Nomenclature: KCa2.3

Family: Calcium-activated potassium channels

Annotation status:  image of a green circle Annotated and expert reviewed. Please contact us if you can help with updates. 

Contents

Gene and Protein Information
Species TM P Loops AA Chromosomal Location Gene Symbol Gene Name Reference
Human 6 1 731 1q21.3 KCNN3 potassium intermediate/small conductance calcium-activated channel, subfamily N, member 3 8,15
Mouse 6 1 732 3 F2 Kcnn3 potassium intermediate/small conductance calcium-activated channel, subfamily N, member 3 4,34
Rat 6 1 732 2q34 Kcnn3 potassium intermediate/small conductance calcium-activated channel, subfamily N, member 3 2,24
Previous and Unofficial Names
SK3
SKCa3
KCa2.3
hSK3
SKCa 3
potassium intermediate/small conductance calcium-activated channel, subfamily N, member 3
small conductance calcium-activated potassium channel protein 3
small-conductance Ca2+-activated K+ channel 3
small conductance calcium-activated potassium channel 3
Database Links
ChEMBL Target
Ensembl Gene
Entrez Gene
GeneCards
GenitoUrinary Development Molecular Anatomy Project
HomoloGene
Human Protein Reference Database
InterPro
KEGG Gene
OMIM
PharmGKB Gene
PhosphoSitePlus
Protein Ontology (PRO)
RefSeq Nucleotide
RefSeq Protein
TreeFam
UniGene Hs.
UniProtKB
Wikipedia
Associated Proteins
Heteromeric Pore-forming Subunits
Name References
Not determined
Auxiliary Subunits
Name References
Not determined
Other Associated Proteins
Name References
calmodulin 37,50
Functional Characteristics
SKCa
Ion Selectivity and Conductance
Species:  Human
Rank order:  K+ > Rb+ > Cs+
References:  47
Voltage Dependence Comments
KCa2.3 is voltage independent.
Activators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Concentration range (M) Holding voltage (mV) Reference
EBIO Rn Agonist - - 5x10-5 -80.0 16
Conc range: 5x10-5 M [16]
Holding voltage: -80.0 mV
riluzole Rn Agonist - - 3x10-6 - 1x10-5 -100.0 – 100.0 16
Conc range: 3x10-6 - 1x10-5 M [16]
Holding voltage: -100.0 – 100.0 mV
NS309 Hs Antagonist - - 3x10-8 -90.0 40
Conc range: 3x10-8 M [40]
Holding voltage: -90.0 mV
Ca2+ Hs Agonist 6.0 – 6.5 (median: 6.4) pEC50 - -160.0 – 80.0 20,47,50
pEC50 6.0 – 6.5 (median: 6.4) [20,47,50]
Holding voltage: -160.0 – 80.0 mV
Ca2+ Rn Agonist 6.2 pEC50 - -100.0 2
pEC50 6.2 [2]
Holding voltage: -100.0 mV
CyPPA Hs Agonist 5.3 pEC50 - 0.0 20
pEC50 5.3 [20]
Holding voltage: 0.0 mV
DC-EBIO Hs Agonist 4.9 pEC50 - - 49
pEC50 4.9 [49]
EBIO Hs Agonist 3.8 pEC50 - -160.0 – -120.0 47
pEC50 3.8 [47]
Holding voltage: -160.0 – -120.0 mV
View species-specific activator tables
Activator Comments
NS309, riluzole, DC-EBIO and EBIO increase the Ca2+ sensitivity of KCa2 channels.

A detailed review of KCa2 channel pharmacology can be found in [49].
Gating inhibitors
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Concentration range (M) Holding voltage (mV) Reference
NS11757 Rn - 8.05 pKd - - 41
pKd 8.05 [41]
NS8593 Hs Antagonist 6.1 pIC50 - 0.0 39
pIC50 6.1 [39]
Holding voltage: 0.0 mV
View species-specific gating inhibitor tables
Gating Inhibitor Comments
NS5893 is an inhibitory gating modulator that decreases the Ca2+ sensitivity of KCa2 channels [39].
Channel Blockers
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Concentration range (M) Holding voltage (mV) Reference
apamin Rn Antagonist 8.9 – 9.2 pIC50 - -80.0 – 0.0 2,19
pIC50 8.9 – 9.2 [2,19]
Holding voltage: -80.0 – 0.0 mV
leiurotoxin I Hs Antagonist 8.7 – 9.0 pIC50 - -160.0 – 40.0 36,47
pIC50 8.7 – 9.0 [36,47]
Holding voltage: -160.0 – 40.0 mV
tamapin Rn Antagonist 8.8 pIC50 - -100.0 – 40.0 33
pIC50 8.8 [33]
Holding voltage: -100.0 – 40.0 mV
UCL1848 Rn Antagonist 8.7 pIC50 - -80.0 19
pIC50 8.7 [19]
Holding voltage: -80.0 mV
apamin Hs Antagonist 7.9 – 9.1 pIC50 - -160.0 – -100.0 44,47
pIC50 7.9 – 9.1 [44,47]
Holding voltage: -160.0 – -100.0 mV
UCL1684 Rn Antagonist 8.2 pIC50 - -80.0 19
pIC50 8.2 [19]
Holding voltage: -80.0 mV
leiurotoxin I Rn Antagonist 8.1 pIC50 - -80.0 19
pIC50 8.1 [19]
Holding voltage: -80.0 mV
UCL1684 Hs Antagonist 8.0 pIC50 - -80.0 11
pIC50 8.0 [11]
Holding voltage: -80.0 mV
P05 Hs Agonist 7.6 pIC50 - -120.0 – 40.0 36
pIC50 7.6 [36]
Holding voltage: -120.0 – 40.0 mV
dequalinium Hs Antagonist 4.5 pIC50 - -100.0 44
pIC50 4.5 [44]
Holding voltage: -100.0 mV
tubocurarine Hs Antagonist 3.7 – 4.5 pIC50 - -160.0 – -100.0 44,47
pIC50 3.7 – 4.5 [44,47]
Holding voltage: -160.0 – -100.0 mV
Lei-Dab7 Hs Agonist 5.6 - - -120.0 – 40.0 36
5.6 [36]
Holding voltage: -120.0 – 40.0 mV
View species-specific channel blocker tables
Tissue Distribution
Omentum, rectum, myometrium, small intestine, skeletal muscle, endometrium, urinary bladder, hypothalamus, thyroid, uterus, crevix, tonsil, thymus, lung, adenoid, kidney, oesophagus, herat, colon, ovary, trachea, adrenal gland, spleen, testis, salivary gland, mammary gland and stomach, clitoris and corpus cavernosum.
Species:  Human
Technique:  RT-PCR and immunohistochemistry.
References:  9
Neutrophils.
Species:  Human
Technique:  RT-PCR
References:  12
Granulocyte-defferentialted PLB-985 cells
Species:  Human
Technique:  Electrophysiology and RT-PCR.
References:  12
Dopaminergic neurons in the substantia nigra.
Species:  Mouse
Technique:  Immunohistochemistry, electrophysiology, RT-PCR.
References:  48
Urinary bladder smooth muscle
Species:  Mouse
Technique:  Immunohistochemistry and electrophysiology.
References:  17
Denervated skeletal muscle.
Species:  Mouse
Technique:  Electrophysiology and Western blot.
References:  21
Cultured microglia.
Species:  Rat
Technique:  Western blot and RT-PCR.
References:  22
Pancreatic islets and insulinomas (mouse and rat).
Species:  Rat
Technique:  RT-PCR, electrophysiology , immunohistochemistry.
References:  42
Liver
Species:  Rat
Technique:  Immunohistochemistry
References:  2
Astrocytes (mouse and rat)
Species:  Rat
Technique:  Immunohistochemistry
References:  1
Brain (olfactory system, neocortex, hippocampus, septum, amygdala, thalamus, habenula, hypothalamus, brain stem, cerebellum, substantianigra, ependyma).
Species:  Rat
Technique:  In situ hybridisation
References:  38
Brain (lateral septum, ventral tegmental area, olfactory tubercle, caudate-putamen, nucleus accumbens, supraoptic nucleus, many nuclei of the thalamus and hypothalamus, substantia nigra pars compacta).
Species:  Rat
Technique:  In situ hybridisation
References:  24
Vascular endothelium (mouse and rat).
Species:  Rat
Technique:  Immunohistochemistry, RT-PCR, electrophysiology, pharmacology.
References:  10,43
Functional Assays
Two-electrode voltage-clamp.
Species:  Rat
Tissue:  Xenopus oocytes injected with KCa2.3 mRNA.
Response measured:  KCa2.3 current.
References:  24,50
Patch-clamp recordings of mammalian cells transiently or stably transfected with KCa2.3.
Species:  Human
Tissue:  HEK-293 and CHO cells.
Response measured:  KCa2.3 current.
References:  11,20,36,39-40,44,47,49
Patch-clamp recording of mammalian cells transiently or stably transfected with KCa2.3.
Species:  Rat
Tissue:  HEK-293 and COS-7 cells.
Response measured:  KCa2.3 current.
References:  2,16,19,33,39
Patch-clamp recording.
Species:  Rat
Tissue:  Cultured superior cervical ganglion neurons.
Response measured:  mAHP current and neuronal firing frequency.
References:  19
Patch-clamp recordings from dopaminergic neurons in the substantia nigra and ventral tegmental area.
Species:  Mouse
Tissue:  Midbrain slices containing the substantia nigra pars compacta.
Response measured:  mAHP current and neuronal firing frequency.
References:  48
Patch-clamp recordings
Species:  Mouse
Tissue:  Bladder myocytes or flexor digitorium brevis muscle fibres (innervated of denervated skeletal muscle).
Response measured:  KCa2.3 current, muscle action potentials.
References:  17,21
Physiological Functions
KCa2.3 underlies the medium AHP current in dopaminergic neurons of the substantia nigra and regulates their firing frequency. KCa2.3 could potentially contribute to the medium AHP in other neurons.
Species:  Mouse
Tissue:  Dopaminergic neurons of the substantia nigra.
References:  37,46,48
KCa2.3, together with KCa3.1, underlies the endothelium-derived hyperpolarising factor (EDHF) response. EDHF-mediated vasodilation can be measured in various arterial preparations from rats and mice. Doxicyclin induced suppression of KCa2.3 expression in transgenic mice overexpressing KCa2.3 leads to elevation in blood pressure.
Species:  Rat
Tissue:  Mesenteric, carotid, cerebral, coronary and renal arteries.
References:  6,10,28,43
KCa2.3 is involved in determining excitability and contractility of urinary bladder smooth muscle. Transgenic mice overexpressing KCa2.3 have greater bladder capacitance.
Species:  Mouse
Tissue:  Bladder smooth muscle
References:  17
KCa2.3 channels are probably important in neurons regulating respiration in response to hypoxia and parturition during labour.
Species:  Mouse
Tissue:  Neurons, uterine smooth muscle.
References:  4
KCa2.3 channels are involved in respiratory burst in rat microglia and human neutrophils.
Species:  Human
Tissue:  Microglia, neutrophils.
References:  12,22
Physiological Consequences of Altering Gene Expression
Transgenic mice overexpressing KCa2.3 have greater bladder capcitance and urge incontinence. Treatment with NS309 increases bladder capacity and micturition volume in rats.
Species:  Rat
Tissue:  Bladder
Technique:  Transgenic rats
References:  17,32,49
Phenotypes, Alleles and Disease Models Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Kcnn3tm1Jpad Kcnn3tm1Jpad/Kcnn3tm1Jpad
involves: 129S4/SvJae * C57BL/6
MGI:2153183  MP:0005572 abnormal breathing frequency PMID: 10988076 
Kcnn3tm1Jpad Kcnn3tm1Jpad/Kcnn3tm1Jpad
involves: 129S4/SvJae * C57BL/6
MGI:2153183  MP:0002907 abnormal parturition PMID: 10988076 
Kcnn3tm1Jpad Kcnn3tm1Jpad/Kcnn3tm1Jpad
involves: 129S4/SvJae * C57BL/6
MGI:2153183  MP:0001957 apnea PMID: 10988076 
Kcnn3tm1Jpad Kcnn3tm1Jpad/Kcnn3tm1Jpad
involves: 129S4/SvJae * C57BL/6
MGI:2153183  MP:0008028 pregnancy-related premature death PMID: 10988076 
Clinically-Relevant Mutations and Pathophysiology
Disease:  Schizophrenia
OMIM:  181500
Orphanet:  3140
Comments: 
References:  5,29
Click column headers to sort
Type Species Molecular location Description Reference
Frameshift Human L283 5,29
Disease:  Depression
Drugs: 
Side effects:  High doses of apamin induce seizures and lead to Purkinje cell degeneration in the cerebellum.
Therapeutic use:  KCa2.3 blockers have been proposed for the treatment of depression.
References:  3,14,49
Mutations not determined
Disease:  Hypertension
Role: 
Therapeutic use:  KCa2.3 activators have been proposed for the treatment of hypertension.
References:  43,49
Mutations not determined
Disease:  Parkinson's Disease
OMIM:  168600
Orphanet:  2828
Role: 
Drugs: 
Side effects:  High doses of apamin induce seizures and lead to Purkinje cell degeneration in the cerebellum.
Therapeutic use:  KCa2.3 blockers have been proposed for the treatment of Parkinson's disease.
References:  3,30,46,49
Mutations not determined
Clinically-Relevant Mutations and Pathophysiology Comments
Longer polyglutamine repeats in KCa2.3 are associated with schizophrenia [7-8], anorexia nervosa [26] and spinocerebellar ataxia [13].
Gene Expression and Pathophysiology
Reduced expression in small mesenteric arteries during angiotensin-II-induced hypertension.
Tissue or cell type:  Rat vascular endothelium.
Pathophysiology:  Reduced KCa2.3 expression could contribute to functional alterations in endothelium in hypertension.
Species:  Rat
Technique: 
References:  18
Increased expression in patients with myotonic muscular dystrophy.
Tissue or cell type:  Patient muscle samples.
Pathophysiology:  KCa2.3 is probably involved in hyperexcitability.
Species:  Human
Technique: 
References:  23
Increased expression in skeletal muscle following denervation.
Tissue or cell type:  Flexor digitorum brevis muscle.
Pathophysiology:  KCa2.3 is probably involved in hyperexcitability.
Species:  Mouse
Technique: 
References:  31
Decreased expression in regenerated endothelium after balloon catheter injury.
Tissue or cell type:  Vascular endothelium
Pathophysiology:  Reduced KCa expression could contribute to functional alterations in endothelium following restenosis.
Species:  Rat
Technique: 
References:  27
Biologically Significant Variants
Type:  Splice variant
Species:  Human
Description:  Isoform b
Amino acids:  426
Nucleotide accession: 
Protein accession: 
Type:  Splice variant
Species:  Human
Description:  Alternative first exon usage produces two splice variant, SK3-1B and SK3-1C, that lack the N-terminus and SA. Both of these proteins can act as dominant-negative suppressors of the entire KCa2 sub-family, trapping channels intracellularly. The SK3-1B transgenic mouse exhibits ataxia due to suppression of KCa2 channels in depp cerebellar neurons. SK3-1B mRNA is present in brain at 20-60% of kKCa2.3 levels. These two variant proteins are suggested to regulate neuronal excitability through dominant-negative suppression of "normal" hKCa2.3.
References:  25,35,45
Type:  Splice variant
Species:  Human
Description:  Alternative splicing leads to the inclusion if an additional 15aa in the outer pore region. The channel, known as hSK3-ex4, is a functional channel whose message is expressed at 0-2% of hKCa2.3 levels. The channel is insensitive to apamin, scyllatoxin and tubocurarine.
Amino acids:  746
References:  47
Type:  Splice variant
Species:  Human
Description:  Isoform a
Amino acids:  731
Nucleotide accession: 
Protein accession: 

REFERENCES

1. Armstrong WE, Rubrum A, Teruyama R, Bond CT, Adelman JP. (2005) Immunocytochemical localization of small-conductance, calcium-dependent potassium channels in astrocytes of the rat supraoptic nucleus. J. Comp. Neurol.491 (3): 175-85. [PMID:16134141]

2. Barfod ET, Moore AL, Lidofsky SD. (2001) Cloning and functional expression of a liver isoform of the small conductance Ca2+-activated K+ channel SK3. Am. J. Physiol., Cell Physiol.280 (4): C836-42. [PMID:11245600]

3. Blank T, Nijholt I, Kye MJ, Spiess J. (2004) Small conductance Ca2+-activated K+ channels as targets of CNS drug development. Curr Drug Targets CNS Neurol Disord.3 (3): 161-7. [PMID:15180477]

4. Bond CT, Sprengel R, Bissonnette JM, Kaufmann WA, Pribnow D, Neelands T, Storck T, Baetscher M, Jerecic J, Maylie J, Knaus HG, Seeburg PH, Adelman JP. (2000) Respiration and parturition affected by conditional overexpression of the Ca2+-activated K+ channel subunit, SK3. Science289 (5486): 1942-6. [PMID:10988076]

5. Bowen T, Williams N, Norton N, Spurlock G, Wittekindt OH, Morris-Rosendahl DJ, Williams H, Brzustowicz L, Hoogendoorn B, Zammit S, Jones G, Sanders RD, Jones LA, McCarthy G, Jones S, Bassett A, Cardno AG, Owen MJ, O'Donovan MC. (2001) Mutation screening of the KCNN3 gene reveals a rare frameshift mutation. Mol. Psychiatry6 (3): 259-60. [PMID:11326292]

6. Burnham MP, Bychkov R, Félétou M, Richards GR, Vanhoutte PM, Weston AH, Edwards G. (2002) Characterization of an apamin-sensitive small-conductance Ca(2+)-activated K(+) channel in porcine coronary artery endothelium: relevance to EDHF. Br. J. Pharmacol.135 (5): 1133-43. [PMID:11877319]

7. Cardno AG, Bowen T, Guy CA, Jones LA, McCarthy G, Williams NM, Murphy KC, Spurlock G, Gray M, Sanders RD, Craddock N, McGuffin P, Owen MJ, O'Donovan MC. (1999) CAG repeat length in the hKCa3 gene and symptom dimensions in schizophrenia. Biol. Psychiatry45 (12): 1592-6. [PMID:10376120]

8. Chandy KG, Fantino E, Wittekindt O, Kalman K, Tong LL, Ho TH, Gutman GA, Crocq MA, Ganguli R, Nimgaonkar V, Morris-Rosendahl DJ, Gargus JJ. (1998) Isolation of a novel potassium channel gene hSKCa3 containing a polymorphic CAG repeat: a candidate for schizophrenia and bipolar disorder?. Mol. Psychiatry3 (1): 32-7. [PMID:9491810]

9. Chen MX, Gorman SA, Benson B, Singh K, Hieble JP, Michel MC, Tate SN, Trezise DJ. (2004) Small and intermediate conductance Ca(2+)-activated K+ channels confer distinctive patterns of distribution in human tissues and differential cellular localisation in the colon and corpus cavernosum. Naunyn Schmiedebergs Arch. Pharmacol.369 (6): 602-15. [PMID:15127180]

10. Eichler I, Wibawa J, Grgic I, Knorr A, Brakemeier S, Pries AR, Hoyer J, Köhler R. (2003) Selective blockade of endothelial Ca2+-activated small- and intermediate-conductance K+-channels suppresses EDHF-mediated vasodilation. Br. J. Pharmacol.138 (4): 594-601. [PMID:12598413]

11. Fanger CM, Rauer H, Neben AL, Miller MJ, Rauer H, Wulff H, Rosa JC, Ganellin CR, Chandy KG, Cahalan MD. (2001) Calcium-activated potassium channels sustain calcium signaling in T lymphocytes. Selective blockers and manipulated channel expression levels. J. Biol. Chem.276 (15): 12249-56. [PMID:11278890]

12. Fay AJ, Qian X, Jan YN, Jan LY. (2006) SK channels mediate NADPH oxidase-independent reactive oxygen species production and apoptosis in granulocytes. Proc. Natl. Acad. Sci. U.S.A.103 (46): 17548-53. [PMID:17085590]

13. Figueroa KP, Chan P, Schöls L, Tanner C, Riess O, Perlman SL, Geschwind DH, Pulst SM. (2001) Association of moderate polyglutamine tract expansions in the slow calcium-activated potassium channel type 3 with ataxia. Arch. Neurol.58 (10): 1649-53. [PMID:11594924]

14. Galeotti N, Ghelardini C, Caldari B, Bartolini A. (1999) Effect of potassium channel modulators in mouse forced swimming test. Br. J. Pharmacol.126 (7): 1653-9. [PMID:10323599]

15. Ghanshani S, Wulff H, Miller MJ, Rohm H, Neben A, Gutman GA, Cahalan MD, Chandy KG. (2000) Up-regulation of the IKCa1 potassium channel during T-cell activation. Molecular mechanism and functional consequences. J. Biol. Chem.275 (47): 37137-49. [PMID:10961988]

16. Grunnet M, Jespersen T, Angelo K, Frøkjaer-Jensen C, Klaerke DA, Olesen SP, Jensen BS. (2001) Pharmacological modulation of SK3 channels. Neuropharmacology40 (7): 879-87. [PMID:11378158]

17. Herrera GM, Pozo MJ, Zvara P, Petkov GV, Bond CT, Adelman JP, Nelson MT. (2003) Urinary bladder instability induced by selective suppression of the murine small conductance calcium-activated potassium (SK3) channel. J. Physiol. (Lond.)551 (Pt 3): 893-903. [PMID:12813145]

18. Hilgers RH, Webb RC. (2007) Reduced expression of SKCa and IKCa channel proteins in rat small mesenteric arteries during angiotensin II-induced hypertension. Am. J. Physiol. Heart Circ. Physiol.292 (5): H2275-84. [PMID:17209000]

19. Hosseini R, Benton DC, Dunn PM, Jenkinson DH, Moss GW. (2001) SK3 is an important component of K(+) channels mediating the afterhyperpolarization in cultured rat SCG neurones. J. Physiol. (Lond.)535 (Pt 2): 323-34. [PMID:11533126]

20. Hougaard C, Eriksen BL, Jørgensen S, Johansen TH, Dyhring T, Madsen LS, Strøbaek D, Christophersen P. (2007) Selective positive modulation of the SK3 and SK2 subtypes of small conductance Ca2+-activated K+ channels. Br. J. Pharmacol.151 (5): 655-65. [PMID:17486140]

21. Jacobson D, Herson PS, Neelands TR, Maylie J, Adelman JP. (2002) SK channels are necessary but not sufficient for denervation-induced hyperexcitability. Muscle Nerve26 (6): 817-22. [PMID:12451607]

22. Khanna R, Roy L, Zhu X, Schlichter LC. (2001) K+ channels and the microglial respiratory burst. Am. J. Physiol., Cell Physiol.280 (4): C796-806. [PMID:11245596]

23. Kimura T, Takahashi MP, Okuda Y, Kaido M, Fujimura H, Yanagihara T, Sakoda S. (2000) The expression of ion channel mRNAs in skeletal muscles from patients with myotonic muscular dystrophy. Neurosci. Lett.295 (3): 93-6. [PMID:11090982]

24. Kohler M, Hirschberg B, Bond CT, Kinzie JM, Marrion NV, Maylie J, Adelman JP. (1996) Small-conductance, calcium-activated potassium channels from mammalian brain. Science273 (5282): 1709-14. [PMID:8781233]

25. Kolski-Andreaco A, Tomita H, Shakkottai VG, Gutman GA, Cahalan MD, Gargus JJ, Chandy KG. (2004) SK3-1C, a dominant-negative suppressor of SKCa and IKCa channels. J. Biol. Chem.279 (8): 6893-904. [PMID:14638680]

26. Koronyo-Hamaoui M, Danziger Y, Frisch A, Stein D, Leor S, Laufer N, Carel C, Fennig S, Minoumi M, Apter A, Goldman B, Barkai G, Weizman A, Gak E. (2002) Association between anorexia nervosa and the hsKCa3 gene: a family-based and case control study. Mol. Psychiatry7 (1): 82-5. [PMID:11803450]

27. Köhler R, Brakemeier S, Kühn M, Behrens C, Real R, Degenhardt C, Orzechowski HD, Pries AR, Paul M, Hoyer J. (2001) Impaired hyperpolarization in regenerated endothelium after balloon catheter injury. Circ. Res.89 (2): 174-9. [PMID:11463725]

28. Köhler R, Hoyer J. (2007) The endothelium-derived hyperpolarizing factor: insights from genetic animal models. Kidney Int.72 (2): 145-50. [PMID:17457372]

29. Miller MJ, Rauer H, Tomita H, Rauer H, Gargus JJ, Gutman GA, Cahalan MD, Chandy KG. (2001) Nuclear localization and dominant-negative suppression by a mutant SKCa3 N-terminal channel fragment identified in a patient with schizophrenia. J. Biol. Chem.276 (30): 27753-6. [PMID:11395478]

30. Mourre C, Fournier C, Soumireu-Mourat B. (1997) Apamin, a blocker of the calcium-activated potassium channel, induces neurodegeneration of Purkinje cells exclusively. Brain Res.778 (2): 405-8. [PMID:9459560]

31. Neelands TR, Herson PS, Jacobson D, Adelman JP, Maylie J. (2001) Small-conductance calcium-activated potassium currents in mouse hyperexcitable denervated skeletal muscle. J. Physiol. (Lond.)536 (Pt 2): 397-407. [PMID:11600675]

32. Pandita RK, Rønn LC, Jensen BS, Andersson KE. (2006) Urodynamic effects of intravesical administration of the new small/intermediate conductance calcium activated potassium channel activator NS309 in freely moving, conscious rats. J. Urol.176 (3): 1220-4. [PMID:16890729]

33. Pedarzani P, D'hoedt D, Doorty KB, Wadsworth JD, Joseph JS, Jeyaseelan K, Kini RM, Gadre SV, Sapatnekar SM, Stocker M, Strong PN. (2002) Tamapin, a venom peptide from the Indian red scorpion (Mesobuthus tamulus) that targets small conductance Ca2+-activated K+ channels and afterhyperpolarization currents in central neurons. J. Biol. Chem.277 (48): 46101-9. [PMID:12239213]

34. Ro S, Hatton WJ, Koh SD, Horowitz B. (2001) Molecular properties of small-conductance Ca2+-activated K+ channels expressed in murine colonic smooth muscle. Am. J. Physiol. Gastrointest. Liver Physiol.281 (4): G964-73. [PMID:11557517]

35. Shakkottai VG, Chou CH, Oddo S, Sailer CA, Knaus HG, Gutman GA, Barish ME, LaFerla FM, Chandy KG. (2004) Enhanced neuronal excitability in the absence of neurodegeneration induces cerebellar ataxia. J. Clin. Invest.113 (4): 582-90. [PMID:14966567]

36. Shakkottai VG, Regaya I, Wulff H, Fajloun Z, Tomita H, Fathallah M, Cahalan MD, Gargus JJ, Sabatier JM, Chandy KG. (2001) Design and characterization of a highly selective peptide inhibitor of the small conductance calcium-activated K+ channel, SkCa2. J. Biol. Chem.276 (46): 43145-51. [PMID:11527975]

37. Stocker M. (2004) Ca(2+)-activated K+ channels: molecular determinants and function of the SK family. Nat. Rev. Neurosci.5 (10): 758-70. [PMID:15378036]

38. Stocker M, Pedarzani P. (2000) Differential distribution of three Ca(2+)-activated K(+) channel subunits, SK1, SK2, and SK3, in the adult rat central nervous system. Mol. Cell. Neurosci.15 (5): 476-93. [PMID:10833304]

39. Strøbaek D, Hougaard C, Johansen TH, Sørensen US, Nielsen EØ, Nielsen KS, Taylor RD, Pedarzani P, Christophersen P. (2006) Inhibitory gating modulation of small conductance Ca2+-activated K+ channels by the synthetic compound (R)-N-(benzimidazol-2-yl)-1,2,3,4-tetrahydro-1-naphtylamine (NS8593) reduces afterhyperpolarizing current in hippocampal CA1 neurons. Mol. Pharmacol.70 (5): 1771-82. [PMID:16926279]

40. Strøbaek D, Teuber L, Jørgensen TD, Ahring PK, Kjaer K, Hansen RS, Olesen SP, Christophersen P, Skaaning-Jensen B. (2004) Activation of human IK and SK Ca2+ -activated K+ channels by NS309 (6,7-dichloro-1H-indole-2,3-dione 3-oxime). Biochim. Biophys. Acta1665 (1-2): 1-5. [PMID:15471565]

41. Sørensen US, Strøbaek D, Christophersen P, Hougaard C, Jensen ML, Nielsen EØ, Peters D, Teuber L. (2008) Synthesis and structure-activity relationship studies of 2-(N-substituted)-aminobenzimidazoles as potent negative gating modulators ofsmall conductance Ca2+-activated K+ channels. J. Med. Chem.51 (23): 7625-34. [PMID:18998663]

42. Tamarina NA, Wang Y, Mariotto L, Kuznetsov A, Bond C, Adelman J, Philipson LH. (2003) Small-conductance calcium-activated K+ channels are expressed in pancreatic islets and regulate glucose responses. Diabetes52 (8): 2000-6. [PMID:12882916]

43. Taylor MS, Bonev AD, Gross TP, Eckman DM, Brayden JE, Bond CT, Adelman JP, Nelson MT. (2003) Altered expression of small-conductance Ca2+-activated K+ (SK3) channels modulates arterial tone and blood pressure. Circ. Res.93 (2): 124-31. [PMID:12805243]

44. Terstappen GC, Pula G, Carignani C, Chen MX, Roncarati R. (2001) Pharmacological characterisation of the human small conductance calcium-activated potassium channel hSK3 reveals sensitivity to tricyclic antidepressants and antipsychotic phenothiazines. Neuropharmacology40 (6): 772-83. [PMID:11369031]

45. Tomita H, Shakkottai VG, Gutman GA, Sun G, Bunney WE, Cahalan MD, Chandy KG, Gargus JJ. (2003) Novel truncated isoform of SK3 potassium channel is a potent dominant-negative regulator of SK currents: implications in schizophrenia. Mol. Psychiatry8 (5): 524-35, 460. [PMID:12808432]

46. Waroux O, Massotte L, Alleva L, Graulich A, Thomas E, Liégeois JF, Scuvée-Moreau J, Seutin V. (2005) SK channels control the firing pattern of midbrain dopaminergic neurons in vivo. Eur. J. Neurosci.22 (12): 3111-21. [PMID:16367777]

47. Wittekindt OH, Visan V, Tomita H, Imtiaz F, Gargus JJ, Lehmann-Horn F, Grissmer S, Morris-Rosendahl DJ. (2004) An apamin- and scyllatoxin-insensitive isoform of the human SK3 channel. Mol. Pharmacol.65 (3): 788-801. [PMID:14978258]

48. Wolfart J, Neuhoff H, Franz O, Roeper J. (2001) Differential expression of the small-conductance, calcium-activated potassium channel SK3 is critical for pacemaker control in dopaminergic midbrain neurons. J. Neurosci.21 (10): 3443-56. [PMID:11331374]

49. Wulff H, Kolski-Andreaco A, Sankaranarayanan A, Sabatier JM, Shakkottai V. (2007) Modulators of small- and intermediate-conductance calcium-activated potassium channels and their therapeutic indications. Curr. Med. Chem.14 (13): 1437-57. [PMID:17584055]

50. Xia XM, Fakler B, Rivard A, Wayman G, Johnson-Pais T, Keen JE, Ishii T, Hirschberg B, Bond CT, Lutsenko S, Maylie J, Adelman JP. (1998) Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature395 (6701): 503-7. [PMID:9774106]

To cite this database page, please use the following:

Richard Aldrich, K. George Chandy, Stephan Grissmer, George A. Gutman, Aguan D. Wei, Heike Wulff.
Calcium-activated potassium channels: KCa2.3. Last modified on 02/12/2013. Accessed on 02/10/2014. IUPHAR database (IUPHAR-DB), http://www.iuphar-db.org/DATABASE/ObjectDisplayForward?objectId=383.

Contact us | Print | Back to top | Help
Copyright © 2014 IUPHAR