Nomenclature: Kir3.1

Family: Inwardly rectifying potassium channels

Annotation status:  image of a green circle Annotated and expert reviewed. Please contact us if you can help with updates. 

Contents

Gene and Protein Information
Species TM P Loops AA Chromosomal Location Gene Symbol Gene Name Reference
Human 2 1 501 2q24.1 KCNJ3 potassium inwardly-rectifying channel, subfamily J, member 3 15
Mouse 2 1 501 2 C1.1 Kcnj3 potassium inwardly-rectifying channel, subfamily J, member 3 7
Rat 2 1 501 3 Kcnj3 potassium inwardly-rectifying channel, subfamily J, member 3 1,9
Previous and Unofficial Names
GIRK1
KGA
Kir3.1
potassium channel, inwarding rectifying channel, subfamily J, member 3
G protein-activated inward rectifier potassium channel 1
GIRK-1
KGB1
inward rectifier K(+) channel Kir3.1
potassium channel inwarding rectifying channel subfamily J member 3
potassium channel subunit Kir3.1 type 3 delta
potassium channel, inwardly rectifying subfamily J member 3
potassium inwardly-rectifying channel subfamily J member 3
potassium inwardly-rectifying channel, subfamily J, member 3
Kcnf3
Database Links
DrugBank Target
Ensembl Gene
Entrez Gene
GeneCards
GenitoUrinary Development Molecular Anatomy Project
HomoloGene
Human Protein Reference Database
InterPro
KEGG Gene
OMIM
PharmGKB Gene
PhosphoSitePlus
Protein Ontology (PRO)
RefSeq Nucleotide
RefSeq Protein
TreeFam
UniGene Hs.
UniProtKB
Wikipedia
Associated Proteins
Heteromeric Pore-forming Subunits
Name References
Kir3.2 11
Kir3.3 5
Kir3.4 8
Auxiliary Subunits
Name References
Not determined
Other Associated Proteins
Name References
RGS8 14
Gβγ 10,13,17
Associated Protein Comments
Kir3.1 is not functional alone. The major functional assembly in the heart is the Kir3.1/3.4 heteromultimer [8], while in the brain it is Kir3.1/3.2 [11]. The functional expression of Kir3.1 alone in Xenopus oocytes is due to the coassembly with endogenous Xenopus Kir3.5 subunit [2].
Functional Characteristics
G-protein-activated inward-rectifier current
Ion Selectivity and Conductance
Species:  Rat
Rank order:  K+ [42.0 pS]
References:  9
Ion Selectivity and Conductance Comments
The functional expression of Kir3.1 alone in Xenopus oocytes (results above) is due to coassembly with endogenous Xenopus Kir3.5 [2].

Kir3.1 forms functional heteromers with Kir3.3 (39pS, [5]) and Kir3.4 (K+, 36.6pS [8]).
Activators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Concentration range (M) Holding voltage (mV) Reference
ethanol Mm Agonist - - 1x10-1 -120.0 12
Conc range: 1x10-1 M [12]
Holding voltage: -120.0 mV
PIP2 ? Agonist 6.3 pKd 5x10-5 Physiological 4
pKd 6.3 (Kd 5.01x10-7 M) Conc range: 5x10-5 M [4]
Holding voltage: Physiological
Na+ Hs Agonist 1.4 – 1.6 pEC50 - -80.0 3
pEC50 1.4 – 1.6 [3]
Holding voltage: -80.0 mV
View species-specific activator tables
Activator Comments
These studies were performed using Kir3.1 expressed in Xenopus oocytes.

Kir3.1 is also activated by Gβγ [4,10,13,17] and RGS8 [14].
Gating Inhibitor Comments
Gα subunits inhibit the receptor by reducing the availability of Gβγ subunits for activation [16].
Channel Blockers
Key to terms and symbols Click column headers to sort
Ligand Sp. Action Affinity Units Concentration range (M) Holding voltage (mV) Reference
Ba2+ Hs Antagonist - - 1x10-4 - 3x10-4 Physiological 15
Conc range: 1x10-4 - 3x10-4 M [15]
Holding voltage: Physiological
Ba2+ Rn Antagonist - - 1x10-4 - 2.5x10-4 Physiological 1
Conc range: 1x10-4 - 2.5x10-4 M [1]
Holding voltage: Physiological
View species-specific channel blocker tables
Channel Blocker Comments
These studies were performed using Kir3.1 expressed in Xenopus oocytes.
Tissue Distribution
Forebrain, cerebellum, atrium.
Species:  Rat
Technique:  Northern Blot
References:  9
Olfactory bulb (piriform cortex), neocortex (layers 2-6), hippocampus (dentate gyrus granule cells), basal ganglia (habenula), thalamus midbrain (inferior colliculus), cerebellum (granule cell layer), brainstem (pontine nucleus).
Species:  Rat
Technique:  In situ hybridisation
References:  6
Physiological Functions Comments
Kir3.1 is known to be associated with receptor-dependent hyperpolarisation of membrane potential.
Phenotypes, Alleles and Disease Models Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Kcnj3tm1Kwn Kcnj3tm1Kwn/Kcnj3tm1Kwn
involves: 129X1/SvJ
MGI:104742  MP:0004215 abnormal myocardial fiber physiology PMID: 12374786 
Kcnj3tm1Kwn Kcnj3tm1Kwn/Kcnj3tm1Kwn
involves: 129X1/SvJ
MGI:104742  MP:0002626 increased heart rate PMID: 12374786 

REFERENCES

1. Dascal N, Schreibmayer W, Lim NF, Wang W, Chavkin C, DiMagno L, Labarca C, Kieffer BL, Gaveriaux-Ruff C, Trollinger D. (1993) Atrial G protein-activated K+ channel: expression cloning and molecular properties. Proc. Natl. Acad. Sci. U.S.A.90 (21): 10235-9. [PMID:8234283]

2. Hedin KE, Lim NF, Clapham DE. (1996) Cloning of a Xenopus laevis inwardly rectifying K+ channel subunit that permits GIRK1 expression of IKACh currents in oocytes. Neuron16 (2): 423-9. [PMID:8789957]

3. Ho IH, Murrell-Lagnado RD. (1999) Molecular determinants for sodium-dependent activation of G protein-gated K+ channels. J. Biol. Chem.274 (13): 8639-48. [PMID:10085101]

4. Huang CL, Feng S, Hilgemann DW. (1998) Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gbetagamma. Nature391 (6669): 803-6. [PMID:9486652]

5. Jelacic TM, Sims SM, Clapham DE. (1999) Functional expression and characterization of G-protein-gated inwardly rectifying K+ channels containing GIRK3. J. Membr. Biol.169 (2): 123-9. [PMID:10341034]

6. Karschin C, Dissmann E, Stühmer W, Karschin A. (1996) IRK(1-3) and GIRK(1-4) inwardly rectifying K+ channel mRNAs are differentially expressed in the adult rat brain. J. Neurosci.16 (11): 3559-70. [PMID:8642402]

7. Kobayashi T, Ikeda K, Ichikawa T, Abe S, Togashi S, Kumanishi T. (1995) Molecular cloning of a mouse G-protein-activated K+ channel (mGIRK1) and distinct distributions of three GIRK (GIRK1, 2 and 3) mRNAs in mouse brain. Biochem. Biophys. Res. Commun.208 (3): 1166-73. [PMID:7702616]

8. Krapivinsky G, Gordon EA, Wickman K, Velimirović B, Krapivinsky L, Clapham DE. (1995) The G-protein-gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K(+)-channel proteins. Nature374 (6518): 135-41. [PMID:7877685]

9. Kubo Y, Reuveny E, Slesinger PA, Jan YN, Jan LY. (1993) Primary structure and functional expression of a rat G-protein-coupled muscarinic potassium channel. Nature364 (6440): 802-6. [PMID:8355805]

10. Kurachi Y. (1995) G protein regulation of cardiac muscarinic potassium channel. Am. J. Physiol.269 (4 Pt 1): C821-30. [PMID:7485449]

11. Lesage F, Guillemare E, Fink M, Duprat F, Heurteaux C, Fosset M, Romey G, Barhanin J, Lazdunski M. (1995) Molecular properties of neuronal G-protein-activated inwardly rectifying K+ channels. J. Biol. Chem.270 (48): 28660-7. [PMID:7499385]

12. Lewohl JM, Wilson WR, Mayfield RD, Brozowski SJ, Morrisett RA, Harris RA. (1999) G-protein-coupled inwardly rectifying potassium channels are targets of alcohol action. Nat. Neurosci.2 (12): 1084-90. [PMID:10570485]

13. Reuveny E, Slesinger PA, Inglese J, Morales JM, Iñiguez-Lluhi JA, Lefkowitz RJ, Bourne HR, Jan YN, Jan LY. (1994) Activation of the cloned muscarinic potassium channel by G protein beta gamma subunits. Nature370 (6485): 143-6. [PMID:8022483]

14. Saitoh O, Masuho I, Terakawa I, Nomoto S, Asano T, Kubo Y. (2001) Regulator of G protein signaling 8 (RGS8) requires its NH2 terminus for subcellular localization and acute desensitization of G protein-gated K+ channels. J. Biol. Chem.276 (7): 5052-8. [PMID:11087736]

15. Schoots O, Yue KT, MacDonald JF, Hampson DR, Nobrega JN, Dixon LM, Van Tol HH. (1996) Cloning of a G protein-activated inwardly rectifying potassium channel from human cerebellum. Brain Res. Mol. Brain Res.39 (1-2): 23-30. [PMID:8804710]

16. Schreibmayer W, Dessauer CW, Vorobiov D, Gilman AG, Lester HA, Davidson N, Dascal N. (1996) Inhibition of an inwardly rectifying K+ channel by G-protein alpha-subunits. Nature380 (6575): 624-7. [PMID:8602262]

17. Wickman KD, Iñiguez-Lluhl JA, Davenport PA, Taussig R, Krapivinsky GB, Linder ME, Gilman AG, Clapham DE. (1994) Recombinant G-protein beta gamma-subunits activate the muscarinic-gated atrial potassium channel. Nature368 (6468): 255-7. [PMID:8145826]

To cite this database page, please use the following:

John P. Adelman, David E. Clapham, Hiroshi Hibino, Atsushi Inanobe, Lily Y. Jan, Andreas Karschin, Yoshihiro Kubo, Yoshihisa Kurachi, Michel Lazdunski, Takashi Miki, Colin G. Nichols, Wade L. Pearson, Susumu Seino, Carol A. Vandenberg.
Inwardly rectifying potassium channels: Kir3.1. Last modified on 11/02/2014. Accessed on 20/09/2014. IUPHAR database (IUPHAR-DB), http://www.iuphar-db.org/DATABASE/ObjectDisplayForward?objectId=434.

Contact us | Print | Back to top | Help
Copyright © 2014 IUPHAR