Nomenclature: RXFP1 receptor

Family: Relaxin family peptide receptors

Annotation status:  image of a green circle Annotated and expert reviewed. Please contact us if you can help with updates. 

Contents

Gene and Protein Information
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 757 4q32.1 RXFP1 relaxin/insulin-like family peptide receptor 1 15
Mouse 7 758 3 E3 Rxfp1 relaxin/insulin-like family peptide receptor 1 27
Rat 7 758 2q32 Rxfp1 relaxin/insulin-like family peptide receptor 1 27
Previous and Unofficial Names
Names References
LGR7 14-15
Relaxin receptor
RX1
RXFPR1
relaxin family peptide receptor 1
relaxin receptor 1
relaxin/insulin-like family peptide receptor 1
LOC381489
Gm1018
leucine-rich repeat-containing G-protein-coupled receptor 7 14-15
Database Links
Ensembl Gene
Entrez Gene
GPCRDB
GeneCards
GenitoUrinary Development Molecular Anatomy Project
HomoloGene
Human Protein Reference Database
InterPro
KEGG Gene
OMIM
PharmGKB Gene
PhosphoSitePlus
Protein Ontology (PRO)
RefSeq Nucleotide
RefSeq Protein
TreeFam
UniGene Hs.
UniProtKB
Wikipedia
Natural/Endogenous Ligands
H1 relaxin {Sp: Human}
H2 relaxin {Sp: Human}
H3 relaxin {Sp: Human}
INSL3 {Sp: Human}
Comments: H2 relaxin is the most potent endogenous agonist
Rank order of potency (Human)
H2 relaxin (RLN2, P04090) > H3 relaxin (RLN3, Q8WXF3) >> INSL3 (INSL3, P51460)  [29]
Agonists
Key to terms and symbols Click column headers to sort
Ligand Sp. Action Affinity Units Reference
[33P]H2 relaxin Hs Full agonist 9.3 – 9.7 pKd 11,29
pKd 9.3 – 9.7 (Kd 5x10-10 – 2x10-10 M) [11,29]
relaxin {Sp: Rhesus macaque} Hs Full agonist 9.4 pKd 11
pKd 9.4 [11]
relaxin {Sp: Pig} Hs Full agonist 9.1 pKd 11
pKd 9.1 [11]
europium-labelled H2 relaxin Hs Full agonist 9.0 pKd 12
pKd 9.0 (Kd 1x10-9 M) [12]
relaxin {Sp: Rat} Hs Full agonist 7.3 pKd 11
pKd 7.3 [11]
H2 relaxin {Sp: Human} Hs Full agonist 9.4 – 10.2 pKi 11,29
pKi 9.4 – 10.2 [11,29]
H3 relaxin {Sp: Human} Hs Full agonist 7.5 – 8.0 pKi 11,29
pKi 7.5 – 8.0 [11,29]
H1 relaxin {Sp: Human} Hs Full agonist 8.8 pEC50 3
pEC50 8.8 [3]
[125I]H2 relaxin Hs Full agonist - -
Agonist Comments
H2 relaxin and porcine relaxin activate both RXFP1 and RXFP2.
Rat relaxin selectively activates RXFP1.
H3 relaxin activates RXFP1 but is the cognate ligand for RXFP3 and also activates RXFP4.
Rhesus monkey relaxin is relatively selective for RXFP1.
Affinity values were determined in HEK 293 cells expressing human RXFP1.
Antagonists
Key to terms and symbols Click column headers to sort
Ligand Sp. Action Affinity Units Reference
B-R13/17K H2 relaxin Hs Antagonist 6.7 pEC50 13
pEC50 6.7 [13]
Antagonist Comments
RXFP1-truncate is a naturally occurring splice variant of the receptor that includes the LDLa region that acts as a functional antagonist of the RXFP1 receptor. It has been identified in mouse, rat and pig and in rodents levels rise in late pregnancy suggesting that it may have a physiological role in antagonising the actions of relaxin.
Primary Transduction Mechanisms
Transducer Effector/Response
Gs family
Gi/Go family
Adenylate cyclase stimulation
Adenylate cyclase inhibition
Comments:  RXFP1 displays complex cAMP signalling. There is evidence that increases in cAMP involve both Gs and pertussis toxin-sensitive Gi/Go.
References:  9-10,15,23,29
Secondary Transduction Mechanisms
Transducer Effector/Response
Gs family Guanylate cyclase stimulation
Comments:  Guanylate cyclase stimulation occurs secondary to increased NOSII expression and sustained increases in cAMP levels.
References:  24
Tissue Distribution
Uterus, cervix, vagina, nipple, breast.
Species:  Human
Technique:  immunocytochemistry.
References:  19,22
Uterus, cervix, vagina, placenta, nipple, testes, prostate, brain, heart, lung, intestine, skin.
Species:  Human
Technique:  RT-PCR.
References:  15-16
Oviduct, uterus, cervix, vagina, testes, brain, pituitary.
Species:  Mouse
Technique:  Receptor gene assay.
References:  20
Ovary.
Species:  Mouse
Technique:  Receptor autoradiography.
References:  33
Uterus, cervix, vagina, nipple, mammary gland.
Species:  Rat
Technique:  immunocytochemistry.
References:  15,21
Uterus, cervix, vagina, nipple, mammary gland, brain, heart adrenal.
Species:  Rat
Technique:  Receptor autoradiography.
References:  25,32
Ovary, oviduct, uterus, testes, brain, kidney, heart, intestine, colon, adrenal.
Species:  Rat
Technique:  Northern blotting.
References:  14,27
Expression Datasets

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays
Relaxation of pre-contracted rat uterus.
Species:  Rat
Tissue:  Uterus.
Response measured:  Relaxation.
References:  6-7,31
Measurement of cAMP levels in HEK 293T cells transfected with the human RXFP1 receptor.
Species:  Human
Tissue:  HEK 293T cells.
Response measured:  cAMP accumulation.
References:  10-11,15,29
Measurement of cAMP levels in human endometrial stromal cells.
Species:  Human
Tissue:  Human endometrial stromal cells.
Response measured:  cAMP accumulation.
References:  1-2,8
Positive chronotropic effect in rat isolated atrium.
Species:  Rat
Tissue:  Right atrium.
Response measured:  Increase in rate of spontaneous beating.
References:  17,31
Positive inotropic effect in rat isolated atrium.
Species:  Rat
Tissue:  Left atrium.
Response measured:  Increase in developed tension.
References:  17,31
Measurement of cAMP levels in the monocyte cell line, THP-1, endogenously expressing RXFP1 receptors.
Species:  Human
Tissue:  THP-1 cells.
Response measured:  cAMP accumulation (in the presence of a low concentration of forskolin).
References:  1,26
Physiological Functions
Growth of interpubic ligament.
Species:  Mouse
Tissue:  Pubic symphysis.
References:  4
Increase in size and softening of the cervix.
Species:  Mouse
Tissue:  Cervix.
References:  4
Relaxation of the uterus.
Species:  Rat
Tissue:  Uterus.
References:  31
Growth and development of the uterus. (Rodent studies tend to show less of an effect, pig studies are very clear).
Species:  Rat
Tissue:  Uterus.
References:  4
Growth of the vagina.
Species:  Rat
Tissue:  Vagina.
References:  4
Plasma osmolarity regulation.
Species:  Rat
Tissue:  Subfornical organ; organum vasculosum of the lamina terminalis.
References:  30
Increased renal glomerular filtration rate and plasma flow, and decreased vascular resistance.
Species:  Rat
Tissue:  Kidney.
References:  4-5
Vasodilatation.
Species:  Rat
Tissue:  Blood vessels.
References:  24
Inotropic and chronotropic effects in the heart.
Species:  Rat
Tissue:  Right and left atria.
References:  17,31
Nipple and mammary gland growth and development.
Species:  Rat
Tissue:  Nipple and mammary gland.
References:  4
Implantation.
Species:  Human
Tissue:  Uterine endometrium.
References:  4
Inhibition of collagen synthesis and promotion of collagen breakdown.
Species:  Mouse
Tissue:  Fibroblasts.
References:  4
Wound healing.
Species:  Rat
Tissue:  Wounds.
References:  4
Cardiac protection.
Species:  Rat
Tissue:  Heart.
References:  4
Physiological Consequences of Altering Gene Expression
Female mice lacking the the RXFP1 receptor show normal fertility and parturition but 15% of pups die soon after birth and 100% within 24-48 hours due to maternal failure of nipple and mammary gland development.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  20
Male mice lacking the RXFP1 receptor show reduced fertility due to disrupted spermatogenesis associated with increased apoptosis of meiotic spermatocytes.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  20
Mice lacking the RXFP1 receptor show an increase in tissue collagen.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  18
Phenotypes, Alleles and Disease Models Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Rxfp1tm1Jgo Rxfp1tm1Jgo/Rxfp1tm1Jgo
involves: 129S5/SvEvBrd * C57BL/6
MGI:2682211  MP:0001119 abnormal female reproductive system morphology PMID: 14701741 
Rxfp1tm1Aia|Tg(Ins2-Insl3)4Imad Rxfp1tm1Aia/Rxfp1tm1Aia,Tg(Ins2-Insl3)4Imad/0
involves: 129S7/SvEvBrd * C57BL/6J
MGI:2682211  MGI:3054959  MP:0005149 abnormal gubernaculum morphology PMID: 15256493 
Rxfp1tm1Aia Rxfp1tm1Aia/Rxfp1tm1Aia
involves: 129S7/SvEvBrd * C57BL/6J
MGI:2682211  MP:0001882 abnormal lactation PMID: 15256493 
Rxfp1tm1Aia|Rxfp2tm1Aia Rxfp1tm1Aia/Rxfp1tm1Aia,Rxfp2tm1Aia/Rxfp2tm1Aia
involves: 129S7/SvEvBrd * C57BL/6J
MGI:2153463  MGI:2682211  MP:0001882 abnormal lactation PMID: 15256493 
Rxfp1tm1Aia|Tg(Ins2-Insl3)4Imad Rxfp1tm1Aia/Rxfp1tm1Aia,Tg(Ins2-Insl3)4Imad/0
involves: 129S7/SvEvBrd * C57BL/6J
MGI:2682211  MGI:3054959  MP:0001882 abnormal lactation PMID: 15256493 
Rxfp1tm1Jgo Rxfp1tm1Jgo/Rxfp1tm1Jgo
involves: 129S5/SvEvBrd * C57BL/6
MGI:2682211  MP:0001145 abnormal male reproductive system morphology PMID: 14701741 
Rxfp1tm1Jgo Rxfp1tm1Jgo/Rxfp1tm1Jgo
involves: 129S5/SvEvBrd * C57BL/6
MGI:2682211  MP:0006078 abnormal nipple morphology PMID: 14701741 
Rxfp1tm1Aia Rxfp1tm1Aia/Rxfp1tm1Aia
involves: 129S7/SvEvBrd * C57BL/6J
MGI:2682211  MP:0006078 abnormal nipple morphology PMID: 15256493 
Rxfp1tm1Aia|Rxfp2tm1Aia Rxfp1tm1Aia/Rxfp1tm1Aia,Rxfp2tm1Aia/Rxfp2tm1Aia
involves: 129S7/SvEvBrd * C57BL/6J
MGI:2153463  MGI:2682211  MP:0006078 abnormal nipple morphology PMID: 15256493 
Rxfp1tm1Aia|Tg(Ins2-Insl3)4Imad Rxfp1tm1Aia/Rxfp1tm1Aia,Tg(Ins2-Insl3)4Imad/0
involves: 129S7/SvEvBrd * C57BL/6J
MGI:2682211  MGI:3054959  MP:0006078 abnormal nipple morphology PMID: 15256493 
Rxfp1tm1Aia|Tg(Ins2-Insl3)4Imad Rxfp1tm1Aia/Rxfp1tm1Aia,Tg(Ins2-Insl3)4Imad/0
involves: 129S7/SvEvBrd * C57BL/6J
MGI:2682211  MGI:3054959  MP:0001126 abnormal ovary morphology PMID: 15256493 
Rxfp1tm1Jgo Rxfp1tm1Jgo/Rxfp1tm1Jgo
involves: 129S5/SvEvBrd * C57BL/6
MGI:2682211  MP:0002907 abnormal parturition PMID: 14701741 
Rxfp1tm1Aia Rxfp1tm1Aia/Rxfp1tm1Aia
involves: 129S7/SvEvBrd * C57BL/6J
MGI:2682211  MP:0002907 abnormal parturition PMID: 15256493 
Rxfp1tm1Jgo Rxfp1tm1Jgo/Rxfp1tm1Jgo
involves: 129S5/SvEvBrd * C57BL/6
MGI:2682211  MP:0001156 abnormal spermatogenesis PMID: 14701741 
Rxfp1tm1Jgo Rxfp1tm1Jgo/Rxfp1tm1Jgo
involves: 129S5/SvEvBrd * C57BL/6
MGI:2682211  MP:0005159 azoospermia PMID: 14701741 
Rxfp1tm1Aia|Rxfp2tm1Aia Rxfp1tm1Aia/Rxfp1tm1Aia,Rxfp2tm1Aia/Rxfp2tm1Aia
involves: 129S7/SvEvBrd * C57BL/6J
MGI:2153463  MGI:2682211  MP:0002286 cryptorchism PMID: 15256493 
Rxfp1tm1Jgo Rxfp1tm1Jgo/Rxfp1tm1Jgo
involves: 129S5/SvEvBrd * C57BL/6
MGI:2682211  MP:0004929 decreased epididymis weight PMID: 14701741 
Rxfp1tm1Jgo Rxfp1tm1Jgo/Rxfp1tm1Jgo
involves: 129S5/SvEvBrd * C57BL/6
MGI:2682211  MP:0004852 decreased testis weight PMID: 14701741 
Rxfp1tm1Aia Rxfp1tm1Aia/Rxfp1tm1Aia
involves: 129S7/SvEvBrd * C57BL/6J
MGI:2682211  MP:0006050 pulmonary fibrosis PMID: 15256493 
Rxfp1tm1Jgo Rxfp1tm1Jgo/Rxfp1tm1Jgo
involves: 129S5/SvEvBrd * C57BL/6
MGI:2682211  MP:0001923 reduced female fertility PMID: 14701741 
Rxfp1tm1Jgo Rxfp1tm1Jgo/Rxfp1tm1Jgo
involves: 129S5/SvEvBrd * C57BL/6
MGI:2682211  MP:0001921 reduced fertility PMID: 14701741 
Rxfp1tm1Jgo Rxfp1tm1Jgo/Rxfp1tm1Jgo
involves: 129S5/SvEvBrd * C57BL/6
MGI:2682211  MP:0001922 reduced male fertility PMID: 14701741 
Biologically Significant Variants
Type:  Splice variant.
Species:  Mouse
Description:  An exon-4 deleted transcript of the RXFP1 receptor is expressed in the endometrium, myometrium, uterus and cervix/vagina of pregnant female mice and rats. It has been suggested that this RXFP1 receptor splice variant (RXFP1-truncate) acts as a functional antagonist of relaxin in late pregnancy.
References:  28
General Comments
Many studies has examined RXFP1 receptor tissue expression using a range of techniques. Most provide complimentary data but RT-PCR studies are subject to the usual caveats regarding the extent of amplification of physiologically relevant copy numbers of mRNA. Receptor autoradiography has also been used to provide quantitative data on properties of RXFP1 receptors in particular tissue locations which is in good agreement with other methods.

REFERENCES

1. Bartsch O, Bartlick B, Ivell R. (2001) Relaxin signalling links tyrosine phosphorylation to phosphodiesterase and adenylyl cyclase activity. Mol Hum Reprod7: 799-809. [PMID:11517286]

2. Bartsch O, Bartlick B, Ivell R. (2004) Phosphodiesterase 4 inhibition synergizes with relaxin signaling to promote decidualization of human endometrial stromal cells. J Clin Endocrinol Metab89: 324-334. [PMID:14715868]

3. Bathgate RA, Lin F, Hanson NF, Otvos L, Guidolin A, Giannakis C, Bastiras S, Layfield SL, Ferraro T, Ma S, Zhao C, Gundlach AL, Samuel CS, Tregear GW, Wade JD. (2006) Relaxin-3: Improved Synthesis Strategy and Demonstration of Its High-Affinity Interaction with the Relaxin Receptor LGR7 Both In Vitro and In Vivo. Biochemistry45: 1043-1053. [PMID:16411781]

4. Bathgate RAD, Hsueh AJW, Sherwood OD. (2005) Physiology and molecular biology of the relaxin peptide family. in Physiology of Reproduction Edited by Knobil E, Neill JD Elsevier. 679-968 [ISBN:0125154003]

5. Conrad KP, Novak J. (2004) Emerging role of relaxin in renal and cardiovascular function. Am J Physiol Regul Integr Comp Physiol287: R250-R261. [PMID:15271674]

6. Downing SJ, Hollingsworth M. (1991) Antagonism of relaxin by glibenclamide in the uterus of the rat in vivo. Br J Pharmacol104: 71-76. [PMID:1664766]

7. Downing SJ, McIlwrath A, Hollingsworth M. (1992) Cyclic adenosine 3'5'-monophosphate and the relaxant action of relaxin in the rat uterus in vivo. J Reprod Fertil96: 857-863. [PMID:1339864]

8. Fei DT, Gross MC, Lofgren JL, Mora-Worms M, Chen AB. (1990) Cyclic AMP response to recombinant human relaxin by cultured human endometrial cells--a specific and high throughput in vitro bioassay. Biochem Biophys Res Commun170: 214-222. [PMID:1695506]

9. Halls ML, Bathgate RA, Summers RJ. (2005) Signal switching after stimulation of LGR7 receptors by human relaxin 2. Ann N Y Acad Sci1041: 288-291. [PMID:15956719]

10. Halls ML, Bathgate RA, Summers RJ. (2006) Relaxin family peptide receptors, RXFP1 and RXFP2, modulate cAMP signalling by distinct mechanisms. Mol Pharmacol, : -. [PMID:16569707]

11. Halls ML, Bond CP, Sudo S, Kumagai J, Ferraro T, Layfield S, Bathgate RA, Summers RJ. (2005) Multiple binding sites revealed by interaction of relaxin family peptides with native and chimeric relaxin family peptide receptors 1 and 2 (LGR7 and LGR8). J Pharmacol Exp Ther313: 677-687. [PMID:15649866]

12. Hossain MA, Rosengren KJ, Zhang S, Bathgate RA, Tregear GW, van Lierop BJ, Robinson AJ, Wade JD. (2009) Solid phase synthesis and structural analysis of novel A-chain dicarba analogs of human relaxin-3 (INSL7) that exhibit full biological activity. Org. Biomol. Chem.7 (8): 1547-53. [PMID:19343240]

13. Hossain MA, Samuel CS, Binder C, Hewitson TD, Tregear GW, Wade JD, Bathgate RA. (2010) The chemically synthesized human relaxin-2 analog, B-R13/17K H2, is an RXFP1 antagonist. Amino Acids39 (2): 409-16. [PMID:20043231]

14. Hsu SY, Kudo M, Chen T, Nakabayashi K, Bhalla A, van der Spek PJ, van Duin M, Hsueh AJ. (2000) The three subfamilies of leucine-rich repeat-containing G protein-coupled receptors (LGR): identification of LGR6 and LGR7 and the signaling mechanism for LGR7. Mol Endocrinol14: 1257-1271. [PMID:10935549]

15. Hsu SY, Nakabayashi K, Nishi S, Kumagai J, Kudo M, Sherwood OD, Hsueh AJ. (2002) Activation of orphan receptors by the hormone relaxin. Science295: 671-674. [PMID:11809971]

16. Ivell R, Balvers M, Pohnke Y, Telgmann R, Bartsch O, Milde-Langosch K, Bamberger AM, Einspanier A. (2003) Immunoexpression of the relaxin receptor LGR7 in breast and uterine tissues of humans and primates. Reprod Biol Endocrinol1: 114-114. [PMID:14633277]

17. Kakouris H, Eddie LW, Summers RJ. (1992) Cardiac effects of relaxin in rats. Lancet339: 1076-1078. [PMID:1349104]

18. Kamat AA, Feng S, Bogatcheva NV, Truong A, Bishop CE, Agoulnik AI. (2004) Genetic targeting of relaxin and insulin-like factor 3 receptors in mice. Endocrinology145: 4712-4720. [PMID:15256493]

19. Kohsaka T, Min G, Lukas G, Trupin S, Campbell ET, Sherwood OD. (1998) Identification of specific relaxin-binding cells in the human female. Biol Reprod59: 991-999. [PMID:9746753]

20. Krajnc-Franken MA, van Disseldorp AJ, Koenders JE, Mosselman S, van Duin M, Gossen JA. (2004) Impaired nipple development and parturition in LGR7 knockout mice. Mol Cell Biol24: 687-696. [PMID:14701741]

21. Kuenzi MJ, Sherwood OD. (1995) Immunohistochemical localization of specific relaxin-binding cells in the cervix, mammary glands, and nipples of pregnant rats. Endocrinology136: 1367-1373. [PMID:7895647]

22. Luna JJ, Riesewijk A, Horcajadas JA, Van Os Rd R, Domínguez F, Mosselman S, Pellicer A, Simón C. (2004) Gene expression pattern and immunoreactive protein localization of LGR7 receptor in human endometrium throughout the menstrual cycle. Mol Hum Reprod10: 85-90. [PMID:14742692]

23. Nguyen BT, Yang L, Sanborn BM, Dessauer CW. (2003) Phosphoinositide 3-kinase activity is required for biphasic stimulation of cyclic adenosine 3',5'-monophosphate by relaxin. Mol Endocrinol17: 1075-1084. [PMID:12595573]

24. Nistri S, Bani D. (2003) Relaxin receptors and nitric oxide synthases: search for the missing link. Reprod Biol Endocrinol1: 5-5. [PMID:12646076]

25. Osheroff PL, Ling VT, Vandlen RL, Cronin MJ, Lofgren JA. (1990) Preparation of biologically active 32P-labeled human relaxin. Displaceable binding to rat uterus, cervix, and brain. J Biol Chem265: 9396-9401. [PMID:2160976]

26. Parsell DA, Mak JY, Amento EP, Unemori EN. (1996) Relaxin binds to and elicits a response from cells of the human monocytic cell line, THP-1. J Biol Chem271: 27936-27941. [PMID:8910395]

27. Scott DJ, Layfield S, Riesewijk A, Morita H, Tregear GW, Bathgate RA. (2004) Identification and characterization of the mouse and rat relaxin receptors as the novel orthologues of human leucine-rich repeat-containing G-protein-coupled receptor 7. Clin Exp Pharmacol Physiol31: 828-832. [PMID:15566402]

28. Scott DJ, Tregear GW, Bathgate RA. (2005) LGR7-truncate is a splice variant of the relaxin receptor LGR7 and is a relaxin antagonist in vitro. Ann N Y Acad Sci1041: 22-26. [PMID:15956683]

29. Sudo S, Kumagai J, Nishi S, Layfield S, Ferraro T, Bathgate RA, Hsueh AJ. (2003) H3 relaxin is a specific ligand for LGR7 and activates the receptor by interacting with both the ectodomain and the exoloop 2. J Biol Chem278: 7855-7862. [PMID:12506116]

30. Sunn N, Egli M, Burazin TC, Burns P, Colvill L, Davern P, Denton DA, Oldfield BJ, Weisinger RS, Rauch M, Schmid HA, McKinley MJ. (2002) Circulating relaxin acts on subfornical organ neurons to stimulate water drinking in the rat. Proc Natl Acad Sci U S A99: 1701-1706. [PMID:11830674]

31. Tan YY, Wade JD, Tregear GW, Summers RJ. (1998) Comparison of relaxin receptors in rat isolated atria and uterus by use of synthetic and native relaxin analogues. Br J Pharmacol123: 762-770. [PMID:9517397]

32. Tan YY, Wade JD, Tregear GW, Summers RJ. (1999) Quantitative autoradiographic studies of relaxin binding in rat atria, uterus and cerebral cortex: characterization and effects of oestrogen treatment. Br J Pharmacol127: 91-98. [PMID:10369460]

33. Yang S, Rembiesa B, Büllesbach EE, Schwabe C. (1992) Relaxin receptors in mice: demonstration of ligand binding in symphyseal tissues and uterine membrane fragments. Endocrinology130: 179-185. [PMID:1309327]

To cite this database page, please use the following:

Ross Bathgate, Richard Ivell, Barbara Sanborn, David Sherwood, Roger Summers.
Relaxin family peptide receptors: RXFP1 receptor. Last modified on 23/08/2013. Accessed on 02/09/2014. IUPHAR database (IUPHAR-DB), http://www.iuphar-db.org/DATABASE/ObjectDisplayForward?objectId=351.

Contact us | Print | Back to top | Help
Copyright © 2014 IUPHAR