Nomenclature: Kv11.1

Family: Voltage-gated potassium channels

Annotation status:  image of a green circle Annotated and expert reviewed. Please contact us if you can help with updates. 

Contents

Gene and Protein Information
Species TM P Loops AA Chromosomal Location Gene Symbol Gene Name Reference
Human 6 1 1159 7q35-q36 KCNH2 potassium voltage-gated channel, subfamily H (eag-related), member 2
Mouse 6 1 1162 5 A3 Kcnh2 potassium voltage-gated channel, subfamily H (eag-related), member 2
Rat 6 1 1163 4q11 Kcnh2 potassium voltage-gated channel, subfamily H (eag-related), member 2
Previous and Unofficial Names
ether-à-go-go-related gene
HERG
erg1
hergb
LQT2
Kv11.1
ERG-1
RERG
eag-related protein 1
ether-a-go-go-related gene potassium channel 1
ether-a-go-go-related protein 1
potassium voltage-gated channel subfamily H member 2
r-ERG
voltage-gated potassium channel subunit Kv11.1
merg1a
M-erg
ether a go-go related
LQT
merg1b
AI326795
Database Links
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
GeneCards
GenitoUrinary Development Molecular Anatomy Project
HomoloGene
Human Protein Reference Database
InterPro
KEGG Gene
OMIM
Orphanet Gene
PharmGKB Gene
PhosphoSitePlus
Protein Ontology (PRO)
RefSeq Nucleotide
RefSeq Protein
TreeFam
UniGene Hs.
UniProtKB
Wikipedia
Associated Proteins
Heteromeric Pore-forming Subunits
Name References
KCNE1, minK 10,27,50
KCNE2, miRP1 1,15
Auxiliary Subunits
Name References
Not determined
Other Associated Proteins
Name References
GM130 34
KCR1 24,30
FKBP38 46
Hjd-2 46
Hop 46
Bag-2 46
Hsc 70 9
Hsp90 9
Associated Protein Comments
Controversy regarding MiRP1 interaction [49]
Functional Characteristics
cardiac IKR
Ion Selectivity and Conductance
Species:  Human
Macroscopic current rectification:  Ik
References:  18,37-39,42,45
Voltage Dependence
  V0.5 (mV)  τ (msec)  Reference  Cell type  Species 
Activation  -35.0 – -15.0 100.0 37,39,45 Xenopus laevis oocyte Human
Inactivation  - 4.0 – 20.0 18,38
Comments  τ activation at 20mV, τ inactivation at 40mV

Under voltage clamp, longer pulses drive V0.5 to more negative potentials. Removing the amino terminus causes negative shift that is no longer sensitive to pulse duration [39,45].

C-type inactivation mediates the strong rectifying properties characteristic of Kv11.1 / hERG channels [38,42].

The amino terminus slows deactivation and promotes C-type inactivation [48]. See [47] for detailed kinetic analysis of all hERG gating transitions, and see [36] for summary.
  V0.5 (mV)  τ (msec)  Reference  Cell type  Species 
Activation  - - HEK 293 cells. Human
Inactivation  -90.0 - 42
Associated subunits (Human)
minK and MiRP1
Activators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Concentration range (M) Holding voltage (mV) Reference
NS1643 Hs - 5.0 pEC50 - - 5,17
pEC50 5.0 [5,17]
mallotoxin Hs - 6.5 pIC50 - - 51
pIC50 6.5 [51]
Activator Comments
NS1643: Slows inactivation and thus gives appearance of activating, does not directly affect activation [5,17]
Mallotoxin: speeds activation and slows deactivation [51]
Inhibitors
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Concentration range (M) Holding voltage (mV) Reference
disopyramide Hs Inhibition 4.04 pIC50 - - 21
pIC50 4.04 (IC50 9.12x10-5 M) [21]
terfenadine Hs - - - - -
astemizole Hs - - - - -
Gating inhibitors
Key to terms and symbols Click column headers to sort
Ligand Sp. Action Affinity Units Concentration range (M) Holding voltage (mV) Reference
BeKm-1 Hs - 9.0 pKd - - 23
pKd 9.0 [23]
APETx-1 Hs - 7.4 pKd - - 52
pKd 7.4 [52]
Gating Inhibitor Comments
ERG Toxin-1 / CnERG1 is a low nM binding scorpion toxin which inhibits by binding to outer mouth of the pore [19,31].
BeKm-1 is also a scorpion toxin which binds to the outer mouth of the pore [23]

APETx-1 is a sea anemone toxin whihc inhibits by binding to the S3b region of the voltage sensor [52]
Channel Blockers
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Concentration range (M) Holding voltage (mV) Reference
E4031 Rn - 7.0 pKd - - 40
pKd 7.0 [40]
dofetilide Hs Inhibition 8.19 pKi - - 41
pKi 8.19 (Ki 6.4x10-9 M) [41]
ibutilide Hs - 8.0 pIC50 - - 21
pIC50 8.0 (IC50 1x10-8 M) [21]
View species-specific channel blocker tables
Channel Blocker Comments
E-4031, dofetilide, terfenadine, and many other compounds, see [43] for review.
Drugs cross the cell membrane and enter hERG channels through open intracellular gate, where they then become trapped when channels close. Binding sites involve F656 and Y652 in the channel vestibule [25,28-29]. There remains controversy as to whether inhibition arises from a simple pore block mechanism or more complex processes also involving inactivation.
See [8,13] for studies involving Kv10 / EAG that provide intriguing insights into the role of inactivation in Kv11.1 / hERG drug binding.

Compounds have been identified that increase Kv11.1 function by enhancing ER export and may be useful as therapeutic agents in treating inherited or acquired LQTS [32]
Tissue Distribution
CNS - widely expressed, developing spinal cord
Species:  Rat
Technique:  In situ hybridisation
References:  11,16,35,40
Tissue Distribution Comments
Detected in the heart of all mammalian species studied to date, using electrophysiology, biochemistry and Northern blot. Also cancer cells of many types [3], and gut, pancreatic beta cells and many others.
Physiological Functions
hERG in smooth muscle contractility
Species:  Human
Tissue:  Jejenum
References:  7
Role in pancreatic beta cell secretion
Species:  Human
Tissue:  Pancreatic islet cells
References:  33
hERG channels regulate excitability in developing neurons
Species:  Mouse
Tissue:  Neural crest, spinal cord neurons
References:  4,11-12
In the human heart, Kv11.1 / hERG 1a and 1b subunits mediate the repolarizing cardiac current IKr. IKr peaks during late repolarization as a result of rebound from inactivation and slow deactivation. Loss of hERG function by mutations of the hERG gene (KCNH2) or by block by drugs intended largely for other therapeutic targets causes long QT syndrome (LQTS), which can lead to catastrophic arrhythmias and sudden death.
Species:  Human
Tissue:  Heart
References:  37,44,53
Phenotypes, Alleles and Disease Models Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Kcnh2tm1.1Hjd Kcnh2tm1.1Hjd/Kcnh2tm1.1Hjd
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:1341722  MP:0002128 abnormal blood circulation PMID: 18948620 
Kcnh2tm1.1Hjd Kcnh2tm1.1Hjd/Kcnh2tm1.1Hjd
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:1341722  MP:0001544 abnormal cardiovascular system physiology PMID: 18948620 
Kcnh2tm1.1Hjd Kcnh2tm1.1Hjd/Kcnh2tm1.1Hjd
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:1341722  MP:0000428 abnormal craniofacial morphology PMID: 18948620 
Kcnh2tm1.1Hjd Kcnh2tm1.1Hjd/Kcnh2tm1.1Hjd
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:1341722  MP:0000267 abnormal heart development PMID: 18948620 
Kcnh2tm1.1Hjd Kcnh2tm1.1Hjd/Kcnh2tm1.1Hjd
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:1341722  MP:0000266 abnormal heart morphology PMID: 18948620 
Kcnh2tm1.1Hjd Kcnh2tm1.1Hjd/Kcnh2tm1.1Hjd
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:1341722  MP:0000269 abnormal looping morphogenesis PMID: 18948620 
Kcnh2tm1.1Hjd Kcnh2tm1.1Hjd/Kcnh2tm1.1Hjd
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:1341722  MP:0004145 abnormal muscle electrophysiology PMID: 18948620 
Kcnh2tm1.1Hjd Kcnh2tm1.1Hjd/Kcnh2tm1.1Hjd
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:1341722  MP:0006126 abnormal outflow tract development PMID: 18948620 
Kcnh2tm1.1Hjd Kcnh2tm1.1Hjd/Kcnh2tm1.1Hjd
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:1341722  MP:0001698 decreased embryo size PMID: 18948620 
Kcnh2tm1Hjd Kcnh2tm1Hjd/Kcnh2tm1Hjd
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:1341722  MP:0005333 decreased heart rate PMID: 12612061 
Kcnh2tm1.1Hjd Kcnh2tm1.1Hjd/Kcnh2tm1.1Hjd
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:1341722  MP:0006207 embryonic lethality during organogenesis PMID: 18948620 
Kcnh2tm1.1Hjd Kcnh2tm1.1Hjd/Kcnh2tm1.1Hjd
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:1341722  MP:0001636 irregular heartbeat PMID: 18948620 
Kcnh2tm1.1Hjd Kcnh2tm1.1Hjd/Kcnh2tm1.1Hjd
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:1341722  MP:0005312 pericardial effusion PMID: 18948620 
Kcnh2tm1.1Hjd Kcnh2tm1.1Hjd/Kcnh2tm1.1Hjd
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:1341722  MP:0006341 small first branchial arch PMID: 18948620 
Clinically-Relevant Mutations and Pathophysiology
Disease:  Type 2 Long QT Syndrome
OMIM:  152427
Role: 
References:  2,6,14,37,44
Mutations not determined
Disease:  Acquired long QT syndrome
OMIM:  613688
Orphanet:  101016
Role: 
Side effects:  Torsades de Pointes arrhythmia
Therapeutic use:  hERG stable cell lines are used for counterscreening drugs in development as a safety test to prevent acquired LQTS
References:  43
Mutations not determined
Disease:  Short QT syndrome-1; SQT1
OMIM:  609620
Orphanet:  51083
References: 
Mutations not determined
Clinically-Relevant Mutations and Pathophysiology Comments
There are more than 200 mutations known for the KCNH2 gene, see Gene Connection for the Heart
Gene Expression and Pathophysiology
hERG sununits are aberrantly expressed (either over or mis-expressed) in many tumour types
Tissue or cell type:  Human primary cancers, tumour cell lines
Pathophysiology:  Putatively; Control of cell proliferation, regulation of tumour cell invasiveness (involving integrin family), control of tumour cell neoangiogensis (involving angiogenic factors).
Species:  Human
Technique:  -
References:  3
Biologically Significant Variants
Type:  Splice variant
Species:  Human
Description:  Isoform a
Amino acids:  1159
Nucleotide accession: 
Protein accession: 
Type:  Splice variant
Species:  Human
Description:  hERG USO
Amino acids:  888
Nucleotide accession: 
Protein accession: 
References:  24
Type:  Splice variant
Species:  Human
Description:  hERG 1b variant; also referred to as isoform c. These subunits reduce rectification by increasing the rate of recovery from inactivation, thus yielding larger amplitude currents during ventricular action potential. Leads to somewhat reduced E-4031 sensitivity.
Amino acids:  819
Nucleotide accession: 
Protein accession: 
References:  20,22,25-26
Biologically Significant Variant Comments
These are alternative transcripts rather than splice variants.

REFERENCES

1. Abbott GW, Sesti F, Splawski I, Buck ME, Lehmann MH, Timothy KW, Keating MT, Goldstein SA. (1999) MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell97 (2): 175-87. [PMID:10219239]

2. Anderson CL, Delisle BP, Anson BD, Kilby JA, Will ML, Tester DJ, Gong Q, Zhou Z, Ackerman MJ, January CT. (2006) Most LQT2 mutations reduce Kv11.1 (hERG) current by a class 2 (trafficking-deficient) mechanism. Circulation113 (3): 365-73. [PMID:16432067]

3. Arcangeli A. (2005) Expression and role of hERG channels in cancer cells. Novartis Found. Symp.266: 225-32; discussion 232-4. [PMID:16050271]

4. Arcangeli A, Rosati B, Cherubini A, Crociani O, Fontana L, Ziller C, Wanke E, Olivotto M. (1997) HERG- and IRK-like inward rectifier currents are sequentially expressed during neuronal development of neural crest cells and their derivatives. Eur. J. Neurosci.9 (12): 2596-604. [PMID:9517465]

5. Casis O, Olesen SP, Sanguinetti MC. (2006) Mechanism of action of a novel human ether-a-go-go-related gene channel activator. Mol. Pharmacol.69 (2): 658-65. [PMID:16284303]

6. Curran ME, Splawski I, Timothy KW, Vincent GM, Green ED, Keating MT. (1995) A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell80 (5): 795-803. [PMID:7889573]

7. Farrelly AM, Ro S, Callaghan BP, Khoyi MA, Fleming N, Horowitz B, Sanders KM, Keef KD. (2003) Expression and function of KCNH2 (HERG) in the human jejunum. Am. J. Physiol. Gastrointest. Liver Physiol.284 (6): G883-95. [PMID:12736144]

8. Ficker E, Dennis AT, Wang L, Brown AM. (2003) Role of the cytosolic chaperones Hsp70 and Hsp90 in maturation of the cardiac potassium channel HERG. Circ. Res.92 (12): e87-100. [PMID:12775586]

9. Ficker E, Jarolimek W, Kiehn J, Baumann A, Brown AM. (1998) Molecular determinants of dofetilide block of HERG K+ channels. Circ. Res.82 (3): 386-95. [PMID:9486667]

10. Finley MR, Li Y, Hua F, Lillich J, Mitchell KE, Ganta S, Gilmour RF, Freeman LC. (2002) Expression and coassociation of ERG1, KCNQ1, and KCNE1 potassium channel proteins in horse heart. Am. J. Physiol. Heart Circ. Physiol.283 (1): H126-38. [PMID:12063283]

11. Furlan F, Guasti L, Avossa D, Becchetti A, Cilia E, Ballerini L, Arcangeli A. (2005) Interneurons transiently express the ERG K+ channels during development of mouse spinal networks in vitro. Neuroscience135 (4): 1179-92. [PMID:16165280]

12. Furlan F, Taccola G, Grandolfo M, Guasti L, Arcangeli A, Nistri A, Ballerini L. (2007) ERG conductance expression modulates the excitability of ventral horn GABAergic interneurons that control rhythmic oscillations in the developing mouse spinal cord. J. Neurosci.27 (4): 919-28. [PMID:17251434]

13. Gessner G, Zacharias M, Bechstedt S, Schönherr R, Heinemann SH. (2004) Molecular determinants for high-affinity block of human EAG potassium channels by antiarrhythmic agents. Mol. Pharmacol.65 (5): 1120-9. [PMID:15102940]

14. Gong Q, Zhang L, Vincent GM, Horne BD, Zhou Z. (2007) Nonsense mutations in hERG cause a decrease in mutant mRNA transcripts by nonsense-mediated mRNA decay in human long-QT syndrome. Circulation116 (1): 17-24. [PMID:17576861]

15. Gordon E, Panaghie G, Deng L, Bee KJ, Roepke TK, Krogh-Madsen T, Christini DJ, Ostrer H, Basson CT, Chung W, Abbott GW. (2008) A KCNE2 mutation in a patient with cardiac arrhythmia induced by auditory stimuli and serum electrolyte imbalance. Cardiovasc. Res.77 (1): 98-106. [PMID:18006462]

16. Guasti L, Cilia E, Crociani O, Hofmann G, Polvani S, Becchetti A, Wanke E, Tempia F, Arcangeli A. (2005) Expression pattern of the ether-a-go-go-related (ERG) family proteins in the adult mouse central nervous system: evidence for coassembly of different subunits. J. Comp. Neurol.491 (2): 157-74. [PMID:16127690]

17. Hansen RS, Diness TG, Christ T, Demnitz J, Ravens U, Olesen SP, Grunnet M. (2006) Activation of human ether-a-go-go-related gene potassium channels by the diphenylurea 1,3-bis-(2-hydroxy-5-trifluoromethyl-phenyl)-urea (NS1643). Mol. Pharmacol.69 (1): 266-77. [PMID:16219910]

18. Herzberg IM, Trudeau MC, Robertson GA. (1998) Transfer of rapid inactivation and sensitivity to the class III antiarrhythmic drug E-4031 from HERG to M-eag channels. J. Physiol. (Lond.)511 ( Pt 1): 3-14. [PMID:9679158]

19. Hill AP, Sunde M, Campbell TJ, Vandenberg JI. (2007) Mechanism of block of the hERG K+ channel by the scorpion toxin CnErg1. Biophys. J.92 (11): 3915-29. [PMID:17369411]

20. Jones EM, Roti Roti EC, Wang J, Delfosse SA, Robertson GA. (2004) Cardiac IKr channels minimally comprise hERG 1a and 1b subunits. J. Biol. Chem.279 (43): 44690-4. [PMID:15304481]

21. Keserü GM. (2003) Prediction of hERG potassium channel affinity by traditional and hologram qSAR methods. Bioorg. Med. Chem. Lett.13 (16): 2773-5. [PMID:12873512]

22. Kirchberger NM, Wulfsen I, Schwarz JR, Bauer CK. (2006) Effects of TRH on heteromeric rat erg1a/1b K+ channels are dominated by the rerg1b subunit. J. Physiol. (Lond.)571 (Pt 1): 27-42. [PMID:16339175]

23. Korolkova YV, Tseng GN, Grishin EV. (2004) Unique interaction of scorpion toxins with the hERG channel. J. Mol. Recognit.17 (3): 209-17. [PMID:15137031]

24. Kupershmidt S, Yang IC, Hayashi K, Wei J, Chanthaphaychith S, Petersen CI, Johns DC, George AL, Roden DM, Balser JR. (2003) The IKr drug response is modulated by KCR1 in transfected cardiac and noncardiac cell lines. FASEB J.17 (15): 2263-5. [PMID:14525949]

25. Lees-Miller JP, Duan Y, Teng GQ, Duff HJ. (2000) Molecular determinant of high-affinity dofetilide binding to HERG1 expressed in Xenopus oocytes: involvement of S6 sites. Mol. Pharmacol.57 (2): 367-74. [PMID:10648647]

26. London B, Trudeau MC, Newton KP, Beyer AK, Copeland NG, Gilbert DJ, Jenkins NA, Satler CA, Robertson GA. (1997) Two isoforms of the mouse ether-a-go-go-related gene coassemble to form channels with properties similar to the rapidly activating component of the cardiac delayed rectifier K+ current. Circ. Res.81 (5): 870-8. [PMID:9351462]

27. McDonald TV, Yu Z, Ming Z, Palma E, Meyers MB, Wang KW, Goldstein SA, Fishman GI. (1997) A minK-HERG complex regulates the cardiac potassium current I(Kr). Nature388 (6639): 289-92. [PMID:9230439]

28. Mitcheson J, Perry M, Stansfeld P, Sanguinetti MC, Witchel H, Hancox J. (2005) Structural determinants for high-affinity block of hERG potassium channels. Novartis Found. Symp.266: 136-50; discussion 150-8. [PMID:16050266]

29. Mitcheson JS, Chen J, Sanguinetti MC. (2000) Trapping of a methanesulfonanilide by closure of the HERG potassium channel activation gate. J. Gen. Physiol.115 (3): 229-40. [PMID:10694252]

30. Nakajima T, Hayashi K, Viswanathan PC, Kim MY, Anghelescu M, Barksdale KA, Shuai W, Balser JR, Kupershmidt S. (2007) HERG is protected from pharmacological block by alpha-1,2-glucosyltransferase function. J. Biol. Chem.282 (8): 5506-13. [PMID:17189275]

31. Pardo-Lopez L, Zhang M, Liu J, Jiang M, Possani LD, Tseng GN. (2002) Mapping the binding site of a human ether-a-go-go-related gene-specific peptide toxin (ErgTx) to the channel's outer vestibule. J. Biol. Chem.277 (19): 16403-11. [PMID:11864985]

32. Rajamani S, Anderson CL, Anson BD, January CT. (2002) Pharmacological rescue of human K(+) channel long-QT2 mutations: human ether-a-go-go-related gene rescue without block. Circulation105 (24): 2830-5. [PMID:12070109]

33. Rosati B, Marchetti P, Crociani O, Lecchi M, Lupi R, Arcangeli A, Olivotto M, Wanke E. (2000) Glucose- and arginine-induced insulin secretion by human pancreatic beta-cells: the role of HERG K(+) channels in firing and release. FASEB J.14 (15): 2601-10. [PMID:11099479]

34. Roti EC, Myers CD, Ayers RA, Boatman DE, Delfosse SA, Chan EK, Ackerman MJ, January CT, Robertson GA. (2002) Interaction with GM130 during HERG ion channel trafficking. Disruption by type 2 congenital long QT syndrome mutations. Human Ether-à-go-go-Related Gene. J. Biol. Chem.277 (49): 47779-85. [PMID:12270925]

35. Saganich MJ, Machado E, Rudy B. (2001) Differential expression of genes encoding subthreshold-operating voltage-gated K+ channels in brain. J. Neurosci.21 (13): 4609-24. [PMID:11425889]

36. Sanguinetti MC, Jiang C, Curran ME, Keating MT. (1995) A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell81 (2): 299-307. [PMID:7736582]

37. Sanguinetti MC, Tristani-Firouzi M. (2006) hERG potassium channels and cardiac arrhythmia. Nature440 (7083): 463-9. [PMID:16554806]

38. Schönherr R, Heinemann SH. (1996) Molecular determinants for activation and inactivation of HERG, a human inward rectifier potassium channel. J. Physiol. (Lond.)493 ( Pt 3): 635-42. [PMID:8799887]

39. Schönherr R, Rosati B, Hehl S, Rao VG, Arcangeli A, Olivotto M, Heinemann SH, Wanke E. (1999) Functional role of the slow activation property of ERG K+ channels. Eur. J. Neurosci.11 (3): 753-60. [PMID:10103069]

40. Shi W, Wymore RS, Wang HS, Pan Z, Cohen IS, McKinnon D, Dixon JE. (1997) Identification of two nervous system-specific members of the erg potassium channel gene family. J. Neurosci.17 (24): 9423-32. [PMID:9390998]

41. Singleton DH, Boyd H, Steidl-Nichols JV, Deacon M, Groot MJ, Price D, Nettleton DO, Wallace NK, Troutman MD, Williams C et al.. (2007) Fluorescently labeled analogues of dofetilide as high-affinity fluorescence polarization ligands for the human ether-a-go-go-related gene (hERG) channel. J. Med. Chem.50 (13): 2931-41. [PMID:17536794]

42. Smith PL, Baukrowitz T, Yellen G. (1996) The inward rectification mechanism of the HERG cardiac potassium channel. Nature379 (6568): 833-6. [PMID:8587608]

43. Thomas D, Karle CA, Kiehn J. (2006) The cardiac hERG/IKr potassium channel as pharmacological target: structure, function, regulation, and clinical applications. Curr. Pharm. Des.12 (18): 2271-83. [PMID:16787254]

44. Trudeau MC, Warmke JW, Ganetzky B, Robertson GA. (1995) HERG, a human inward rectifier in the voltage-gated potassium channel family. Science269 (5220): 92-5. [PMID:7604285]

45. Viloria CG, Barros F, Giráldez T, Gómez-Varela D, de la Peña P. (2000) Differential effects of amino-terminal distal and proximal domains in the regulation of human erg K(+) channel gating. Biophys. J.79 (1): 231-46. [PMID:10866950]

46. Walker VE, Atanasiu R, Lam H, Shrier A. (2007) Co-chaperone FKBP38 promotes HERG trafficking. J. Biol. Chem.282 (32): 23509-16. [PMID:17569659]

47. Wang J, Myers CD, Robertson GA. (2000) Dynamic control of deactivation gating by a soluble amino-terminal domain in HERG K(+) channels. J. Gen. Physiol.115 (6): 749-58. [PMID:10828248]

48. Wang J, Trudeau MC, Zappia AM, Robertson GA. (1998) Regulation of deactivation by an amino terminal domain in human ether-à-go-go-related gene potassium channels. J. Gen. Physiol.112 (5): 637-47. [PMID:9806971]

49. Weerapura M, Nattel S, Chartier D, Caballero R, Hébert TE. (2002) A comparison of currents carried by HERG, with and without coexpression of MiRP1, and the native rapid delayed rectifier current. Is MiRP1 the missing link?. J. Physiol. (Lond.)540 (Pt 1): 15-27. [PMID:11927665]

50. Yang T, Kupershmidt S, Roden DM. (1995) Anti-minK antisense decreases the amplitude of the rapidly activating cardiac delayed rectifier K+ current. Circ. Res.77 (6): 1246-53. [PMID:7586238]

51. Zeng H, Lozinskaya IM, Lin Z, Willette RN, Brooks DP, Xu X. (2006) Mallotoxin is a novel human ether-a-go-go-related gene (hERG) potassium channel activator. J. Pharmacol. Exp. Ther.319 (2): 957-62. [PMID:16928897]

52. Zhang M, Liu XS, Diochot S, Lazdunski M, Tseng GN. (2007) APETx1 from sea anemone Anthopleura elegantissima is a gating modifier peptide toxin of the human ether-a-go-go- related potassium channel. Mol. Pharmacol.72 (2): 259-68. [PMID:17473056]

53. Zhou Z, Gong Q, Ye B, Fan Z, Makielski JC, Robertson GA, January CT. (1998) Properties of HERG channels stably expressed in HEK 293 cells studied at physiological temperature. Biophys. J.74 (1): 230-41. [PMID:9449325]

To cite this database page, please use the following:

K. George Chandy, Stephan Grissmer, George A. Gutman, Michel Lazdunski, David Mckinnon, Luis A. Pardo, Gail A. Robertson, Bernardo Rudy, Michael C. Sanguinetti, Walter Stühmer, Xiaoliang Wang.
Voltage-gated potassium channels: Kv11.1. Last modified on 30/04/2014. Accessed on 23/10/2014. IUPHAR database (IUPHAR-DB), http://www.iuphar-db.org/DATABASE/ObjectDisplayForward?objectId=572.

Contact us | Print | Back to top | Help
Copyright © 2014 IUPHAR