F, Lerche H. (1998) Effects of temperature and mexiletine on the F1473S Na+ channel mutation causing paramyotonia congenita. Pflugers Arch.436 (5): 757-65. [PMID:9716710]

18. Gay S, Dupuis D, Faivre L, Masurel-Paulet A, Labenne M, Colombani M, Soichot P, Huet F, Hainque B, Sternberg D et al.. (2008) Severe neonatal non-dystrophic myotonia secondary to a novel mutation of the voltage-gated sodium channel (SCN4A) gene. Am. J. Med. Genet. A146 (3): 380-3. [PMID:18203179]

19. George AL. (2005) Inherited disorders of voltage-gated sodium channels. J. Clin. Invest.115 (8): 1990-9. [PMID:16075039]

20. George AL, Komisarof J, Kallen RG, Barchi RL. (1992) Primary structure of the adult human skeletal muscle voltage-dependent sodium channel. Ann. Neurol.31 (2): 131-7. [PMID:1315496]

21. Green DS, George AL, Cannon SC. (1998) Human sodium channel gating defects caused by missense mutations in S6 segments associated with myotonia: S804F and V1293I. J. Physiol. (Lond.)510 ( Pt 3): 685-94. [PMID:9660885]

22. Groome JR, Fujimoto E, Ruben PC. (2005) K-aggravated myotonia mutations at residue G1306 differentially alter deactivation gating of human skeletal muscle sodium channels. Cell. Mol. Neurobiol.25 (7): 1075-92. [PMID:16392038]

23. Heine R, Pika U, Lehmann-Horn F. (1993) A novel SCN4A mutation causing myotonia aggravated by cold and potassium. Hum. Mol. Genet.2 (9): 1349-53. [PMID:8242056]

24. Isom LL, De Jongh KS, Patton DE, Reber BF, Offord J, Charbonneau H, Walsh K, Goldin AL, Catterall WA. (1992) Primary structure and functional expression of the beta 1 subunit of the rat brain sodium channel. Science256 (5058): 839-42. [PMID:1375395]

25. Jurkat-Rott K, Mitrovic N, Hang C, Kouzmekine A, Iaizzo P, Herzog J, Lerche H, Nicole S, Vale-Santos J, Chauveau D, Fontaine B, Lehmann-Horn F. (2000) Voltage-sensor sodium channel mutations cause hypokalemic periodic paralysis type 2 by enhanced inactivation and reduced current. Proc. Natl. Acad. Sci. U.S.A.97 (17): 9549-54. [PMID:10944223]

26. Kimura T, Yamaoka K, Kinoshita E, Maejima H, Yuki T, Yakehiro M, Seyama I. (2001) Novel site on sodium channel alpha-subunit responsible for the differential sensitivity of grayanotoxin in skeletal and cardiac muscle. Mol. Pharmacol.60 (4): 865-72. [PMID:11562450]

27. Kondratiev A, Tomaselli GF. (2003) Altered gating and local anesthetic block mediated by residues in the I-S6 and II-S6 transmembrane segments of voltage-dependent Na+ channels. Mol. Pharmacol.64 (3): 741-52. [PMID:12920212]

28. Lee SC, Kim HS, Park YE, Choi YC, Park KH, Kim DS. (2009) Clinical Diversity of SCN4A-Mutation-Associated Skeletal Muscle Sodium Channelopathy. J Clin Neurol5 (4): 186-91. [PMID:20076800]

29. Lehmann-Horn F, Jurkat-Rott K. (1999) Voltage-gated ion channels and hereditary disease. Physiol. Rev.79 (4): 1317-72. [PMID:10508236]

30. Lehmann-Horn F, Rüdel R, Ricker K. (1993) Non-dystrophic myotonias and periodic paralyses. A European Neuromuscular Center Workshop held 4-6 October 1992, Ulm, Germany. Neuromuscul. Disord.3 (2): 161-8. [PMID:7689382]

31. Lerche H, Heine R, Pika U, George AL, Mitrovic N, Browatzki M, Weiss T, Rivet-Bastide M, Franke C, Lomonaco M. (1993) Human sodium channel myotonia: slowed channel inactivation due to substitutions for a glycine within the III-IV linker. J. Physiol. (Lond.)470: 13-22. [PMID:8308722]

32. Lerche H, Mitrovic N, Dubowitz V, Lehmann-Horn F. (1996) Paramyotonia congenita: the R1448P Na+ channel mutation in adult human skeletal muscle. Ann. Neurol.39 (5): 599-608. [PMID:8619545]

33. Makielski JC, Limberis J, Fan Z, Kyle JW. (1999) Intrinsic lidocaine affinity for Na channels expressed in Xenopus oocytes depends on alpha (hH1 vs. rSkM1) and beta 1 subunits. Cardiovasc. Res.42 (2): 503-9. [PMID:10533585]

34. Marcotte P, Chen LQ, Kallen RG, Chahine M. (1997) Effects of Tityus serrulatus scorpion toxin gamma on voltage-gated Na+ channels. Circ. Res.80 (3): 363-9. [PMID:9048656]

35. Matthews E, Labrum R, Sweeney MG, Sud R, Haworth A, Chinnery PF, Meola G, Schorge S, Kullmann DM, Davis MB et al.. (2009) Voltage sensor charge loss accounts for most cases of hypokalemic periodic paralysis. Neurology72 (18): 1544-7. [PMID:19118277]

36. McClatchey AI, McKenna-Yasek D, Cros D, Worthen HG, Kuncl RW, DeSilva SM, Cornblath DR, Gusella JF, Brown RH. (1992) Novel mutations in families with unusual and variable disorders of the skeletal muscle sodium channel. Nat. Genet.2 (2): 148-52. [PMID:1338909]

37. McClatchey AI, Van den Bergh P, Pericak-Vance MA, Raskind W, Verellen C, McKenna-Yasek D, Rao K, Haines JL, Bird T, Brown RH. (1992) Temperature-sensitive mutations in the III-IV cytoplasmic loop region of the skeletal muscle sodium channel gene in paramyotonia congenita. Cell68 (4): 769-74. [PMID:1310898]

38. McNulty MM, Hanck DA. (2004) State-dependent mibefradil block of Na+ channels. Mol. Pharmacol.66 (6): 1652-61. [PMID:15562257]

39. Miller TM, Dias da Silva MR, Miller HA, Kwiecinski H, Mendell JR, Tawil R, McManis P, Griggs RC, Angelini C, Servidei S, Petajan J, Dalakas MC, Ranum LP, Fu YH, Ptácek LJ. (2004) Correlating phenotype and genotype in the periodic paralyses. Neurology63 (9): 1647-55. [PMID:15534250]

40. Mitrović N, George AL, Lerche H, Wagner S, Fahlke C, Lehmann-Horn F. (1995) Different effects on gating of three myotonia-causing mutations in the inactivation gate of the human muscle sodium channel. J. Physiol. (Lond.)487 ( Pt 1): 107-14. [PMID:7473241]

41. Okuda S, Kanda F, Nishimoto K, Sasaki R, Chihara K. (2001) Hyperkalemic periodic paralysis and paramyotonia congenita--a novel sodium channel mutation. J. Neurol.248 (11): 1003-4. [PMID:11757950]

42. Oliveira JS, Redaelli E, Zaharenko AJ, Cassulini RR, Konno K, Pimenta DC, Freitas JC, Clare JJ, Wanke E. (2004) Binding specificity of sea anemone toxins to Nav 1.1-1.6 sodium channels: unexpected contributions from differences in the IV/S3-S4 outer loop. J. Biol. Chem.279 (32): 33323-35. [PMID:15169781]

43. Park YH, Kim JB. (2010) An atypical phenotype of hypokalemic periodic paralysis caused by a mutation in the sodium channel gene SCN4A. Korean J Pediatr53 (10): 909-12. [PMID:21189962]

44. Penzotti JL, Lipkind G, Fozzard HA, Dudley SC. (2001) Specific neosaxitoxin interactions with the Na+ channel outer vestibule determined by mutant cycle analysis. Biophys. J.80 (2): 698-706. [PMID:11159437]

45. Petitprez S, Tiab L, Chen L, Kappeler L, Rösler KM, Schorderet D, Abriel H, Burgunder JM. (2008) A novel dominant mutation of the Nav1.4 alpha-subunit domain I leading to sodium channel myotonia. Neurology71 (21): 1669-75. [PMID:19015483]

46. Ptacek LJ, Gouw L, Kwieciński H, McManis P, Mendell JR, Barohn RJ, George AL, Barchi RL, Robertson M, Leppert MF. (1993) Sodium channel mutations in paramyotonia congenita and hyperkalemic periodic paralysis. Ann. Neurol.33 (3): 300-7. [PMID:8388676]

47. Ptácek LJ, George AL, Barchi RL, Griggs RC, Riggs JE, Robertson M, Leppert MF. (1992) Mutations in an S4 segment of the adult skeletal muscle sodium channel cause paramyotonia congenita. Neuron8 (5): 891-7. [PMID:1316765]

48. Ptácek LJ, George AL, Griggs RC, Tawil R, Kallen RG, Barchi RL, Robertson M, Leppert MF. (1991) Identification of a mutation in the gene causing hyperkalemic periodic paralysis. Cell67 (5): 1021-7. [PMID:1659948]

49. Ptáĉek LJ, Tawil R, Griggs RC, Meola G, McManis P, Barohn RJ, Mendell JR, Harris C, Spitzer R, Santiago F. (1994) Sodium channel mutations in acetazolamide-responsive myotonia congenita, paramyotonia congenita, and hyperkalemic periodic paralysis. Neurology44 (8): 1500-3. [PMID:8058156]

50. Ricker K, Moxley RT, Heine R, Lehmann-Horn F. (1994) Myotonia fluctuans. A third type of muscle sodium channel disease. Arch. Neurol.51 (11): 1095-102. [PMID:7980103]

51. Rojas CV, Wang JZ, Schwartz LS, Hoffman EP, Powell BR, Brown RH. (1991) A Met-to-Val mutation in the skeletal muscle Na+ channel alpha-subunit in hyperkalaemic periodic paralysis. Nature354 (6352): 387-9. [PMID:1659668]

52. Rosenbohm A, Rüdel R, Fahlke C. (1999) Regulation of the human skeletal muscle chloride channel hClC-1 by protein kinase C. J. Physiol. (Lond.)514 ( Pt 3): 677-85. [PMID:9882739]

53. Safo P, Rosenbaum T, Shcherbatko A, Choi DY, Han E, Toledo-Aral JJ, Olivera BM, Brehm P, Mandel G. (2000) Distinction among neuronal subtypes of voltage-activated sodium channels by mu-conotoxin PIIIA. J. Neurosci.20 (1): 76-80. [PMID:10627583]

54. Sternberg D, Maisonobe T, Jurkat-Rott K, Nicole S, Launay E, Chauveau D, Tabti N, Lehmann-Horn F, Hainque B, Fontaine B. (2001) Hypokalaemic periodic paralysis type 2 caused by mutations at codon 672 in the muscle sodium channel gene SCN4A. Brain124 (Pt 6): 1091-9. [PMID:11353725]

55. Stunnenberg BC, Ginjaar HB, Trip J, Faber CG, van Engelen BG, Drost G. (2010) Isolated eyelid closure myotonia in two families with sodium channel myotonia. Neurogenetics11 (2): 257-60. [PMID:19876661]

56. Sun W, Cohen SA, Barchi RL. (1995) Localization of epitopes for monoclonal antibodies directed against the adult rat skeletal muscle sodium channel (rSkM1) using polymerase chain reaction, fusion proteins, and western blotting. Anal. Biochem.226 (1): 188-91. [PMID:7785772]

57. Tanaka JC, Eccleston JF, Barchi RL. (1983) Cation selectivity characteristics of the reconstituted voltage-dependent sodium channel purified from rat skeletal muscle sarcolemma. J. Biol. Chem.258 (12): 7519-26. [PMID:6305944]

58. Trimmer JS, Cooperman SS, Agnew WS, Mandel G. (1990) Regulation of muscle sodium channel transcripts during development and in response to denervation. Dev. Biol.142 (2): 360-7. [PMID:2175278]

59. Trimmer JS, Cooperman SS, Tomiko SA, Zhou JY, Crean SM, Boyle MB, Kallen RG, Sheng ZH, Barchi RL, Sigworth FJ. (1989) Primary structure and functional expression of a mammalian skeletal muscle sodium channel. Neuron3 (1): 33-49. [PMID:2559760]

60. Tsujino A, Maertens C, Ohno K, Shen XM, Fukuda T, Harper CM, Cannon SC, Engel AG. (2003) Myasthenic syndrome caused by mutation of the SCN4A sodium channel. Proc. Natl. Acad. Sci. U.S.A.100 (12): 7377-82. [PMID:12766226]

61. Vicart S, Sternberg D, Fournier E, Ochsner F, Laforet P, Kuntzer T, Eymard B, Hainque B, Fontaine B. (2004) New mutations of SCN4A cause a potassium-sensitive normokalemic periodic paralysis. Neurology63 (11): 2120-7. [PMID:15596759]

62. Wagner S, Lerche H, Mitrovic N, Heine R, George AL, Lehmann-Horn F. (1997) A novel sodium channel mutation causing a hyperkalemic paralytic and paramyotonic syndrome with variable clinical expressivity. Neurology49 (4): 1018-25. [PMID:9339683]

63. Wang GK, Russell C, Wang SY. (2004) Mexiletine block of wild-type and inactivation-deficient human skeletal muscle hNav1.4 Na+ channels. J. Physiol. (Lond.)554 (Pt 3): 621-33. [PMID:14608007]

64. Wang GK, Wang SY. (2003) Veratridine block of rat skeletal muscle Nav1.4 sodium channels in the inner vestibule. J. Physiol. (Lond.)548 (Pt 3): 667-75. [PMID:12626674]

65. Wang JZ, Rojas CV, Zhou JH, Schwartz LS, Nicholas H, Hoffman EP. (1992) Sequence and genomic structure of the human adult skeletal muscle sodium channel alpha subunit gene on 17q. Biochem. Biophys. Res. Commun.182 (2): 794-801. [PMID:1310396]

66. Wang SY, Barile M, Wang GK. (2001) A phenylalanine residue at segment D3-S6 in Nav1.4 voltage-gated Na(+) channels is critical for pyrethroid action. Mol. Pharmacol.60 (3): 620-8. [PMID:11502895]

67. Wang SY, Wang GK. (1998) Point mutations in segment I-S6 render voltage-gated Na+ channels resistant to batrachotoxin. Proc. Natl. Acad. Sci. U.S.A.95 (5): 2653-8. [PMID:9482942]

68. Wu FF, Takahashi MP, Pegoraro E, Angelini C, Colleselli P, Cannon SC, Hoffman EP. (2001) A new mutation in a family with cold-aggravated myotonia disrupts Na(+) channel inactivation. Neurology56 (7): 878-84. [PMID:11294924]

69. Zimmer T, Bollensdorff C, Haufe V, Birch-Hirschfeld E, Benndorf K. (2002) Mouse heart Na+ channels: primary structure and function of two isoforms and alternatively spliced variants. Am. J. Physiol. Heart Circ. Physiol.282 (3): H1007-17. [PMID:11834499]

To cite this database page, please use the following:

William A. Catterall, Alan L. Goldin, Stephen G. Waxman.
Voltage-gated sodium channels: Nav1.4. Last modified on 12/02/2014. Accessed on 25/07/2014. IUPHAR database (IUPHAR-DB), http://www.iuphar-db.org/DATABASE/ObjectDisplayForward?objectId=581.

Contact us | Print | Back to top | Help
Copyright © 2014 IUPHAR