Nomenclature: Kir3.2

Family: Inwardly rectifying potassium channels

Annotation status:  image of a green circle Annotated and expert reviewed. Please contact us if you can help with updates. 

Contents

Gene and Protein Information
Species TM P Loops AA Chromosomal Location Gene Symbol Gene Name Reference
Human 2 1 423 21q22.13-22.2 KCNJ6 potassium inwardly-rectifying channel, subfamily J, member 6 3,29
Mouse 2 1 425 16 C4 Kcnj6 potassium inwardly-rectifying channel, subfamily J, member 6 19,42
Rat 2 1 425 11q11 Kcnj6 potassium inwardly-rectifying channel, subfamily J, member 6 33
Previous and Unofficial Names
GIRK2
hiGIRK2
KATP-2
BIR
Kir3.2
KCNJ7
KATP2
BIR1
Kcnj6_predicted
LOC360252
G protein-activated inward rectifier potassium channel 2
GIRK-2
Potassium inwardly-rectifying channel subfamily J member 6
inward rectifier K(+) channel Kir3.2
potassium channel, inwardly rectifying subfamily J member 6
potassium inwardly-rectifying channel, subfamily J, member 6
potassium inwardly-rectifying channel, subfamily J, member 6 (predicted)
wv
Database Links
DrugBank Target
Ensembl Gene
Entrez Gene
GeneCards
GenitoUrinary Development Molecular Anatomy Project
HomoloGene
Human Protein Reference Database
InterPro
KEGG Gene
OMIM
PharmGKB Gene
PhosphoSitePlus
Protein Ontology (PRO)
RefSeq Nucleotide
RefSeq Protein
TreeFam
UniGene Hs.
UniProtKB
Wikipedia
Selected 3D Structures
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structure of the G protein-gated inward rectifier K+ channel GIRK2 (Kir3.2) in complex with the beta-gamma G protein subunits
PDB Id:  4KFM
Resolution:  3.45Å
Species:  Mouse
References:  37
Associated Proteins
Heteromeric Pore-forming Subunits
Name References
Kir3.4 20
Kir3.3 9,16,34
Kir3.1 16,20
Auxiliary Subunits
Name References
Not determined
Other Associated Proteins
Name References
Gβγ 16
Associated Protein Comments
The Kir3.1/3.2 channel is the major functional assembly in the brain [20].
Functional Characteristics
G-protein-activated inward-rectifier current
Ion Selectivity and Conductance
Species:  Mouse
Rank order:  K+ [30.0 pS]
References:  16
Ion Selectivity and Conductance Comments
Kir3.2 forms functional heteromers with Kir3.3 (31pS, [9]).
Activators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Concentration range (M) Holding voltage (mV) Reference
ethanol N/A Agonist - - 1x10-2 - 2x10-1 -120.0 – -70.0 12,21
Conc range: 1x10-2 - 2x10-1 M [12,21]
Holding voltage: -120.0 – -70.0 mV
PIP2 ? Agonist 6.3 pKd 5x10-5 Physiological 4-5
pKd 6.3 (Kd 5.01x10-7 M) Conc range: 5x10-5 M [4-5]
Holding voltage: Physiological
Na+ Hs Agonist 1.6 pEC50 - -80.0 4
pEC50 1.6 [4]
Holding voltage: -80.0 mV
View species-specific activator tables
Activator Comments
Kir3.2 is also activated by Gβγ subunits [16].

The studies of the action of phosphatidylinositol 4,5-bisphosphate, Na+ and ethanol were performed using Kir3.1/3.2 heteromers.
Gating inhibitors
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Concentration range (M) Holding voltage (mV) Reference
pimozide Mm Antagonist 5.53 pEC50 - -70.0 13
pEC50 5.53 [13]
Holding voltage: -70.0 mV
thioridazine Mm Antagonist 4.2 pEC50 - -70.0 13
pEC50 4.2 [13]
Holding voltage: -70.0 mV
haloperidol Mm Antagonist 4.1 pEC50 - -70.0 13
pEC50 4.1 [13]
Holding voltage: -70.0 mV
clozapine Mm Antagonist 3.75 pEC50 - -70.0 13
pEC50 3.75 [13]
Holding voltage: -70.0 mV
SCH-23390 Hs Antagonist 4.08 – 5.11 pIC50 - -60.0 18
pIC50 4.08 – 5.11 [18]
Holding voltage: -60.0 mV
fluoxetine Mm Antagonist 4.05 – 4.77 pIC50 - -70.0 14
pIC50 4.05 – 4.77 [14]
Holding voltage: -70.0 mV
halothane N/A Antagonist 4.2 pIC50 - -70.0 36
pIC50 4.2 [36]
Holding voltage: -70.0 mV
bupivacaine N/A Antagonist 4.0 – 4.2 pIC50 - -110.0 – -40.0 41
pIC50 4.0 – 4.2 [41]
Holding voltage: -110.0 – -40.0 mV
F3 N/A Antagonist 4.1 pIC50 - -80.0 39
pIC50 4.1 [39]
Holding voltage: -80.0 mV
verapamil Mm Antagonist 3.92 pIC50 - -100.0 17
pIC50 3.92 [17]
Holding voltage: -100.0 mV
dizocilpine Mm Antagonist 3.7 pIC50 - -100.0 17
pIC50 3.7 [17]
Holding voltage: -100.0 mV
View species-specific gating inhibitor tables
Gating Inhibitor Comments
The following references encompass data regarding the Kir3.1/3.2 heteromer: [13-14,18,36,39,41].

Kir3.2 is also inhibited by Gαi subunits[27]. RGS (regulators of G-protein signalling) proteins accelerate GTP hydrolysis of Gαsubunits, so that they increase the amount of GDP-bound Gα subunits, thus reducing the numbers of Gα-free Gβγ subunits [2,28].
Channel Blockers
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Concentration range (M) Holding voltage (mV) Reference
clomipramine Mm Antagonist 4.4 pIC50 - -70.0 15
pIC50 4.4 [15]
Holding voltage: -70.0 mV
desipramine Mm Antagonist 4.4 pIC50 - -70.0 15
pIC50 4.4 [15]
Holding voltage: -70.0 mV
imipramine Mm Antagonist 4.3 pIC50 - -70.0 15
pIC50 4.3 [15]
Holding voltage: -70.0 mV
maprotiline Mm Antagonist 4.0 pIC50 - -70.0 15
pIC50 4.0 [15]
Holding voltage: -70.0 mV
amitriptyline Mm Antagonist 4.0 pIC50 - -70.0 15
pIC50 4.0 [15]
Holding voltage: -70.0 mV
nortriptyline Mm Antagonist 3.9 pIC50 - -70.0 15
pIC50 3.9 [15]
Holding voltage: -70.0 mV
QX-314 Mm Antagonist 3.7 pIC50 - - 17
pIC50 3.7 [17]
Channel Blocker Comments
The following references encompass data regarding the Kir3.1/3.2 heteromer: [15]
Tissue Distribution
Testis.
Species:  Mouse
Technique:  Immunocytochemistry
References:  6
Cortex, lateral septal nucleus, hippocampus, cerebellum, substantia nigra, ventral tegmental area.
Species:  Mouse
Technique:  Immunohistochemistry
References:  22
Hippocampus, substantia nigra, pontine nucleus, cerebellar granular layer, olfactory bulb, cerebral cortex, septum, amygdala.
Species:  Mouse
Technique:  In situ hybridisation, RT-PCR
References:  7,11
Pancreas.
Species:  Rat
Technique:  In situ hybridisation
References:  32
Olfactory bulb, neocortex, hippocampus, amygdala, substantia nigra, thalamus, vestibular nucleus, cochlear nucleus.
Species:  Rat
Technique:  In situ hybridisation
References:  10
Cotex, lateral septal nucleys, hippocampus, cerebellum, substantia nigra, ventral tegmental area.
Species:  Rat
Technique:  Immunohistochemistry
References:  7,22
Physiological Functions
Kir3.2 participates in the formation of the slow inhibitory postsynaptic potential and probably in the presynaptic inhibition in the brain.
Species:  Rat
Tissue:  Brain.
References:  7,30
In the endocrine organs, neurotransmitters induce hyperpolarisation of the membrane potential and lead to the inhibition of hormone secretion.
Species:  Rat
Tissue:  Pancreas, pituitary.
References:  23,40
Kir3.2d may be involved in spermatogenesis.
Species:  Mouse
Tissue:  Testis.
References:  6,26
Phenotypes, Alleles and Disease Models Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6J
MGI:104781  MP:0003091 abnormal cell migration PMID: 2723742 
Kcnj6+|Kcnj6wv Kcnj6wv/Kcnj6+
involves: C57BL/6J
MGI:104781  MP:0003091 abnormal cell migration PMID: 2723742 
Kcnj6wv Kcnj6wv/Kcnj6wv
B6CBACa A/A-Kcnj6/J
MGI:104781  MP:0004097 abnormal cerebellar cortex morphology PMID: 11596045 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6J
MGI:104781  MP:0004097 abnormal cerebellar cortex morphology PMID: 4118891 
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J-Kcnj6
MGI:104781  MP:0004098 abnormal cerebellar granule cell morphology PMID: 3882972 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6
MGI:104781  MP:0004098 abnormal cerebellar granule cell morphology PMID: 8855331 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6J
MGI:104781  MP:0000886 abnormal cerebellar granule layer PMID: 2723742  4118891 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6 * CBA/CaGnLe
MGI:104781  MP:0000886 abnormal cerebellar granule layer PMID: 9520333 
Kcnj6+|Kcnj6wv Kcnj6wv/Kcnj6+
involves: C57BL/6 * CBA/CaGnLe
MGI:104781  MP:0000886 abnormal cerebellar granule layer PMID: 9520333 
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0000886 abnormal cerebellar granule layer
Kcnj6wv Kcnj6wv/Kcnj6wv
B6CBACa A/A-Kcnj6/J
MGI:104781  MP:0006097 abnormal cerebellar lobule formation PMID: 11596045 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6J
MGI:104781  MP:0000889 abnormal cerebellar molecular layer PMID: 2723742 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6 * CBA/CaGnLe
MGI:104781  MP:0000889 abnormal cerebellar molecular layer PMID: 9520333 
Kcnj6+|Kcnj6wv Kcnj6wv/Kcnj6+
involves: C57BL/6J
MGI:104781  MP:0000889 abnormal cerebellar molecular layer PMID: 2723742 
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0000889 abnormal cerebellar molecular layer
Kcnj6wv Kcnj6wv/Kcnj6wv
B6CBACa A/A-Kcnj6/J
MGI:104781  MP:0000875 abnormal cerebellar Purkinje cell layer PMID: 11596045 
Kcnj6+|Kcnj6wv Kcnj6wv/Kcnj6+
B6CBACa A/A-Kcnj6/J
MGI:104781  MP:0000875 abnormal cerebellar Purkinje cell layer PMID: 11596045 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6J
MGI:104781  MP:0000875 abnormal cerebellar Purkinje cell layer PMID: 4118891 
Kcnj6+|Kcnj6wv Kcnj6wv/Kcnj6+
involves: C57BL/6 * CBA/CaGnLe
MGI:104781  MP:0000875 abnormal cerebellar Purkinje cell layer PMID: 9520333 
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0000875 abnormal cerebellar Purkinje cell layer
Kcnj6tm1Stf|Kcnj6wv Kcnj6tm1Stf/Kcnj6wv
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J
MGI:104781  MP:0000875 abnormal cerebellar Purkinje cell layer PMID: 9023358 
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0000854 abnormal cerebellum development
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6 * CBA/CaGnLe
MGI:104781  MP:0000872 abnormal cerebellum external granule cell layer morphology PMID: 9520333 
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0000872 abnormal cerebellum external granule cell layer morphology
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6J
MGI:104781  MP:0000849 abnormal cerebellum morphology PMID: 2723742  4118891 
Kcnj6+|Kcnj6wv Kcnj6wv/Kcnj6+
involves: C57BL/6 * CBA/CaGnLe
MGI:104781  MP:0000849 abnormal cerebellum morphology PMID: 8081012 
Kcnj6+|Kcnj6wv Kcnj6wv/Kcnj6+
involves: C57BL/6J
MGI:104781  MP:0000849 abnormal cerebellum morphology PMID: 2723742 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6J
MGI:104781  MP:0000864 abnormal cerebellum vermis morphology PMID: 2723742 
Kcnj6+|Kcnj6wv Kcnj6wv/Kcnj6+
involves: C57BL/6J
MGI:104781  MP:0000864 abnormal cerebellum vermis morphology PMID: 2723742 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6
MGI:104781  MP:0002206 abnormal CNS synaptic transmission PMID: 8855331 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6
MGI:104781  MP:0006333 abnormal cochlear nucleus morphology PMID: 2077109 
Kcnj6wv Kcnj6wv/Kcnj6wv
B6CBACa A/A-Kcnj6/J
MGI:104781  MP:0003243 abnormal dopaminergic neuron morphology PMID: 7062116 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6 * CBA/CaGnLe
MGI:104781  MP:0002631 abnormal epididymis morphology PMID: 8081012 
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0001406 abnormal gait
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6J * CBA
MGI:104781  MP:0002761 abnormal hippocampal mossy fiber morphology PMID: 8574680 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6J * CBA
MGI:104781  MP:0008284 abnormal hippocampus pyramidal cell layer PMID: 8574680 
Kcnj6wv Kcnj6wv/Kcnj6wv
B6CBA A/A-Kcnj6
MGI:104781  MP:0001765 abnormal ion homeostasis PMID: 10766925 
Kcnj6wv Kcnj6wv/Kcnj6wv
B6CBACa A/A-Kcnj6/J
MGI:104781  MP:0003313 abnormal locomotor activation PMID: 7062116 
Kcnj6+|Kcnj6wv Kcnj6wv/Kcnj6+
involves: C57BL/6J
MGI:104781  MP:0001392 abnormal locomotor activity PMID: 9023358 
Kcnj6wv Kcnj6wv/Kcnj6wv
B6CBA A/A-Kcnj6
MGI:104781  MP:0006362 abnormal male germ cell morphology PMID: 7760215 
Kcnj6+|Kcnj6wv Kcnj6wv/Kcnj6+
B6CBA A/A-Kcnj6
MGI:104781  MP:0006362 abnormal male germ cell morphology PMID: 7760215 
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0001386 abnormal maternal nurturing
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J-Kcnj6
MGI:104781  MP:0002066 abnormal motor capabilities/coordination/movement
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0001516 abnormal motor coordination/ balance
Kcnj6wv Kcnj6wv/Kcnj6wv
B6CBACa A/A-Kcnj6/J
MGI:104781  MP:0003632 abnormal nervous system morphology PMID: 7062116 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6
MGI:104781  MP:0002204 abnormal neurotransmitter level PMID: 6127146 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6 * CBA/CaGnLe
MGI:104781  MP:0003964 abnormal noradrenaline level PMID: 6123371 
Kcnj6wv Kcnj6wv/Kcnj6wv
B6CBACa A/A-Kcnj6/J
MGI:104781  MP:0008572 abnormal Purkinje cell dendrite morphology PMID: 11596045 
Kcnj6+|Kcnj6wv Kcnj6wv/Kcnj6+
B6CBACa A/A-Kcnj6/J
MGI:104781  MP:0008572 abnormal Purkinje cell dendrite morphology PMID: 11596045 
Kcnj6+|Kcnj6wv Kcnj6wv/Kcnj6+
B6CBACa A/A-Kcnj6/J
MGI:104781  MP:0000877 abnormal Purkinje cell morphology PMID: 11596045 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6J
MGI:104781  MP:0000877 abnormal Purkinje cell morphology PMID: 4118891 
Kcnj6wv Kcnj6wv/Kcnj6wv
B6CBA A/A-Kcnj6
MGI:104781  MP:0006304 abnormal seminiferous epithelium morphology PMID: 7760215 
Kcnj6+|Kcnj6wv Kcnj6wv/Kcnj6+
B6CBA A/A-Kcnj6
MGI:104781  MP:0006304 abnormal seminiferous epithelium morphology PMID: 7760215 
Kcnj6wv Kcnj6wv/Kcnj6wv
B6CBA A/A-Kcnj6
MGI:104781  MP:0002216 abnormal seminiferous tubule morphology PMID: 7760215 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6 * CBA/CaGnLe
MGI:104781  MP:0002216 abnormal seminiferous tubule morphology PMID: 8081012 
Kcnj6wv Kcnj6wv/Kcnj6wv
B6CBA A/A-Kcnj6
MGI:104781  MP:0002784 abnormal Sertoli cell morphology PMID: 7760215 
Kcnj6wv Kcnj6wv/Kcnj6wv
B6CBA A/A-Kcnj6
MGI:104781  MP:0006380 abnormal spermatid morphology PMID: 10766925 
Kcnj6+|Kcnj6wv Kcnj6wv/Kcnj6+
B6CBA A/A-Kcnj6
MGI:104781  MP:0006380 abnormal spermatid morphology PMID: 7760215 
Kcnj6wv Kcnj6wv/Kcnj6wv
B6CBA A/A-Kcnj6
MGI:104781  MP:0001156 abnormal spermatogenesis PMID: 7760215 
Kcnj6+|Kcnj6wv Kcnj6wv/Kcnj6+
B6CBA A/A-Kcnj6
MGI:104781  MP:0001156 abnormal spermatogenesis PMID: 7760215 
Kcnj6wv Kcnj6wv/Kcnj6wv
B6CBA A/A-Kcnj6
MGI:104781  MP:0002674 abnormal sperm motility PMID: 7760215 
Kcnj6+|Kcnj6wv Kcnj6wv/Kcnj6+
B6CBA A/A-Kcnj6
MGI:104781  MP:0002674 abnormal sperm motility PMID: 7760215 
Kcnj6wv Kcnj6wv/Kcnj6wv
B6CBACa A/A-Kcnj6/J
MGI:104781  MP:0000836 abnormal substantia nigra morphology PMID: 7062116 
Kcnj6+|Kcnj6wv Kcnj6wv/Kcnj6+
involves: C57BL/6J
MGI:104781  MP:0000836 abnormal substantia nigra morphology PMID: 9023358 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6
MGI:104781  MP:0004494 abnormal synaptic glutamate release PMID: 6127146 
Kcnj6tm1Stf|Kcnj9tm1Kwn Kcnj6tm1Stf/Kcnj6tm1Stf,Kcnj9tm1Kwn/Kcnj9tm1Kwn
involves: 129S1/Sv * 129X1/SvJ
MGI:104781  MGI:108007  MP:0003635 abnormal synaptic transmission PMID: 12040038 
Kcnj6tm1Stf Kcnj6tm1Stf/Kcnj6tm1Stf
involves: 129S1/Sv * 129X1/SvJ
MGI:104781  MP:0003635 abnormal synaptic transmission PMID: 12040038 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6 * CBA/CaGnLe
MGI:104781  MP:0001146 abnormal testis morphology PMID: 8081012 
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0006098 absent cerebellar lobules
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0009268 absent cerebellum fissure
Kcnj6wv Kcnj6wv/Kcnj6wv
B6CBACa A/A-Kcnj6/J
MGI:104781  MP:0001393 ataxia PMID: 11596045 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6 * CBA/CaGnLe
MGI:104781  MP:0001393 ataxia PMID: 8081012  9520333 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6 * CBA/CaGnLe
MGI:104781  MP:0005159 azoospermia PMID: 8081012 
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0001265 decreased body size
Kcnj6wv Kcnj6wv/Kcnj6wv
B6CBACa A/A-Kcnj6/J
MGI:104781  MP:0001262 decreased body weight PMID: 11596045 
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0001262 decreased body weight
Kcnj6wv Kcnj6wv/Kcnj6wv
B6CBACa A/A-Kcnj6/J
MGI:104781  MP:0005643 decreased dopamine level PMID: 7062116 
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0003910 decreased eating behavior
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6
MGI:104781  MP:0000880 decreased Purkinje cell number PMID: 2077109 
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0008770 decreased survivor rate
Kcnj6+|Kcnj6wv Kcnj6wv/Kcnj6+
B6CBACa A/A-Kcnj6/J
MGI:104781  MP:0000884 delaminated Purkinje cell layer PMID: 11596045 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6J * CBA
MGI:104781  MP:0010011 ectopic hippocampus pyramidal cells PMID: 8574680 
Kcnj6wv Kcnj6wv/Kcnj6wv
B6CBACa A/A-Kcnj6/J
MGI:104781  MP:0000885 ectopic Purkinje cell PMID: 11596045 
Kcnj6tm1Stf Kcnj6tm1Stf/Kcnj6tm1Stf
involves: 129S1/Sv * 129X1/SvJ
MGI:104781  MP:0009358 environmentally induced seizures PMID: 9023358 
Kcnj6wv Kcnj6wv/Kcnj6wv
B6CBA A/A-Kcnj6
MGI:104781  MP:0002686 globozoospermia PMID: 7760215 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6 * CBA/CaGnLe
MGI:104781  MP:0004144 hypotonia PMID: 8081012 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6 * CBA/CaGnLe
MGI:104781  MP:0001523 impaired righting response PMID: 8081012 
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0001523 impaired righting response
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6J
MGI:104781  MP:0006042 increased apoptosis PMID: 2723742 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6 * CBA/CaGnLe
MGI:104781  MP:0006042 increased apoptosis PMID: 9520333 
Kcnj6+|Kcnj6wv Kcnj6wv/Kcnj6+
involves: C57BL/6J
MGI:104781  MP:0006042 increased apoptosis PMID: 2723742 
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0000879 increased Purkinje cell number
Kcnj6tm1Stf Kcnj6tm1Stf/Kcnj6tm1Stf
involves: 129S1/Sv * 129X1/SvJ
MGI:104781  MP:0002906 increased susceptibility to pharmacologically induced seizures PMID: 9023358 
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0008911 induced hyperactivity
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0008569 lethality at weaning
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6 * CBA/CaGnLe
MGI:104781  MP:0001925 male infertility PMID: 8081012 
Kcnj6+|Kcnj6wv Kcnj6wv/Kcnj6+
involves: C57BL/6J
MGI:104781  MP:0001925 male infertility PMID: 9023358 
Kcnj6wv Kcnj6wv/Kcnj6wv
B6CBA A/A-Kcnj6
MGI:104781  MP:0002687 oligozoospermia PMID: 7760215 
Kcnj6+|Kcnj6wv Kcnj6wv/Kcnj6+
B6CBA A/A-Kcnj6
MGI:104781  MP:0002687 oligozoospermia PMID: 7760215 
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0002082 postnatal lethality
Kcnj6tm1Stf|Kcnj9tm1Kwn Kcnj6tm1Stf/Kcnj6tm1Stf,Kcnj9tm1Kwn/Kcnj9tm1Kwn
involves: 129S1/Sv * 129X1/SvJ
MGI:104781  MGI:108007  MP:0002083 premature death PMID: 12040038 
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J-Kcnj6
MGI:104781  MP:0002083 premature death
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0002083 premature death
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0001923 reduced female fertility
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0001922 reduced male fertility
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6 * CBA/CaGnLe
MGI:104781  MP:0010323 retropulsion PMID: 8081012 
Kcnj6tm1Stf|Kcnj9tm1Kwn Kcnj6tm1Stf/Kcnj6tm1Stf,Kcnj9tm1Kwn/Kcnj9tm1Kwn
involves: 129S1/Sv * 129X1/SvJ
MGI:104781  MGI:108007  MP:0002064 seizures PMID: 12040038 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6 * CBA/CaGnLe
MGI:104781  MP:0001154 seminiferous tubule degeneration PMID: 8081012  9520333 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6
MGI:104781  MP:0000852 small cerebellum PMID: 6127146 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6 * CBA/CaGnLe
MGI:104781  MP:0000852 small cerebellum PMID: 6123371  8081012  9520333 
Kcnj6+|Kcnj6wv Kcnj6wv/Kcnj6+
involves: C57BL/6 * CBA/CaGnLe
MGI:104781  MP:0000852 small cerebellum PMID: 9520333 
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0000852 small cerebellum
Kcnj6tm1Stf|Kcnj6wv Kcnj6tm1Stf/Kcnj6wv
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J
MGI:104781  MP:0006099 thin cerebellar granule layer PMID: 9023358 
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0003997 tonic-clonic seizures
Kcnj6tm1Stf Kcnj6tm1Stf/Kcnj6tm1Stf
involves: 129S1/Sv * 129X1/SvJ
MGI:104781  MP:0003997 tonic-clonic seizures PMID: 9023358 
Kcnj6wv Kcnj6wv/Kcnj6wv
involves: C57BL/6 * CBA/CaGnLe
MGI:104781  MP:0000745 tremors PMID: 8081012 
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0000745 tremors
Kcnj6wv Kcnj6wv/Kcnj6wv
C57BL/6J
MGI:104781  MP:0008913 weaving
Clinically-Relevant Mutations and Pathophysiology Comments
In the weaver mouse the natural missense mutation at molecular location G156S in Kir3.2 permits Na+, as well as K+, ions to pass through the channel [31] and reduces its sensitivity to Gβγ [25]. The weaver mouse experiences spontaneous tonic-clonic seizures [1,26,30].
Gene Expression and Pathophysiology
Kir3.2 knockout mouse.
Tissue or cell type:  Brain
Pathophysiology:  Spontaneous seizures, increased susceptibility to pharmacologically-induced seizures.
Species:  Mouse
Technique:  Knockout
References:  30
Biologically Significant Variants
Type:  Splice variant
Species:  Rat
Description:  Kir3.2c exists as a channel in heterologous complex with Kir3.2a in dopaminergic neurons of the substantia nigra.
Amino acids:  425
Nucleotide accession: 
Protein accession: 
References:  7,33
Type:  Splice variant
Species:  Mouse
Description:  Kir3.2a. This isoform exists as a channel in heterologous complex with Kir3.1 throughout the brain.
Amino acids:  414
Nucleotide accession: 
Protein accession: 
References:  19,22
Type:  Splice variant
Species:  Rat
Description:  Kir3.2a. This protein is specifically expressed in brain and exists as a channel in heterologous complex with Kir3.2c in dopaminergic neurons in the substantia nigra.
Amino acids:  414
Nucleotide accession: 
Protein accession: 
References:  7,24,33
Type:  Splice variant
Species:  Mouse
Description:  Kir3.2b is ubiquitously expressed.
Amino acids:  327
Nucleotide accession: 
Protein accession: 
References:  8
Type:  Splice variant
Species:  Rat
Description:  Kir3.2b is ubiquitously expressed.
Amino acids:  327
Nucleotide accession: 
Protein accession: 
References:  33
Type:  Splice variant
Species:  Mouse
Description:  Kir3.2c exists as a heterologous channel in complex with Kir3.1 throughout the brain. In pancreatic α cells Kir3.2c co-expresses with Kir3.4.
Amino acids:  425
Nucleotide accession: 
Protein accession: 
References:  20,22,40
Type:  Splice variant
Species:  Mouse
Description:  Kir3.2d shows specific expression in testis and behaves as a homomeric channel.
Amino acids:  407
Nucleotide accession: 
Protein accession: 
References:  6
Type:  Splice variant
Species:  Mouse
Amino acids:  302
Nucleotide accession: 
Protein accession: 
Biologically Significant Variant Comments
Distribution of Kir3.2 is related to isoform expression. At least seven exons contribute to producing at least four splice variants [6,35,38]. In the brain some Kir3.2 isoforms exist as complexes, not only with Kir3.1, but also with Kir3.3 [9,34] and Kir 3.4 [20].

REFERENCES

1. Adelbrecht C, Murer MG, Lauritzen I, Lesage F, Ladzunski M, Agid Y, Raisman-Vozari R. (1997) An immunocytochemical study of a G-protein-gated inward rectifier K+ channel (GIRK2) in the weaver mouse mesencephalon. Neuroreport8 (4): 969-74. [PMID:9141074]

2. Doupnik CA, Davidson N, Lester HA, Kofuji P. (1997) RGS proteins reconstitute the rapid gating kinetics of gbetagamma-activated inwardly rectifying K+ channels. Proc. Natl. Acad. Sci. U.S.A.94 (19): 10461-6. [PMID:9294233]

3. Ferrer J, Nichols CG, Makhina EN, Salkoff L, Bernstein J, Gerhard D, Wasson J, Ramanadham S, Permutt A. (1995) Pancreatic islet cells express a family of inwardly rectifying K+ channel subunits which interact to form G-protein-activated channels. J. Biol. Chem.270 (44): 26086-91. [PMID:7592809]

4. Ho IH, Murrell-Lagnado RD. (1999) Molecular determinants for sodium-dependent activation of G protein-gated K+ channels. J. Biol. Chem.274 (13): 8639-48. [PMID:10085101]

5. Huang CL, Feng S, Hilgemann DW. (1998) Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gbetagamma. Nature391 (6669): 803-6. [PMID:9486652]

6. Inanobe A, Horio Y, Fujita A, Tanemoto M, Hibino H, Inageda K, Kurachi Y. (1999) Molecular cloning and characterization of a novel splicing variant of the Kir3.2 subunit predominantly expressed in mouse testis. J. Physiol. (Lond.)521 Pt 1: 19-30. [PMID:10562331]

7. Inanobe A, Yoshimoto Y, Horio Y, Morishige KI, Hibino H, Matsumoto S, Tokunaga Y, Maeda T, Hata Y, Takai Y, Kurachi Y. (1999) Characterization of G-protein-gated K+ channels composed of Kir3.2 subunits in dopaminergic neurons of the substantia nigra. J. Neurosci.19 (3): 1006-17. [PMID:9920664]

8. Isomoto S, Kondo C, Takahashi N, Matsumoto S, Yamada M, Takumi T, Horio Y, Kurachi Y. (1996) A novel ubiquitously distributed isoform of GIRK2 (GIRK2B) enhances GIRK1 expression of the G-protein-gated K+ current in Xenopus oocytes. Biochem. Biophys. Res. Commun.218 (1): 286-91. [PMID:8573147]

9. Jelacic TM, Kennedy ME, Wickman K, Clapham DE. (2000) Functional and biochemical evidence for G-protein-gated inwardly rectifying K+ (GIRK) channels composed of GIRK2 and GIRK3. J. Biol. Chem.275 (46): 36211-6. [PMID:10956667]

10. Karschin C, Dissmann E, Stühmer W, Karschin A. (1996) IRK(1-3) and GIRK(1-4) inwardly rectifying K+ channel mRNAs are differentially expressed in the adult rat brain. J. Neurosci.16 (11): 3559-70. [PMID:8642402]

11. Kobayashi T, Ikeda K, Ichikawa T, Abe S, Togashi S, Kumanishi T. (1995) Molecular cloning of a mouse G-protein-activated K+ channel (mGIRK1) and distinct distributions of three GIRK (GIRK1, 2 and 3) mRNAs in mouse brain. Biochem. Biophys. Res. Commun.208 (3): 1166-73. [PMID:7702616]

12. Kobayashi T, Ikeda K, Kojima H, Niki H, Yano R, Yoshioka T, Kumanishi T. (1999) Ethanol opens G-protein-activated inwardly rectifying K+ channels. Nat. Neurosci.2 (12): 1091-7. [PMID:10570486]

13. Kobayashi T, Ikeda K, Kumanishi T. (2000) Inhibition by various antipsychotic drugs of the G-protein-activated inwardly rectifying K(+) (GIRK) channels expressed in xenopus oocytes. Br. J. Pharmacol.129 (8): 1716-22. [PMID:10780978]

14. Kobayashi T, Washiyama K, Ikeda K. (2003) Inhibition of G protein-activated inwardly rectifying K+ channels by fluoxetine (Prozac). Br. J. Pharmacol.138 (6): 1119-28. [PMID:12684268]

15. Kobayashi T, Washiyama K, Ikeda K. (2004) Inhibition of G protein-activated inwardly rectifying K+ channels by various antidepressant drugs. Neuropsychopharmacology29 (10): 1841-51. [PMID:15150531]

16. Kofuji P, Davidson N, Lester HA. (1995) Evidence that neuronal G-protein-gated inwardly rectifying K+ channels are activated by G beta gamma subunits and function as heteromultimers. Proc. Natl. Acad. Sci. U.S.A.92 (14): 6542-6. [PMID:7604029]

17. Kofuji P, Hofer M, Millen KJ, Millonig JH, Davidson N, Lester HA, Hatten ME. (1996) Functional analysis of the weaver mutant GIRK2 K+ channel and rescue of weaver granule cells. Neuron16 (5): 941-52. [PMID:8630252]

18. Kuzhikandathil EV, Oxford GS. (2002) Classic D1 dopamine receptor antagonist R-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (SCH23390) directly inhibits G protein-coupled inwardly rectifying potassium channels. Mol. Pharmacol.62 (1): 119-26. [PMID:12065762]

19. Lesage F, Duprat F, Fink M, Guillemare E, Coppola T, Lazdunski M, Hugnot JP. (1994) Cloning provides evidence for a family of inward rectifier and G-protein coupled K+ channels in the brain. FEBS Lett.353 (1): 37-42. [PMID:7926018]

20. Lesage F, Guillemare E, Fink M, Duprat F, Heurteaux C, Fosset M, Romey G, Barhanin J, Lazdunski M. (1995) Molecular properties of neuronal G-protein-activated inwardly rectifying K+ channels. J. Biol. Chem.270 (48): 28660-7. [PMID:7499385]

21. Lewohl JM, Wilson WR, Mayfield RD, Brozowski SJ, Morrisett RA, Harris RA. (1999) G-protein-coupled inwardly rectifying potassium channels are targets of alcohol action. Nat. Neurosci.2 (12): 1084-90. [PMID:10570485]

22. Liao YJ, Jan YN, Jan LY. (1996) Heteromultimerization of G-protein-gated inwardly rectifying K+ channel proteins GIRK1 and GIRK2 and their altered expression in weaver brain. J. Neurosci.16 (22): 7137-50. [PMID:8929423]

23. Morishige K, Inanobe A, Yoshimoto Y, Kurachi H, Murata Y, Tokunaga Y, Maeda T, Maruyama Y, Kurachi Y. (1999) Secretagogue-induced exocytosis recruits G protein-gated K+ channels to plasma membrane in endocrine cells. J. Biol. Chem.274 (12): 7969-74. [PMID:10075694]

24. Murer G, Adelbrecht C, Lauritzen I, Lesage F, Lazdunski M, Agid Y, Raisman-Vozari R. (1997) An immunocytochemical study on the distribution of two G-protein-gated inward rectifier potassium channels (GIRK2 and GIRK4) in the adult rat brain. Neuroscience80 (2): 345-57. [PMID:9284339]

25. Navarro B, Kennedy ME, Velimirovíc B, Bhat D, Peterson AS, Clapham DE. (1996) Nonselective and G betagamma-insensitive weaver K+ channels. Science272 (5270): 1950-3. [PMID:8658170]

26. Patil N, Cox DR, Bhat D, Faham M, Myers RM, Peterson AS. (1995) A potassium channel mutation in weaver mice implicates membrane excitability in granule cell differentiation. Nat. Genet.11 (2): 126-9. [PMID:7550338]

27. Peleg S, Varon D, Ivanina T, Dessauer CW, Dascal N. (2002) G(alpha)(i) controls the gating of the G protein-activated K(+) channel, GIRK. Neuron33 (1): 87-99. [PMID:11779482]

28. Saitoh O, Kubo Y, Miyatani Y, Asano T, Nakata H. (1997) RGS8 accelerates G-protein-mediated modulation of K+ currents. Nature390 (6659): 525-9. [PMID:9394004]

29. Schoots O, Wilson JM, Ethier N, Bigras E, Hebert TE, Van Tol HH. (1999) Co-expression of human Kir3 subunits can yield channels with different functional properties. Cell. Signal.11 (12): 871-83. [PMID:10659995]

30. Signorini S, Liao YJ, Duncan SA, Jan LY, Stoffel M. (1997) Normal cerebellar development but susceptibility to seizures in mice lacking G protein-coupled, inwardly rectifying K+ channel GIRK2. Proc. Natl. Acad. Sci. U.S.A.94 (3): 923-7. [PMID:9023358]

31. Slesinger PA, Patil N, Liao YJ, Jan YN, Jan LY, Cox DR. (1996) Functional effects of the mouse weaver mutation on G protein-gated inwardly rectifying K+ channels. Neuron16 (2): 321-31. [PMID:8789947]

32. Stoffel M, Tokuyama Y, Trabb JB, German MS, Tsaar ML, Jan LY, Polonsky KS, Bell GI. (1995) Cloning of rat KATP-2 channel and decreased expression in pancreatic islets of male Zucker diabetic fatty rats. Biochem. Biophys. Res. Commun.212 (3): 894-9. [PMID:7626127]

33. Suda S, Nibuya M, Suda H, Takamatsu K, Miyazaki T, Nomura S, Kawai N. (2002) Potassium channel mRNAs with AU-rich elements and brain-specific expression. Biochem. Biophys. Res. Commun.291 (5): 1265-71. [PMID:11883954]

34. Torrecilla M, Marker CL, Cintora SC, Stoffel M, Williams JT, Wickman K. (2002) G-protein-gated potassium channels containing Kir3.2 and Kir3.3 subunits mediate the acute inhibitory effects of opioids on locus ceruleus neurons. J. Neurosci.22 (11): 4328-34. [PMID:12040038]

35. Wei J, Hodes ME, Piva R, Feng Y, Wang Y, Ghetti B, Dlouhy SR. (1998) Characterization of murine Girk2 transcript isoforms: structure and differential expression. Genomics51 (3): 379-90. [PMID:9721208]

36. Weigl LG, Schreibmayer W. (2001) G protein-gated inwardly rectifying potassium channels are targets for volatile anesthetics. Mol. Pharmacol.60 (2): 282-9. [PMID:11455015]

37. Whorton MR, MacKinnon R. (2013) X-ray structure of the mammalian GIRK2-βγ G-protein complex. Nature498 (7453): 190-7. [PMID:23739333]

38. Wickman K, Pu WT, Clapham DE. (2002) Structural characterization of the mouse Girk genes. Gene284 (1-2): 241-50. [PMID:11891065]

39. Yamakura T, Lewohl JM, Harris RA. (2001) Differential effects of general anesthetics on G protein-coupled inwardly rectifying and other potassium channels. Anesthesiology95 (1): 144-53. [PMID:11465552]

40. Yoshimoto Y, Fukuyama Y, Horio Y, Inanobe A, Gotoh M, Kurachi Y. (1999) Somatostatin induces hyperpolarization in pancreatic islet alpha cells by activating a G protein-gated K+ channel. FEBS Lett.444 (2-3): 265-9. [PMID:10050772]

41. Zhou W, Arrabit C, Choe S, Slesinger PA. (2001) Mechanism underlying bupivacaine inhibition of G protein-gated inwardly rectifying K+ channels. Proc. Natl. Acad. Sci. U.S.A.98 (11): 6482-7. [PMID:11353868]

42. (1988) Bombesin-like peptides in health and disease. Proceedings of an international symposium. October 13-16, 1987, Rome, Italy. A tribute to Vittorio Erspamer, M.D. Ann N Y Acad Sci547: 1-541. [PMID:3071214]

To cite this database page, please use the following:

John P. Adelman, David E. Clapham, Hiroshi Hibino, Atsushi Inanobe, Lily Y. Jan, Andreas Karschin, Yoshihiro Kubo, Yoshihisa Kurachi, Michel Lazdunski, Takashi Miki, Colin G. Nichols, Wade L. Pearson, Susumu Seino, Carol A. Vandenberg.
Inwardly rectifying potassium channels: Kir3.2. Last modified on 06/12/2013. Accessed on 28/07/2014. IUPHAR database (IUPHAR-DB), http://www.iuphar-db.org/DATABASE/ObjectDisplayForward?objectId=435.

Contact us | Print | Back to top | Help
Copyright © 2014 IUPHAR