Nomenclature: TRPM4

Family: Transient Receptor Potential channels

Annotation status:  image of a green circle Annotated and expert reviewed. Please contact us if you can help with updates. 

Contents

Gene and Protein Information
Species TM P Loops AA Chromosomal Location Gene Symbol Gene Name Reference
Human 6 1 1208 19q13.32 TRPM4 transient receptor potential cation channel, subfamily M, member 4 15,24-25,44
Mouse 6 1 1213 7 B4 Trpm4 transient receptor potential cation channel, subfamily M, member 4 24
Rat 6 1 1208 1q22 Trpm4 transient receptor potential cation channel, subfamily M, member 4 8
Previous and Unofficial Names
Melastatin-like 2
MLS2s
Long TRPC4
Ca2+-activated non-selective cation channel 1
LTRPC4
FLJ20041
LTrpC-4
calcium-activated non-selective cation channel 1
long transient receptor potential channel 4
melastatin like 2 protein
transient receptor potential cation channel subfamily M member 4
transient receptor potential cation channel, subfamily M, member 4
TRPM4B
1110030C19Rik
AW047689
Database Links
Ensembl Gene
Entrez Gene
GeneCards
GenitoUrinary Development Molecular Anatomy Project
HomoloGene
Human Protein Reference Database
InterPro
KEGG Gene
OMIM
Orphanet Gene
PharmGKB Gene
PhosphoSitePlus
Protein Ontology (PRO)
RefSeq Nucleotide
RefSeq Protein
TreeFam
UniGene Hs.
UniProtKB
Wikipedia
Associated Proteins
Heteromeric Pore-forming Subunits
Name References
Not determined
Auxiliary Subunits
Name References
Not determined
Other Associated Proteins
Name References
calmodulin 27
SUR1 3,37,43
Associated Protein Comments
Results from Sala-Rabanal et al (2012) contradict the postulation that SUR1 modulates TRPM4, by finding no evidence of functional or structural association between TRPM4 and SUR1 [32].
Functional Characteristics
γ = 23 pS (within the range 60 to +60 mV); permeable to monovalent cations; impermeable to Ca2+; strong outward rectification; slow activation at positive potentials, rapid deactivation at negative potentials, deactivation blocked by decavanadate
Ion Selectivity and Conductance
Species:  Human
Rank order:  Na+ > K+ > Cs+ > Li+ [25.0 pS]
References:  15,24-25
Ion Selectivity and Conductance Comments
Ca2+ impermeable.
Voltage Dependence
  V0.5 (mV)  τ (msec)  Reference  Cell type  Species 
Activation  -20.0 – 60.0 33.9 24,27,30,41 HEK 293 cells. Human
Inactivation  - 40.6 41
Voltage Dependence Comments
Range of voltage activation depends on intracellular Ca2+ concentration, PIP2, PKC phosphorylation, presence of calmodulin [22,24,27,29-30].
Other channel blockers
Intracellular nucleotides including ATP, ADP, AMP and AMP-PNP with an IC50 range of 1.3-1.9 μM
Physical activators (Human)
Membrane depolarization (V½ = -20 mV to + 60 mV dependent upon conditions) in the presence of elevated [Ca2+]i, heat (Q10 = 8.5 @ +25 mV between 15 and 25°C)
Activators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Concentration range (M) Holding voltage (mV) Reference
BTP2 Hs Agonist 8.1 pEC50 - -80.0 39
pEC50 8.1 [39]
Holding voltage: -80.0 mV
decavanadate Hs Agonist 5.7 pEC50 - -100.0 26
pEC50 5.7 (EC50 1.9x10-9 M) [26]
Holding voltage: -100.0 mV
intracellular Ca2+ Hs - 4.7 – 6.5 pEC50 - -
pEC50 4.7 – 6.5 (EC50 3x10-7 – 2x10-5 M) transient activation of whole cell current
intracellular Ca2+ Hs Agonist 3.9 – 6.5 (median: 5.4) pEC50 - -100.0 – 100.0 16,22,24,26-27,39
pEC50 3.9 – 6.5 (median: 5.4) [16,22,24,26-27,39]
Holding voltage: -100.0 – 100.0 mV
PIP2 Hs Agonist 5.3 pEC50 - 100.0 22
pEC50 5.3 [22]
Holding voltage: 100.0 mV
PIP2 Mm Agonist 5.2 pEC50 - -80.0 46
pEC50 5.2 [46]
Holding voltage: -80.0 mV
View species-specific activator tables
Activator Comments
Ca2+ affinity is regulated by PIP2, phosphorylation by PKC. Decreased Ca2+ affinity during desensitisation, strong desensitisation in inside-out patches [22,24,27,29-30]. U73122 prevents TRPM4 desensitisation and rescues activity [22]. Potentiation by BTP2 is increased at positive holding potentials [39].
Gating inhibitors
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Concentration range (M) Holding voltage (mV) Reference
clotrimazole Hs Antagonist - - 1x10-6 - 1x10-5 100.0 31
Conc range: 1x10-6 - 1x10-5 M [31]
Holding voltage: 100.0 mV
ADP Hs Antagonist 5.7 pIC50 - 100.0 28
pIC50 5.7 [28]
Holding voltage: 100.0 mV
flufenamic acid Mm Antagonist 5.6 pIC50 - 100.0 41
pIC50 5.6 [41]
Holding voltage: 100.0 mV
ATP Hs Antagonist 4.9 pIC50 - 100.0 28
pIC50 4.9 [28]
Holding voltage: 100.0 mV
AMP Hs Antagonist 4.7 pIC50 - 100.0 28
pIC50 4.7 [28]
Holding voltage: 100.0 mV
AMP-PNP Hs Antagonist 4.7 pIC50 - 100.0 28
pIC50 4.7 [28]
Holding voltage: 100.0 mV
View species-specific gating inhibitor tables
Channel Blockers
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Concentration range (M) Holding voltage (mV) Reference
ATP Mm Antagonist 6.1 pIC50 - 100.0 41
pIC50 6.1 [41]
Holding voltage: 100.0 mV
ATP Hs Antagonist 5.8 pIC50 - 100.0 28
pIC50 5.8 [28]
Holding voltage: 100.0 mV
9-phenanthrol Hs - 4.64 – 4.78 pIC50 - - 9
pIC50 4.64 – 4.78 (IC50 1.67x10-5 – 2.28x10-5 M) [9]
spermine Mm Antagonist 4.5 pIC50 - 100.0 41
pIC50 4.5 [41]
Holding voltage: 100.0 mV
spermine Hs Antagonist 4.2 pIC50 - 100.0 28
pIC50 4.2 [28]
Holding voltage: 100.0 mV
View species-specific channel blocker tables
Channel Blocker Comments
Pore mutation Asp984 -> Ala results in a non-functional channel with a dominant negative phenotype; block by spermine is reduced by pore mutation Glu981 -> Ala [25].
Tissue Distribution
Small intestine, prostate, colon, kidneys (proximal convoluted tubule, distal convoluted tubule, proximal straight tubule, loop of Henle, cortical collecting duct), testes, heart, lymphocytes, spleen, lung, brain, pituitary, skeletal muscle, stomach, adipose tissue, bone.
Species:  Human
Technique:  Northern blot, western blot, RT-PCR, TaqMan qPCR
References:  2,6,15-16,24,44
Thymocytes, intestine, aortic endothelium, placenta, pancreas, lung, bladder.
Species:  Mouse
Technique:  Western blot, northern blot
References:  14-15,24,45
Cerebral arteries, smooth muscle cells, magnocellular cells in supraoptic and paraventricular nuclei (hypothalamus).
Species:  Rat
Technique:  RT-PCR
References:  5,40
Functional Assays
Patch clamp (whole-cell and single-channel recordings).
Species:  Human
Tissue:  Overexpression in HEK 293 cells.
Response measured:  Current activation, negative feedback on Ca2+ entry, depolarisation of cell membrane potential.
References:  16,22,24-27,39
Patch clamp (whole-cell and single-channel recordings).
Species:  Human
Tissue:  Jurkat cells.
Response measured:  PHA-induced interleukin-2 release, oscillation of intracellular Ca2+ concentration, cell membrane potential.
References:  15
Whole-cell patch clamp, Ca2+ analysis, down-regulation of TRPM4 by expression of short splice variant TRPM4a.
Species:  Rat
Tissue:  β-cell model insulinoma INS-1 cells.
Response measured:  Glucose-induced insulin secretion, voltage clamp analysis.
References:  4
Whole-cell patch clamp, arteriography.
Species:  Rat
Tissue:  Smooth muscle cells, cerebral arteries.
Response measured:  Single-channel current, membrane potential, vessel diameter and tension.
References:  5
Patch clamp (whole-cell and single-channel recordings).
Species:  Mouse
Tissue:  Overexpression in HEK 293 cells.
Response measured:  Current activation, negative feedback on Ca2+ entry, depolarisation of cell membrane potential.
References:  24,41
Patch clamp (whole-cell and single-channel recordings).
Species:  Mouse
Tissue:  Cerebral artery smooth muscle cells.
Response measured:  Protein kinase C delta activity is required for membrane localization and activity.
References:  7
Physiological Functions
Candidate for endogenous calcium-activated cation (CAN) channels, negative feedback regulator of Ca2+ entry, involved in oscillatory electrical activity and the generation of the Bayliss effect in smooth muscle.
Species:  Human
Tissue:  Widely expressed.
References:  12,16,24,30
Critical for the proper functioning of monocytes/macrophages and the efficiency of the subsequent response to infection; also important for mast cell migration.
Species:  Mouse
Tissue:  Peripheral blood and bone marrow
References:  35-36,42
Mediates axonal and neuronal degeneration in experimental autoimmune encephalomyelitis and multiple sclerosis.
Species:  Mouse
Tissue:  Brain
References:  33
Putative role in controlling glucagon secretion from pancreatic α-cells and perhaps glucose homeostasis.
Species:  Mouse
Tissue:  Pancreas
References:  18,21
Limits catecholamine release from chromaffin cells, thereby contributing to increased sympathetic tone and hypertension.
Species:  Mouse
Tissue:  Adrenal medulla
References:  19
Role in lipopolysaccharide (LPS)-induced reactive oxygen species (ROS)-mediated endothelial cell death.
Species:  Mouse
Tissue:  Endothelium
References:  1
Phenotypes, Alleles and Disease Models Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Trpm4tm1.1Mfre Trpm4tm1.1Mfre/Trpm4tm1.1Mfre
involves: 129S1/Sv * 129X1/SvJ * BALB/cJ
MGI:1915917  MP:0004231 abnormal calcium ion homeostasis PMID: 17293867 
Trpm4tm1.1Knt Trpm4tm1.1Knt/Trpm4tm1.1Knt
Not Specified
MGI:1915917  MP:0002376 abnormal dendritic cell physiology PMID: 18758465 
Trpm4tm1.1Knt|Trpm5tm1Csz Trpm4tm1.1Knt/Trpm4tm1.1Knt,Trpm5tm1Csz/Trpm5tm1Csz
involves: 129S1/Sv * 129X1/SvJ
MGI:1861718  MGI:1915917  MP:0002376 abnormal dendritic cell physiology PMID: 18758465 
Trpm4tm1.1Knt Trpm4tm1.1Knt/Trpm4tm1.1Knt
Not Specified
MGI:1915917  MP:0008127 decreased dendritic cell number PMID: 18758465 
Trpm4tm1.1Knt|Trpm5tm1Csz Trpm4tm1.1Knt/Trpm4tm1.1Knt,Trpm5tm1Csz/Trpm5tm1Csz
involves: 129S1/Sv * 129X1/SvJ
MGI:1861718  MGI:1915917  MP:0008127 decreased dendritic cell number PMID: 18758465 
Trpm4tm1.1Mfre Trpm4tm1.1Mfre/Trpm4tm1.1Mfre
involves: 129S1/Sv * 129X1/SvJ * BALB/cJ
MGI:1915917  MP:0005596 increased susceptibility to type I hypersensitivity reaction PMID: 17293867 
Trpm4tm1.1Mfre Trpm4tm1.1Mfre/Trpm4tm1.1Mfre
involves: 129S1/Sv * 129X1/SvJ * BALB/cJ
MGI:1915917  MP:0003070 increased vascular permeability PMID: 17293867 
Clinically-Relevant Mutations and Pathophysiology
Disease:  Progressive familial heart block, type IB, PFHB1B
OMIM:  604559
Orphanet:  871
References: 
Mutations not determined
Disease:  Cardiac Conductance Disturbances
References:  38
Mutations not determined
Disease:  Brugada syndrome
Orphanet:  130
References:  17
Mutations not determined
Clinically-Relevant Mutations and Pathophysiology Comments
TRPM4 has been implicated to play a role in hyper-responsiveness in immune cells, induction of pro-inflammatory conditions, allergy, defective surfactant secretion in pneumocytes, defective Bayliss effect, trigger for paroxysmal depolarisation shift, spreading depression-like hypoxic depolarisation, stroke, cardiac hypertrophy and arrythmia; atrioventricular block or right bundle branch block [10-11,15,23,34,37].
Gene Expression and Pathophysiology
Overexpression.
Tissue or cell type:  Skeletal and cardiac muscle.
Pathophysiology:  Muscular dystrophy and cardiomyopathy.
Species:  None
Technique: 
References:  13
General Comments
Human: long splice-variant TRPM4b (1214 AA), short splice-variant TRPM4a (1040 AA, lacks first 174 AA), shortest splice variant TRPM4c (537 AA, lacks N-terminal) [24].

Mouse: two short splice variants from brain [20].

REFERENCES

1. Becerra A, Echeverría C, Varela D, Sarmiento D, Armisén R, Nuñez-Villena F, Montecinos M, Simon F. (2011) Transient receptor potential melastatin 4 inhibition prevents lipopolysaccharide-induced endothelial cell death. Cardiovasc. Res.91 (4): 677-84. [PMID:21565835]

2. Chabardes-Garonne D, Mejean A, Aude JC, Cheval L, Di Stefano A, Gaillard MC, Imbert-Teboul M, Wittner M, Balian C, Anthouard V, Robert C, Segurens B, Wincker P, Weissenbach J, Doucet A, Elalouf JM. (2003) A panoramic view of gene expression in the human kidney. Proc. Natl. Acad. Sci. U.S.A.100 (23): 13710-5. [PMID:14595018]

3. Chen M, Dong Y, Simard JM. (2003) Functional coupling between sulfonylurea receptor type 1 and a nonselective cation channel in reactive astrocytes from adult rat brain. J. Neurosci.23 (24): 8568-77. [PMID:13679426]

4. Cheng H, Beck A, Launay P, Gross SA, Stokes AJ, Kinet JP, Fleig A, Penner R. (2007) TRPM4 controls insulin secretion in pancreatic beta-cells. Cell Calcium41 (1): 51-61. [PMID:16806463]

5. Earley S, Waldron BJ, Brayden JE. (2004) Critical role for transient receptor potential channel TRPM4 in myogenic constriction of cerebral arteries. Circ. Res.95 (9): 922-9. [PMID:15472118]

6. Fonfria E, Murdock PR, Cusdin FS, Benham CD, Kelsell RE, McNulty S. (2006) Tissue distribution profiles of the human TRPM cation channel family. J. Recept. Signal Transduct. Res.26 (3): 159-78. [PMID:16777713]

7. Garcia ZI, Bruhl A, Gonzales AL, Earley S. (2011) Basal protein kinase Cδ activity is required for membrane localization and activity of TRPM4 channels in cerebral artery smooth muscle cells. Channels (Austin)5 (3): 210-4. [PMID:21406958]

8. Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S, Scott G, Steffen D, Worley KC, Burch PE, Okwuonu G, Hines S, Lewis L, DeRamo C, Delgado O, Dugan-Rocha S, Miner G, Morgan M, Hawes A, Gill R, Celera RA, Adams MD, Amanatides PG, Baden-Tillson H, Barnstead M, Chin S, Evans CA, Ferriera S, Fosler C, Glodek A, Gu Z, Jennings D, Kraft CL, Nguyen T, Pfannkoch CM, Sitter C, Sutton GG, Venter JC, Woodage T, Smith D, Lee HM, Gustafson E, Cahill P, Kana A, Doucette-Stamm L, Weinstock K, Fechtel K, Weiss RB, Dunn DM, Green ED, Blakesley RW, Bouffard GG, De Jong PJ, Osoegawa K, Zhu B, Marra M, Schein J, Bosdet I, Fjell C, Jones S, Krzywinski M, Mathewson C, Siddiqui A, Wye N, McPherson J, Zhao S, Fraser CM, Shetty J, Shatsman S, Geer K, Chen Y, Abramzon S, Nierman WC, Havlak PH, Chen R, Durbin KJ, Egan A, Ren Y, Song XZ, Li B, Liu Y, Qin X, Cawley S, Worley KC, Cooney AJ, D'Souza LM, Martin K, Wu JQ, Gonzalez-Garay ML, Jackson AR, Kalafus KJ, McLeod MP, Milosavljevic A, Virk D, Volkov A, Wheeler DA, Zhang Z, Bailey JA, Eichler EE, Tuzun E, Birney E, Mongin E, Ureta-Vidal A, Woodwark C, Zdobnov E, Bork P, Suyama M, Torrents D, Alexandersson M, Trask BJ, Young JM, Huang H, Wang H, Xing H, Daniels S, Gietzen D, Schmidt J, Stevens K, Vitt U, Wingrove J, Camara F, Mar Albà M, Abril JF, Guigo R, Smit A, Dubchak I, Rubin EM, Couronne O, Poliakov A, Hübner N, Ganten D, Goesele C, Hummel O, Kreitler T, Lee YA, Monti J, Schulz H, Zimdahl H, Himmelbauer H, Lehrach H, Jacob HJ, Bromberg S, Gullings-Handley J, Jensen-Seaman MI, Kwitek AE, Lazar J, Pasko D, Tonellato PJ, Twigger S, Ponting CP, Duarte JM, Rice S, Goodstadt L, Beatson SA, Emes RD, Winter EE, Webber C, Brandt P, Nyakatura G, Adetobi M, Chiaromonte F, Elnitski L, Eswara P, Hardison RC, Hou M, Kolbe D, Makova K, Miller W, Nekrutenko A, Riemer C, Schwartz S, Taylor J, Yang S, Zhang Y, Lindpaintner K, Andrews TD, Caccamo M, Clamp M, Clarke L, Curwen V, Durbin R, Eyras E, Searle SM, Cooper GM, Batzoglou S, Brudno M, Sidow A, Stone EA, Venter JC, Payseur BA, Bourque G, López-Otín C, Puente XS, Chakrabarti K, Chatterji S, Dewey C, Pachter L, Bray N, Yap VB, Caspi A, Tesler G, Pevzner PA, Haussler D, Roskin KM, Baertsch R, Clawson H, Furey TS, Hinrichs AS, Karolchik D, Kent WJ, Rosenbloom KR, Trumbower H, Weirauch M, Cooper DN, Stenson PD, Ma B, Brent M, Arumugam M, Shteynberg D, Copley RR, Taylor MS, Riethman H, Mudunuri U, Peterson J, Guyer M, Felsenfeld A, Old S, Mockrin S, Collins F. (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature428 (6982): 493-521. [PMID:15057822]

9. Grand T, Demion M, Norez C, Mettey Y, Launay P, Becq F, Bois P, Guinamard R. (2008) 9-phenanthrol inhibits human TRPM4 but not TRPM5 cationic channels. Br. J. Pharmacol.153 (8): 1697-705. [PMID:18297105]

10. Guinamard R, Chatelier A, Demion M, Potreau D, Patri S, Rahmati M, Bois P. (2004) Functional characterization of a Ca(2+)-activated non-selective cation channel in human atrial cardiomyocytes. J. Physiol. (Lond.)558 (Pt 1): 75-83. [PMID:15121803]

11. Guinamard R, Chatelier A, Lenfant J, Bois P. (2004) Activation of the Ca(2+)-activated nonselective cation channel by diacylglycerol analogues in rat cardiomyocytes. J. Cardiovasc. Electrophysiol.15 (3): 342-8. [PMID:15030426]

12. Hofmann T, Chubanov V, Gudermann T, Montell C. (2003) TRPM5 is a voltage-modulated and Ca(2+)-activated monovalent selective cation channel. Curr. Biol.13 (13): 1153-8. [PMID:12842017]

13. Iwata Y, Katanosaka Y, Arai Y, Komamura K, Miyatake K, Shigekawa M. (2003) A novel mechanism of myocyte degeneration involving the Ca2+-permeable growth factor-regulated channel. J. Cell Biol.161 (5): 957-67. [PMID:12796481]

14. Jang Y, Lee Y, Kim SM, Yang YD, Jung J, Oh U. (2012) Quantitative analysis of TRP channel genes in mouse organs. Arch. Pharm. Res.35 (10): 1823-30. [PMID:23139135]

15. Launay P, Cheng H, Srivatsan S, Penner R, Fleig A, Kinet JP. (2004) TRPM4 regulates calcium oscillations after T cell activation. Science306 (5700): 1374-7. [PMID:15550671]

16. Launay P, Fleig A, Perraud AL, Scharenberg AM, Penner R, Kinet JP. (2002) TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell109 (3): 397-407. [PMID:12015988]

17. Liu H, Chatel S, Simard C, Syam N, Salle L, Probst V, Morel J, Millat G, Lopez M, Abriel H et al.. (2013) Molecular genetics and functional anomalies in a series of 248 Brugada cases with 11 mutations in the TRPM4 channel. PLoS ONE8 (1): e54131. [PMID:23382873]

18. Marigo V, Courville K, Hsu WH, Feng JM, Cheng H. (2009) TRPM4 impacts on Ca2+ signals during agonist-induced insulin secretion in pancreatic beta-cells. Mol. Cell. Endocrinol.299 (2): 194-203. [PMID:19063936]

19. Mathar I, Vennekens R, Meissner M, Kees F, Van der Mieren G, Camacho Londoño JE, Uhl S, Voets T, Hummel B, van den Bergh A et al.. (2010) Increased catecholamine secretion contributes to hypertension in TRPM4-deficient mice. J. Clin. Invest.120 (9): 3267-79. [PMID:20679729]

20. Murakami M, Xu F, Miyoshi I, Sato E, Ono K, Iijima T. (2003) Identification and characterization of the murine TRPM4 channel. Biochem. Biophys. Res. Commun.307 (3): 522-8. [PMID:12893253]

21. Nelson PL, Zolochevska O, Figueiredo ML, Soliman A, Hsu WH, Feng JM, Zhang H, Cheng H. (2011) Regulation of Ca(2+)-entry in pancreatic α-cell line by transient receptor potential melastatin 4 plays a vital role in glucagon release. Mol. Cell. Endocrinol.335 (2): 126-34. [PMID:21238535]

22. Nilius B, Mahieu F, Prenen J, Janssens A, Owsianik G, Vennekens R, Voets T. (2006) The Ca2+-activated cation channel TRPM4 is regulated by phosphatidylinositol 4,5-biphosphate. EMBO J.25 (3): 467-78. [PMID:16424899]

23. Nilius B, Owsianik G, Voets T, Peters JA. (2007) Transient receptor potential cation channels in disease. Physiol. Rev.87 (1): 165-217. [PMID:17237345]

24. Nilius B, Prenen J, Droogmans G, Voets T, Vennekens R, Freichel M, Wissenbach U, Flockerzi V. (2003) Voltage dependence of the Ca2+-activated cation channel TRPM4. J. Biol. Chem.278 (33): 30813-20. [PMID:12799367]

25. Nilius B, Prenen J, Janssens A, Owsianik G, Wang C, Zhu MX, Voets T. (2005) The selectivity filter of the cation channel TRPM4. J. Biol. Chem.280 (24): 22899-906. [PMID:15845551]

26. Nilius B, Prenen J, Janssens A, Voets T, Droogmans G. (2004) Decavanadate modulates gating of TRPM4 cation channels. J. Physiol. (Lond.)560 (Pt 3): 753-65. [PMID:15331675]

27. Nilius B, Prenen J, Tang J, Wang C, Owsianik G, Janssens A, Voets T, Zhu MX. (2005) Regulation of the Ca2+ sensitivity of the nonselective cation channel TRPM4. J. Biol. Chem.280 (8): 6423-33. [PMID:15590641]

28. Nilius B, Prenen J, Voets T, Droogmans G. (2004) Intracellular nucleotides and polyamines inhibit the Ca2+-activated cation channel TRPM4b. Pflugers Arch.448 (1): 70-5. [PMID:14758478]

29. Nilius B, Talavera K, Owsianik G, Prenen J, Droogmans G, Voets T. (2005) Gating of TRP channels: a voltage connection?. J. Physiol. (Lond.)567 (Pt 1): 35-44. [PMID:15878939]

30. Nilius B, Vennekens R. (2006) From cardiac cation channels to the molecular dissection of the transient receptor potential channel TRPM4. Pflugers Arch.453 (3): 313-21. [PMID:16680483]

31. Nina DUllrich. (2005) PhD Thesis. in TRPM4 and TRPM5: Functional characterisation and comparison of two novel Ca2+-activated cation channels of the TRPM subfamily Faculteit Geneeskunde, Dept. Moleculaire Celbiologie, KU Leuven.

32. Sala-Rabanal M, Wang S, Nichols CG. (2012) On potential interactions between non-selective cation channel TRPM4 and sulfonylurea receptor SUR1. J. Biol. Chem.287 (12): 8746-56. [PMID:22291026]

33. Schattling B, Steinbach K, Thies E, Kruse M, Menigoz A, Ufer F, Flockerzi V, Brück W, Pongs O, Vennekens R et al.. (2012) TRPM4 cation channel mediates axonal and neuronal degeneration in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat. Med.18 (12): 1805-11. [PMID:23160238]

34. Schiller Y. (2004) Activation of a calcium-activated cation current during epileptiform discharges and its possible role in sustaining seizure-like events in neocortical slices. J. Neurophysiol.92 (2): 862-72. [PMID:15277598]

35. Serafini N, Dahdah A, Barbet G, Demion M, Attout T, Gautier G, Arcos-Fajardo M, Souchet H, Jouvin MH, Vrtovsnik F et al.. (2012) The TRPM4 channel controls monocyte and macrophage, but not neutrophil, function for survival in sepsis. J. Immunol.189 (7): 3689-99. [PMID:22933633]

36. Shimizu T, Owsianik G, Freichel M, Flockerzi V, Nilius B, Vennekens R. (2009) TRPM4 regulates migration of mast cells in mice. Cell Calcium45 (3): 226-32. [PMID:19046767]

37. Simard JM, Chen M, Tarasov KV, Bhatta S, Ivanova S, Melnitchenko L, Tsymbalyuk N, West GA, Gerzanich V. (2006) Newly expressed SUR1-regulated NC(Ca-ATP) channel mediates cerebral edema after ischemic stroke. Nat. Med.12 (4): 433-40. [PMID:16550187]

38. Stallmeyer B, Zumhagen S, Denjoy I, Duthoit G, Hébert JL, Ferrer X, Maugenre S, Schmitz W, Kirchhefer U, Schulze-Bahr E et al.. (2012) Mutational spectrum in the Ca(2+)--activated cation channel gene TRPM4 in patients with cardiac conductance disturbances. Hum. Mutat.33 (1): 109-17. [PMID:21887725]

39. Takezawa R, Cheng H, Beck A, Ishikawa J, Launay P, Kubota H, Kinet JP, Fleig A, Yamada T, Penner R. (2006) A pyrazole derivative potently inhibits lymphocyte Ca2+ influx and cytokine production by facilitating transient receptor potential melastatin 4 channel activity. Mol. Pharmacol.69 (4): 1413-20. [PMID:16407466]

40. Teruyama R, Sakuraba M, Kurotaki H, Armstrong WE. (2011) Transient receptor potential channel m4 and m5 in magnocellular cells in rat supraoptic and paraventricular nuclei. J. Neuroendocrinol.23 (12): 1204-13. [PMID:21848647]

41. Ullrich ND, Voets T, Prenen J, Vennekens R, Talavera K, Droogmans G, Nilius B. (2005) Comparison of functional properties of the Ca2+-activated cation channels TRPM4 and TRPM5 from mice. Cell Calcium37 (3): 267-78. [PMID:15670874]

42. Weber KS, Hildner K, Murphy KM, Allen PM. (2010) Trpm4 differentially regulates Th1 and Th2 function by altering calcium signaling and NFAT localization. J. Immunol.185 (5): 2836-46. [PMID:20656926]

43. Woo SK, Kwon MS, Ivanov A, Gerzanich V, Simard JM. (2013) The sulfonylurea receptor 1 (Sur1)-transient receptor potential melastatin 4 (Trpm4) channel. J. Biol. Chem.288 (5): 3655-67. [PMID:23255597]

44. Xu XZ, Moebius F, Gill DL, Montell C. (2001) Regulation of melastatin, a TRP-related protein, through interaction with a cytoplasmic isoform. Proc. Natl. Acad. Sci. U.S.A.98 (19): 10692-7. [PMID:11535825]

45. Yu W, Hill WG, Apodaca G, Zeidel ML. (2011) Expression and distribution of transient receptor potential (TRP) channels in bladder epithelium. Am. J. Physiol. Renal Physiol.300 (1): F49-59. [PMID:20943764]

46. Zhang Z, Okawa H, Wang Y, Liman ER. (2005) Phosphatidylinositol 4,5-bisphosphate rescues TRPM4 channels from desensitization. J. Biol. Chem.280 (47): 39185-92. [PMID:16186107]

To cite this database page, please use the following:

Kristopher T Kahle, David E. Clapham.
Transient Receptor Potential channels: TRPM4. Last modified on 28/03/2014. Accessed on 20/10/2014. IUPHAR database (IUPHAR-DB), http://www.iuphar-db.org/DATABASE/ObjectDisplayForward?objectId=496.

Contact us | Print | Back to top | Help
Copyright © 2014 IUPHAR