Nomenclature: sst5 receptor

Family: Somatostatin receptors

Annotation status:  image of a green circle Annotated and expert reviewed. Please contact us if you can help with updates. 

Contents

Gene and Protein Information
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 364 16p13.3 SSTR5 somatostatin receptor 5 32,52
Mouse 7 362 17 A3.3 Sstr5 somatostatin receptor 5 18,25
Rat 7 363 10q12 Sstr5 somatostatin receptor 5 30
Previous and Unofficial Names
SSTR4
SSTR5
SRIF1
SRIF1B
SOMATO
Smstr5
SS-5-R
SS5-R
SS5R
Somatostatin receptor subtype 5
somatostatin receptor type 5
sst5
Database Links
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
GPCRDB
GeneCards
GenitoUrinary Development Molecular Anatomy Project
HomoloGene
Human Protein Reference Database
InterPro
KEGG Gene
OMIM
Orphanet Gene
PharmGKB Gene
PhosphoSitePlus
Protein Ontology (PRO)
RefSeq Nucleotide
RefSeq Protein
TreeFam
UniGene Hs.
UniProtKB
Wikipedia
Natural/Endogenous Ligands
CST-14 {Sp: Mouse, Rat}
CST-17 {Sp: Human}
SRIF-14 {Sp: Human, Mouse, Rat}
SRIF-28 {Sp: Human, Mouse, Rat}
Comments: SRIF-14 and SRIF-28 are the active fragments of precursor somatostatin
Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
[125I]LTT-SRIF-28 Mm Full agonist 11.0 pKd 16
pKd 11.0 [16]
[125I]Tyr10-CST14 Hs Full agonist 10.3 pKd 44,46
pKd 10.3 [44,46]
[125I]Tyr10-CST14 Mm Full agonist 10.2 pKd 16
pKd 10.2 [16]
[125I]Tyr11-SRIF-14 Hs Full agonist 10.0 pKd 31
pKd 10.0 [31]
[125I]Tyr11-SRIF-14 Rn Full agonist 10.0 pKd 31
pKd 10.0 [31]
[125I]LTT-SRIF-28 Hs Full agonist 9.2 – 10.5 pKd 39,44,46
pKd 10.5 [44,46]
pKd 9.2 [39]
[125I]CGP 23996 Mm Full agonist 9.8 pKd 16
pKd 9.8 [16]
[125I]Tyr3 SMS 201-995 Hs Full agonist 9.64 pKd 45-46
pKd 9.64 (Kd 2.3x10-10 M) [45-46]
[125I]CGP 23996 Hs Full agonist 9.5 pKd 45-46
pKd 9.5 [45-46]
[125I]Tyr3 SMS 201-995 Mm Full agonist 9.4 pKd 16
pKd 9.4 [16]
BIM 23056 Mm Full agonist 7.5 – 7.9 pKd 16
pKd 7.5 – 7.9 [16]
L-363,301 Rn Full agonist 7.0 – 8.3 pKd 16
pKd 7.0 – 8.3 [16]
SRIF-28 {Sp: Human, Mouse, Rat} Mm Full agonist 9.8 – 9.9 pKi 16
pKi 9.8 – 9.9 [16]
SRIF-28 {Sp: Human, Mouse, Rat} Hs Full agonist 9.2 – 10.3 pKi 6,13,27,33,44-46
pKi 9.2 – 10.3 [6,13,27,33,44-46]
BIM 23059 Hs Full agonist 9.6 pKi 33
pKi 9.6 [33]
BIM 23313 Hs Full agonist 9.6 pKi 27
pKi 9.6 [27]
L-817,818 Hs Full agonist 9.4 pKi 39
pKi 9.4 [39]
CST-17 {Sp: Human} Hs Full agonist 8.5 – 10.2 pKi 13,44,46
pKi 8.5 – 10.2 [13,44,46]
CST-17 {Sp: Human} Mm Full agonist 8.8 – 9.8 pKi 16
pKi 8.8 – 9.8 [16]
SRIF-14 {Sp: Human, Mouse, Rat} Hs Full agonist 8.4 – 9.9 pKi 6,13,27,33,35,39,44-46,53
pKi 8.4 – 9.9 [6,13,27,33,35,39,44-46,53]
CST-14 {Sp: Mouse, Rat} Mm Full agonist 8.7 – 9.4 pKi 16
pKi 8.7 – 9.4 [16]
CST-14 {Sp: Mouse, Rat} Hs Full agonist 8.4 – 9.7 pKi 44-46
pKi 8.4 – 9.7 [44-46]
SRIF-28 {Sp: Human, Mouse, Rat} Rn Full agonist 9.0 pKi 27
pKi 9.0 [27]
BIM 23023 Hs Full agonist 8.4 – 9.4 pKi 27,33
pKi 8.4 – 9.4 [27,33]
BIM 23050 Hs Full agonist 8.8 pKi 33
pKi 8.8 [33]
octreotide Mm Full agonist 7.7 – 9.9 pKi 16
pKi 7.7 – 9.9 [16]
BIM 23268 Hs Full agonist 8.7 pKi 27
pKi 8.7 [27]
BIM 23052 Rn Full agonist 8.6 pKi 27
pKi 8.6 [27]
BIM 23060 Hs Full agonist 8.6 pKi 33
pKi 8.6 [33]
BIM 23268 Rn Full agonist 8.5 pKi 27
pKi 8.5 [27]
BIM 23052 Hs Full agonist 7.4 – 9.6 pKi 27,44-46
pKi 7.4 – 9.6 [27,44-46]
CGP 23996 Mm Full agonist 8.0 – 8.9 pKi 16
pKi 8.0 – 8.9 [16]
MK-678 Hs Full agonist 6.6 – 10.2 pKi 6,27,33,44-46,53
pKi 6.6 – 10.2 [6,27,33,44-46,53]
SRIF-14 {Sp: Human, Mouse, Rat} Rn Full agonist 8.4 pKi 27
pKi 8.4 [27]
SRIF-14 {Sp: Human, Mouse, Rat} Mm Full agonist 7.7 – 9.1 pKi 16
pKi 7.7 – 9.1 [16]
L-363,301 Hs Full agonist 7.2 – 9.5 pKi 44,46
pKi 7.2 – 9.5 [44,46]
octreotide Hs Full agonist 7.2 – 9.5 pKi 6,27,33,44-46,53
pKi 7.2 – 9.5 [6,27,33,44-46,53]
lanreotide Hs Full agonist 7.4 – 9.3 pKi 6,27,33,44-46
pKi 7.4 – 9.3 [6,27,33,44-46]
vapreotide Hs Full agonist 7.3 – 9.2 pKi 6,27,33,44-46
pKi 7.3 – 9.2 [6,27,33,44-46]
vapreotide Rn Full agonist 8.2 pKi 27
pKi 8.2 [27]
L-362,855 Hs Full agonist 7.2 – 9.2 pKi 27,44-46
pKi 7.2 – 9.2 [27,44-46]
L-362,855 Mm Full agonist 7.7 – 8.7 pKi 16
pKi 7.7 – 8.7 [16]
BIM 23313 Rn Full agonist 8.0 pKi 27
pKi 8.0 [27]
BIM 23023 Rn Full agonist 7.8 pKi 27
pKi 7.8 [27]
octreotide Rn Full agonist 7.8 pKi 27
pKi 7.8 [27]
CGP 23996 Hs Full agonist 6.6 – 8.7 pKi 44-46
pKi 6.6 – 8.7 [44-46]
MK-678 Mm Full agonist 6.7 – 8.5 pKi 16
pKi 6.7 – 8.5 [16]
lanreotide Rn Full agonist 7.6 pKi 27
pKi 7.6 [27]
BIM 23030 Mm Full agonist 7.1 – 8.0 pKi 16
pKi 7.1 – 8.0 [16]
BIM 23056 Hs Full agonist 6.7 – 8.3 pKi 27,33,44-46
pKi 6.7 – 8.3 [27,33,44-46]
L-362,855 Rn Full agonist 7.3 pKi 27
pKi 7.3 [27]
MK-678 Rn Full agonist 7.1 pKi 27
pKi 7.1 [27]
BIM 23030 Hs Full agonist 5.6 – 7.4 pKi 46
pKi 5.6 – 7.4 [46]
BIM 23056 Rn Full agonist 6.3 pKi 27
pKi 6.3 [27]
pasireotide Hs Full agonist 9.8 pIC50 40
pIC50 9.8 [40]
KE 108 Hs Full agonist 9.2 pIC50 38
pIC50 9.2 [38]
[111In]DOTA-NOC-ATE Hs Full agonist 8.4 pIC50 17
pIC50 8.4 [17]
BOC-ATE Hs Full agonist 8.4 pIC50 17
pIC50 8.4 [17]
[111In]DOTA-BOC-ATE Hs Full agonist 8.4 pIC50 17
pIC50 8.4 [17]
Des-AA5-[D-Trp8]SRIF Hs Full agonist 8.2 – 8.4 pIC50 15
pIC50 8.2 – 8.4 [15]
[111In,90Y]DOTA-NOC Hs Full agonist 8.0 pIC50 50
pIC50 8.0 [50]
BIM 23197 Hs Full agonist 8.0 pIC50 41
pIC50 8.0 [41]
[111In]DOTA-NOC Hs Full agonist 8.0 pIC50 50
pIC50 8.0 [50]
[111In,90Y]DOTA-LAN Hs Full agonist 7.8 pIC50 50
pIC50 7.8 [50]
NOC-ATE Hs Full agonist 7.8 pIC50 17
pIC50 7.8 [17]
[111In,90Y]DOTA-OC Hs Full agonist 7.2 pIC50 50
pIC50 7.2 [50]
[111In,90Y]DOTA-TOC Hs Full agonist 6.7 pIC50 50
pIC50 6.7 [50]
View species-specific agonist tables
Antagonists
Key to terms and symbols Click column headers to sort
Ligand Sp. Action Affinity Units Reference
[L-Tyr8]CYN 154806 Hs Antagonist 7.3 – 9.1 pKi 29
pKi 7.3 – 9.1 [29]
BIM 23056 Hs Antagonist 7.4 – 8.3 pKi
pKi 7.4 – 8.3
PRL-2970 Hs Antagonist 7.3 pKi 19
pKi 7.3 [19]
[D-Tyr8]CYN 154806 Hs Antagonist 6.4 – 8.0 pKi 29
pKi 6.4 – 8.0 [29]
[D-Tyr8]CYN 154806 Mm Antagonist 6.6 – 7.5 pKi 16
pKi 6.6 – 7.5 [16]
[L-Tyr8]CYN 154806 Mm Antagonist 6.2 – 7.2 pKi 16
pKi 6.2 – 7.2 [16]
AC-178,335 Rn Antagonist 6.6 pKi 4
pKi 6.6 [4]
PRL-2915 Hs Antagonist 6.3 pKi 19
pKi 6.3 [19]
BIM 23627 Hs Antagonist 7.1 pIC50 49
pIC50 7.1 [49]
BIM 23454 Hs Antagonist 6.9 pIC50 49
pIC50 6.9 [49]
View species-specific antagonist tables
Primary Transduction Mechanisms
Transducer Effector/Response
Gi/Go family Adenylate cyclase inhibition
Comments:  GRK2-mediated agonist-selective phosphorylation and PP1γ-mediated dephosphorylation of threonine 333 (T333) regulates rapid internalization and recycling.
References:  34,42
Secondary Transduction Mechanisms
Transducer Effector/Response
Gi/Go family
Gq/G11 family
Phospholipase C stimulation
Potassium channel
Calcium channel
Comments:  PLC activation is via the Gq G-protein. Activation of K+ channels and inhibition of Ca2+ is via Gi/Go G-proteins.
References:  2,22,43,48,51
Tissue Distribution
Anterior pituitary: GH- and ACTH producing cells, neuroendocrine cells of the intestine, pancreatic islets
Species:  Human
Technique:  Immunohistochemistry
References:  20
Pancreatic islets: Mainly in beta-cells, co-localised with insulin. Moderately expressed in alpha-cells, co-localised with glucagon. Also predominant in delta-cells, co-localised with somatostatin.
Species:  Human
Technique:  immunocytochemistry.
References:  23
Whole placenta and cytotrophoblast cells.
Species:  Human
Technique:  RT-PCR.
References:  7
Small intestine, heart, adrenal, cerebellum, pituitary, placenta, skeletal muscle.
Species:  Human
Technique:  RT-PCR.
References:  31
Pituitary.
Species:  Human
Technique:  RT-PCR.
References:  28
Fundic gastric mucosa of the stomach.
Species:  Rat
Technique:  RT-PCR.
References:  24
Aorta.
Species:  Rat
Technique:  RT-PCR and immunocytochemistry.
References:  21
High levels in the hypothalamus and preoptic area. Medium levels in the hippocampus, striatum, amygdala, olfactory tubule, midbrain, olfactory bulb and cortex.
Species:  Rat
Technique:  Nuclease protection analysis.
References:  5
Pituitary.
Species:  Rat
Technique:  RT-PCR.
References:  11,14
Pituitary: Somatotrophs (secrete GH), thyrotrophs (secrete TSH), lactotrophs (secrete PRL) as well as gonadotrophs and corticotrophs.
Species:  Rat
Technique:  double label in situ hybridisation.
References:  11
Pituitary.
Species:  Rat
Technique:  Nuclease protection analysis.
References:  5
Spleen.
Species:  Rat
Technique:  Nuclease protection analysis.
References:  5
Expression Datasets

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays
Measurement of GH, TSH and PRL secretion from human fetal pituitary cells.
Species:  Human
Tissue:  Primary human fetal pituitary cells.
Response measured:  Reduction in GH and TSH secretion, no change to PRL secretion.
References:  41
Measurement of PLC activity in CHO-K1 cells stably transfected with human sst5 receptors.
Species:  Human
Tissue:  CHO-K1 cells.
Response measured:  Stimulation of PLC activity.
References:  51
Measurement of gastric acid secretion in vivo using rats.
Species:  Rat
Tissue:  In vivo.
Response measured:  Inhibition of gastric acid secretion.
References:  26
Measurement of PLC activity in CCL39 cells stably transfected with human sst5 receptors.
Species:  Human
Tissue:  CCL39 cells.
Response measured:  Stimulation of PLC activity.
References:  43
Measurement of Ca2+ currents in AtT-20 cells expressing sst5 receptors.
Species:  Mouse
Tissue:  AtT-20 cell line (mouse anterior pituitary).
Response measured:  Coupling to L-type Ca2+ current.
References:  48
Measurement of AC activity (cAMP levels) in CHO-K1 cells stably transfected with human sst5 receptors.
Species:  Human
Tissue:  CHO-K1 cells.
Response measured:  Inhibition of AC activity at low agonist concentrations, and activation of AC activity at higher concentrations, via different transduction pathways.
References:  8
Measurement of AC activity (cAMP levels) in CCL39 cells stably transfected with human sst5 receptors.
Species:  Human
Tissue:  CCL39 cells.
Response measured:  Inhibition of AC activity.
References:  42
Measurement of GIRK currents (inward potassium currents) in Xenopus oocyte cells stably transfected with rat sst5 receptors and GIRK1 channels.
Species:  Rat
Tissue:  Xenopus oocytes.
Response measured:  Activation of GIRK currents.
References:  22
Measurement of GH release from GC cells (growth cells) from a rat somatotroph tumour, treated with a sst1/sst2 subtype selective agonist.
Species:  Rat
Tissue:  GC cells (growth cells) from a rat somatotroph tumour endogenously expressing all 5 sst receptor subtypes.
Response measured:  Reduction in GH secretion.
References:  9
Physiological Functions
Inhibition of GH release (synergistic with sst2).
Species:  Human
Tissue:  Primary fetal pituitary cell culture.
References:  37
Inhibition of insulin release.
Species:  Mouse
Tissue:  Pancreas.
References:  47
Antiproliferation.
Species:  Human
Tissue:  Umbilical vein endothelial cells.
References:  1
Physiological Consequences of Altering Gene Expression
Mice lacking the sst5 receptor show subtype-selective sexually dimorphic changes in the brain and pancreatic islets. They show an up-regulation of sst2 and sst3 receptors, and a down-regulation of sst4 receptors in the female sst5 knock-out brain, but not the male. They show a reduction in SRIF mRNA and SRIF-like immunoreactivity in the male sst5 knock-out brain, but not the female. They show an up-regulation of sst1, sst2 and sst3 receptors in male sst5 knock-out pancreatic islets, but only an increase in sst3 in female sst5 knock-out islets. They show a reduction in SRIF-like immunoreactivity in male sst5 knock-out mice, but no change in female.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  36
Mice lacking the sst5 receptor appeared to be healthy, with no obvious phenotypic abnormalities. However, they show an increase in insulin levels and a reduction in the SRIF-induced inhibition of insulin secretion from the pancreatic islets. They show a decrease in blood glucose and plasma insulin levels, and increased leptin and glucagon concentrations compared with the wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  47
Phenotypes, Alleles and Disease Models Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Sstr5tm1Hawi|Sstr5tm1Xpw|Tg(Ins2-cre)1Heed Sstr5tm1Hawi/Sstr5tm1Xpw,Tg(Ins2-cre)1Heed/0
involves: 129S7/SvEvBrd * C57BL/6 * CBA
MGI:3603308  MGI:894282  MP:0003839 abnormal insulin clearance PMID: 15919085 
Sstr5tm1Hawi Sstr5tm1Hawi/Sstr5tm1Hawi
involves: 129S7/SvEvBrd * C57BL/6J
MGI:894282  MP:0001262 decreased body weight PMID: 12511609 
Sstr5tm1Hawi Sstr5tm1Hawi/Sstr5tm1Hawi
involves: 129S7/SvEvBrd * C57BL/6J
MGI:894282  MP:0005560 decreased circulating glucose level PMID: 12511609 
Sstr5tm1Hawi|Sstr5tm1Xpw|Tg(Ins2-cre)1Heed Sstr5tm1Hawi/Sstr5tm1Xpw,Tg(Ins2-cre)1Heed/0
involves: 129S7/SvEvBrd * C57BL/6 * CBA
MGI:3603308  MGI:894282  MP:0005560 decreased circulating glucose level PMID: 15919085 
Sstr5tm1Hawi Sstr5tm1Hawi/Sstr5tm1Hawi
involves: 129S7/SvEvBrd * C57BL/6J
MGI:894282  MP:0002727 decreased circulating insulin level PMID: 12511609 
Sstr5tm1Hawi|Sstr5tm1Xpw|Tg(Ins2-cre)1Heed Sstr5tm1Hawi/Sstr5tm1Xpw,Tg(Ins2-cre)1Heed/0
involves: 129S7/SvEvBrd * C57BL/6 * CBA
MGI:3603308  MGI:894282  MP:0003059 decreased insulin secretion PMID: 15919085 
Sstr5tm1Kum Sstr5tm1Kum/Sstr5tm1Kum
involves: 129/Sv * C57BL/6J
MGI:894282  MP:0003339 decreased pancreatic beta cell number PMID: 15223137 
Sstr5tm1Hawi|Sstr5tm1Xpw|Tg(Ins2-cre)1Heed Sstr5tm1Hawi/Sstr5tm1Xpw,Tg(Ins2-cre)1Heed/0
involves: 129S7/SvEvBrd * C57BL/6 * CBA
MGI:3603308  MGI:894282  MP:0009181 decreased pancreatic delta cell number PMID: 15919085 
Sstr5tm1Hawi|Sstr5tm1Xpw|Tg(Ins2-cre)1Heed Sstr5tm1Hawi/Sstr5tm1Xpw,Tg(Ins2-cre)1Heed/0
involves: 129S7/SvEvBrd * C57BL/6 * CBA
MGI:3603308  MGI:894282  MP:0005293 impaired glucose tolerance PMID: 15919085 
Sstr5tm1Hawi Sstr5tm1Hawi/Sstr5tm1Hawi
involves: 129S7/SvEvBrd * C57BL/6J
MGI:894282  MP:0005292 improved glucose tolerance PMID: 12511609 
Sstr5tm1Hawi Sstr5tm1Hawi/Sstr5tm1Hawi
involves: 129S7/SvEvBrd * C57BL/6J
MGI:894282  MP:0002712 increased circulating glucagon level PMID: 12511609 
Sstr5tm1Hawi|Sstr5tm1Xpw|Tg(Ins2-cre)1Heed Sstr5tm1Hawi/Sstr5tm1Xpw,Tg(Ins2-cre)1Heed/0
involves: 129S7/SvEvBrd * C57BL/6 * CBA
MGI:3603308  MGI:894282  MP:0002079 increased circulating insulin level PMID: 15919085 
Sstr5tm1Hawi Sstr5tm1Hawi/Sstr5tm1Hawi
involves: 129S7/SvEvBrd * C57BL/6J
MGI:894282  MP:0005669 increased circulating leptin level PMID: 12511609 
Sstr5tm1Hawi Sstr5tm1Hawi/Sstr5tm1Hawi
involves: 129S7/SvEvBrd * C57BL/6J
MGI:894282  MP:0003058 increased insulin secretion PMID: 12511609 
Sstr5tm1Hawi|Sstr5tm1Xpw|Tg(Ins2-cre)1Heed Sstr5tm1Hawi/Sstr5tm1Xpw,Tg(Ins2-cre)1Heed/0
involves: 129S7/SvEvBrd * C57BL/6 * CBA
MGI:3603308  MGI:894282  MP:0003058 increased insulin secretion PMID: 15919085 
Sstr5tm1Hawi Sstr5tm1Hawi/Sstr5tm1Hawi
involves: 129S7/SvEvBrd * C57BL/6J
MGI:894282  MP:0002891 increased insulin sensitivity PMID: 12511609 
Clinically-Relevant Mutations and Pathophysiology
Disease:  Acromegaly
OMIM:  102200
Orphanet:  963
Comments: 
References:  3
Click column headers to sort
Type Species Molecular location Description Reference
single nucleotide polymorphism Human R240W 3
Disease:  Cushing´s disease
OMIM:  102200
Comments: 
References:  10
Mutations not determined
Biologically Significant Variants
Type:  Splice variant
Species:  Human
Description:  Two differently truncated sst5 variants (sstTMD5/sstTMD4) show a different expression pattern in normal tissue and pituitary tumors. Both splice variants are functionally active and show a predominant intracellular localization. Sst5TMD is selectively activated by somatostatin compared with cortistatin, while sst5TMD4 is exclusively activated by cortistatin and not somatostatin. The details of the transcripts provided by the authors are sst5TM5(DQ448303) and sst5TMD4 (DQ448304).
References:  12
Available Assays
DiscoveRx PathHunter® CHO-K1 SSTR5 β-Arrestin Cell Line (Cat no. 93-0402C2)
PathHunter® eXpress SSTR5 U2OS β-Arrestin GPCR Assay (Cat no. 93-0402E3CP0M)
PathHunter® U2OS SSTR5 β-Arrestin Cell Line (Cat no. 93-0402C3)
more info

REFERENCES

1. Adams RL, Adams IP, Lindow SW, Atkin SL. (2004) Inhibition of endothelial proliferation by the somatostatin analogue SOM230. Clin Endocrinol (Oxf)61: 431-436. [PMID:15473874]

2. Akbar M, Okajima F, Tomura H, Majid MA, Yamada Y, Seino S, Kondo Y. (1994) Phospholipase C activation and Ca2+ mobilization by cloned human somatostatin receptor subtypes 1-5, in transfected COS-7 cells. FEBS Lett348: 192-196. [PMID:8034040]

3. Ballare E, Persani L, Lania AG, Filopanti M, Giammona E, Corbetta S, Mantovani S, Arosio M, Beck-Peccoz P, Faglia G, Spada A. (2001) Mutation of somatostatin receptor type 5 in an acromegalic patient resistant to somatostatin analog treatment. J Clin Endocrinol Metab86: 3809-3814. [PMID:11502816]

4. Baumbach WR, Carrick TA, Pausch MH, Bingham B, Carmignac D, Robinson IC, Houghten R, Eppler CM, Price LA, Zysk JR. (1998) A linear hexapeptide somatostatin antagonist blocks somatostatin activity in vitro and influences growth hormone release in rats. Mol Pharmacol54: 864-873. [PMID:9804621]

5. Bruno JF, Xu Y, Song J, Berelowitz M. (1993) Tissue distribution of somatostatin receptor subtype messenger ribonucleic acid in the rat. Endocrinology133: 2561-2567. [PMID:8243278]

6. Bruns C, Raulf F, Hoyer D, Schloos J, Lubbert H, Weckbecker G. (1996) Binding properties of somatostatin receptor subtypes. Metabolism45: 17-20. [PMID:8769372]

7. Caron P, Buscail L, Beckers A, Esteve JP, Igout A, Hennen G, Susini C. (1997) Expression of somatostatin receptor SST4 in human placenta and absence of octreotide effect on human placental growth hormone concentration during pregnancy. J Clin Endocrinol Metab82: 3771-3776. [PMID:9360539]

8. Carruthers AM, Warner AJ, Michel AD, Feniuk W, Humphrey PP. (1999) Activation of adenylate cyclase by human recombinant sst5 receptors expressed in CHO-K1 cells and involvement of Galphas proteins. Br J Pharmacol126: 1221-1229. [PMID:10205012]

9. Cervia D, Zizzari P, Pavan B, Schuepbach E, Langenegger D, Hoyer D, Biondi C, Epelbaum J, Bagnoli P. (2003) Biological activity of somatostatin receptors in GC rat tumour somatotrophs: evidence with sst1-sst5 receptor-selective nonpeptidyl agonists. Neuropharmacology44: 672-685. [PMID:12668053]

10. Colao A, Petersenn S, Newell-Price J, Findling JW, Gu F, Maldonado M, Schoenherr U, Mills D, Salgado LR, Biller BM et al.. (2012) A 12-month phase 3 study of pasireotide in Cushing's disease. N. Engl. J. Med.366 (10): 914-24. [PMID:22397653]

11. Day R, Dong W, Panetta R, Kraicer J, Greenwood MT, Patel YC. (1995) Expression of mRNA for somatostatin receptor (sstr) types 2 and 5 in individual rat pituitary cells. A double labeling in situ hybridization analysis. Endocrinology136: 5232-5235. [PMID:7588263]

12. Durán-Prado M, Gahete MD, Martínez-Fuentes AJ, Luque RM, Quintero A, Webb SM, Benito-López P, Leal A, Schulz S, Gracia-Navarro F et al.. (2009) Identification and characterization of two novel truncated but functional isoforms of the somatostatin receptor subtype 5 differentially present in pituitary tumors. J. Clin. Endocrinol. Metab.94 (7): 2634-43. [PMID:19401364]

13. Engstrom M, Tomperi J, El-Darwish K, Ahman M, Savola JM, Wurster S. (2005) Superagonism at the human somatostatin receptor subtype 4. J Pharmacol Exp Ther312: 332-338. [PMID:15333679]

14. Epelbaum J, Briard N, Djordjijevic D, Dutour A, Meyerhoff W, Oliver C, Slama A, Viollet C, Zhang J. (1998) Characterization of somatostatin receptor subtypes in mammalian pituitary. Ann N Y Acad Sci839: 249-253. [PMID:9629161]

15. Erchegyi J, Hoeger CA, Low W, Hoyer D, Waser B, Eltschinger V, Schaer JC, Cescato R, Reubi JC, Rivier JE. (2005) Somatostatin receptor 1 selective analogues: 2. N(alpha)-Methylated scan. J Med Chem48: 507-514. [PMID:15658864]

16. Feuerbach D, Fehlmann D, Nunn C, Siehler S, Langenegger D, Bouhelal R, Seuwen K, Hoyer D. (2000) Cloning, expression and pharmacological characterisation of the mouse somatostatin sst(5) receptor. Neuropharmacology39: 1451-1462. [PMID:10818261]

17. Ginj M, Chen J, Walter MA, Eltschinger V, Reubi JC, Maecke HR. (2005) Preclinical evaluation of new and highly potent analogues of octreotide for predictive imaging and targeted radiotherapy. Clin Cancer Res11: 1136-1145. [PMID:15709181]

18. Gordon DF, Woodmansee WW, Lewis SR, James RA, Wood WM, Ridgway EC. (1999) Cloning of the mouse somatostatin receptor subtype 5 gene: promoter structure and function. Endocrinology140: 5598-5608. [PMID:10579323]

19. Hocart SJ, Jain R, Murphy WA, Taylor JE, Coy DH. (1999) Highly potent cyclic disulfide antagonists of somatostatin. J Med Chem42: 1863-1871. [PMID:10354394]

20. Kaemmerer D, Lupp A, Peter L, Fischer E, Schulz S, Klöppel G, Hommann M. (2013) Correlation of monoclonal and polyclonal somatostatin receptor 5 antibodies in pancreatic neuroendocrine tumors. Int J Clin Exp Pathol6 (1): 49-54. [PMID:23236542]

21. Khare S, Kumar U, Sasi R, Puebla L, Calderon L, Lemstrom K, Hayry P, Patel AY. (1999) Differential regulation of somatostatin receptor types 1-5 in rat aorta after angioplasty. Faseb J13: 387-394. [PMID:9973327]

22. Kreienkamp HJ, Honck HH, Richter D. (1997) Coupling of rat somatostatin receptor subtypes to a G-protein gated inwardly rectifying potassium channel (GIRK1). FEBS Lett419: 92-94. [PMID:9426226]

23. Kumar U, Sasi R, Suresh S, Patel A, Thangaraju M, Metrakos P, Patel SC, Patel YC. (1999) Subtype-selective expression of the five somatostatin receptors (hSSTR1-5) in human pancreatic islet cells: a quantitative double-label immunohistochemical analysis. Diabetes48: 77-85. [PMID:9892225]

24. Le Romancer M, Cherifi Y, Levasseur S, Laigneau JP, Peranzi G, Jais P, Lewin MJ, Reyl-Desmars F. (1996) Messenger RNA expression of somatostatin receptor subtypes in human and rat gastric mucosae. Life Sci58: 1091-1098. [PMID:8622562]

25. Lublin AL, Diehl NL, Hochgeschwender U. (1997) Isolation and characterization of the gene encoding the type 5 mouse (Mus musculus) somatostatin receptor (msst5). Gene195: 63-66. [PMID:9300821]

26. Martinez V, Coy DH, Lloyd KC, Tache Y. (1996) Intracerebroventricular injection of somatostatin sst5 receptor agonist inhibits gastric acid secretion in rats. Eur J Pharmacol296: 153-160. [PMID:8838451]

27. Meyerhof W. (1998) The elucidation of somatostatin receptor functions: a current view. Rev Physiol Biochem Pharmacol133: 55-108. [PMID:9600011]

28. Miller GM, Alexander JM, Bikkal HA, Katznelson L, Zervas NT, Klibanski A. (1995) Somatostatin receptor subtype gene expression in pituitary adenomas. J Clin Endocrinol Metab80: 1386-1392. [PMID:7714115]

29. Nunn C, Schoeffter P, Langenegger D, Hoyer D. (2003) Functional characterisation of the putative somatostatin sst2 receptor antagonist CYN 154806. Naunyn Schmiedebergs Arch Pharmacol367: 1-9. [PMID:12616335]

30. O'Carroll AM, Lolait SJ, Konig M, Mahan LC. (1992) Molecular cloning and expression of a pituitary somatostatin receptor with preferential affinity for somatostatin-28. Mol Pharmacol42: 939-946. [PMID:1362243]

31. O'Carroll AM, Raynor K, Lolait SJ, Reisine T. (1994) Characterization of cloned human somatostatin receptor SSTR5. Mol Pharmacol46: 291-298. [PMID:8078491]

32. Panetta R, Greenwood MT, Warszynska A, Demchyshyn LL, Day R, Niznik HB, Srikant CB, Patel YC. (1994) Molecular cloning, functional characterization, and chromosomal localization of a human somatostatin receptor (somatostatin receptor type 5) with preferential affinity for somatostatin-28. Mol Pharmacol45: 417-427. [PMID:7908405]

33. Patel YC, Srikant CB. (1994) Subtype selectivity of peptide analogs for all five cloned human somatostatin receptors (hsstr 1-5). Endocrinology135: 2814-2817. [PMID:7988476]

34. Petrich A, Mann A, Kliewer A, Nagel F, Strigli A, Märtens JC, Pöll F, Schulz S. (2013) Phosphorylation of threonine 333 regulates trafficking of the human sst5 somatostatin receptor. Mol. Endocrinol.27 (4): 671-82. [PMID:23418396]

35. Poitout L, Roubert P, Contour-Galcera MO, Moinet C, Lannoy J, Pommier J, Plas P, Bigg D, Thurieau C. (2001) Identification of potent non-peptide somatostatin antagonists with sst(3) selectivity. J Med Chem44: 2990-3000. [PMID:11520208]

36. Ramirez JL, Grant M, Norman M, Wang XP, Moldovan S, de Mayo FJ, Brunicardi C, Kumar U. (2004) Deficiency of somatostatin (SST) receptor type 5 (SSTR5) is associated with sexually dimorphic changes in the expression of SST and SST receptors in brain and pancreas. Mol Cell Endocrinol221: 105-119. [PMID:15223137]

37. Ren SG, Taylor J, Dong J, Yu R, Culler MD, Melmed S. (2003) Functional association of somatostatin receptor subtypes 2 and 5 in inhibiting human growth hormone secretion. J Clin Endocrinol Metab88: 4239-4245. [PMID:12970293]

38. Reubi JC, Eisenwiener KP, Rink H, Waser B, Macke HR. (2002) A new peptidic somatostatin agonist with high affinity to all five somatostatin receptors. Eur J Pharmacol456: 45-49. [PMID:12450568]

39. Rohrer SP, Birzin ET, Mosley RT, Berk SC, Hutchins SM, Shen DM, Xiong Y, Hayes EC, Parmar RM, Foor F, Mitra SW, Degrado SJ, Shu M, Klopp JM, Cai SJ, Blake A, Chan WW, Pasternak A, Yang L, Patchett AA, Smith RG, Chapman KT, Schaeffer JM. (1998) Rapid identification of subtype-selective agonists of the somatostatin receptor through combinatorial chemistry. Science282: 737-740. [PMID:9784130]

40. Schmid HA, Schoeffter P. (2004) Functional activity of the multiligand analog SOM230 at human recombinant somatostatin receptor subtypes supports its usefulness in neuroendocrine tumors. Neuroendocrinology80: 47-50. [PMID:15477717]

41. Shimon I, Taylor JE, Dong JZ, Bitonte RA, Kim S, Morgan B, Coy DH, Culler MD, Melmed S. (1997) Somatostatin receptor subtype specificity in human fetal pituitary cultures. Differential role of SSTR2 and SSTR5 for growth hormone, thyroid-stimulating hormone, and prolactin regulation. J Clin Invest99: 789-798. [PMID:9045884]

42. Siehler S, Hoyer D. (1999) Characterisation of human recombinant somatostatin receptors. 3. Modulation of adenylate cyclase activity. Naunyn Schmiedebergs Arch Pharmacol360: 510-521. [PMID:10598790]

43. Siehler S, Hoyer D. (1999) Characterisation of human recombinant somatostatin receptors. 4. Modulation of phospholipase C activity. Naunyn Schmiedebergs Arch Pharmacol360: 522-532. [PMID:10598791]

44. Siehler S, Seuwen K, Hoyer D. (1998) [125I]Tyr10-cortistatin14 labels all five somatostatin receptors. Naunyn Schmiedebergs Arch Pharmacol357: 483-489. [PMID:9650799]

45. Siehler S, Seuwen K, Hoyer D. (1998) [125I][Tyr3]octreotide labels human somatostatin sst2 and sst5 receptors. Eur J Pharmacol348: 311-320. [PMID:9652348]

46. Siehler S, Seuwen K, Hoyer D. (1999) Characterisation of human recombinant somatostatin receptors. 1. Radioligand binding studies. Naunyn Schmiedebergs Arch Pharmacol360: 488-499. [PMID:10598788]

47. Strowski MZ, Kohler M, Chen HY, Trumbauer ME, Li Z, Szalkowski D, Gopal-Truter S, Fisher JK, Schaeffer JM, Blake AD, Zhang BB, Wilkinson HA. (2003) Somatostatin receptor subtype 5 regulates insulin secretion and glucose homeostasis. Mol Endocrinol17: 93-106. [PMID:12511609]

48. Tallent M, Liapakis G, O'Carroll AM, Lolait SJ, Dichter M, Reisine T. (1996) Somatostatin receptor subtypes SSTR2 and SSTR5 couple negatively to an L-type Ca2+ current in the pituitary cell line AtT-20. Neuroscience71: 1073-1081. [PMID:8684611]

49. Tulipano G, Soldi D, Bagnasco M, Culler MD, Taylor JE, Cocchi D, Giustina A. (2002) Characterization of new selective somatostatin receptor subtype-2 (sst2) antagonists, BIM-23627 and BIM-23454. Effects of BIM-23627 on GH release in anesthetized male rats after short-term high-dose dexamethasone treatment. Endocrinology143: 1218-1224. [PMID:11897676]

50. Wild D, Schmitt JS, Ginj M, Macke HR, Bernard BF, Krenning E, De Jong M, Wenger S, Reubi JC. (2003) DOTA-NOC, a high-affinity ligand of somatostatin receptor subtypes 2, 3 and 5 for labelling with various radiometals. Eur J Nucl Med Mol Imaging30: 1338-1347. [PMID:12937948]

51. Wilkinson GF, Feniuk W, Humphrey PP. (1997) Characterization of human recombinant somatostatin sst5 receptors mediating activation of phosphoinositide metabolism. Br J Pharmacol121: 91-96. [PMID:9146892]

52. Yamada Y, Kagimoto S, Kubota A, Yasuda K, Masuda K, Someya Y, Ihara Y, Li Q, Imura H, Seino S et al.. (1993) Cloning, functional expression and pharmacological characterization of a fourth (hSSTR4) and a fifth (hSSTR5) human somatostatin receptor subtype. Biochem. Biophys. Res. Commun.195 (2): 844-52. [PMID:8373420]

53. Yang L, Berk SC, Rohrer SP, Mosley RT, Guo L, Underwood DJ, Arison BH, Birzin ET, Hayes EC, Mitra SW, Parmar RM, Cheng K, Wu TJ, Butler BS, Foor F, Pasternak A, Pan Y, Silva M, Freidinger RM, Smith RG, Chapman K, Schaeffer JM, Patchett AA. (1998) Synthesis and biological activities of potent peptidomimetics selective for somatostatin receptor subtype 2. Proc Natl Acad Sci U S A95: 10836-10841. [PMID:9724791]

To cite this database page, please use the following:

Jacques Epelbaum, Wasyl Feniuk, Anthony Harmar, Rebecca Hills, Daniel Hoyer, Patrick P. A. Humphrey, Wolfgang Meyerhof, Anne-Marie O'Carroll, Yogesh C. Patel, Terry Reisine, Jean-Claude Reubi, Marcus Schindler, Agnes Schonbrunn, John E. Taylor, Annamaria Vezzani.
Somatostatin receptors: sst5 receptor. Last modified on 30/04/2014. Accessed on 20/10/2014. IUPHAR database (IUPHAR-DB), http://www.iuphar-db.org/DATABASE/ObjectDisplayForward?objectId=359.

Contact us | Print | Back to top | Help
Copyright © 2014 IUPHAR