Nomenclature: IP1 receptor

Family: Prostanoid receptors

Annotation status:  image of a green circle Annotated and expert reviewed. Please contact us if you can help with updates. 

Contents

Gene and Protein Information
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 386 19q13.3 PTGIR prostaglandin I2 (prostacyclin) receptor (IP) 8,44
Mouse 7 416 7 A1 Ptgir prostaglandin I receptor (IP) 46
Rat 7 415 1q21 Ptgir prostaglandin I2 (prostacyclin) receptor (IP)
Previous and Unofficial Names
prostacyclin
IP
prostanoid IP receptor
LOC292661
Ptgir_predicted
PGI receptor
PGI2 receptor
prostacyclin receptor
prostaglandin I receptor (IP)
prostaglandin I receptor (IP) (predicted)
prostaglandin I2 (prostacyclin) receptor
prostaglandin I2 receptor
Database Links
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
GPCRDB
GeneCards
GenitoUrinary Development Molecular Anatomy Project
HomoloGene
Human Protein Reference Database
InterPro
KEGG Gene
OMIM
PharmGKB Gene
PhosphoSitePlus
Protein Ontology (PRO)
RefSeq Nucleotide
RefSeq Protein
TreeFam
UniGene Hs.
UniProtKB
Wikipedia
Natural/Endogenous Ligands
PGD2
PGE2
PGF
PGI2
Comments: PGI2 is the principal endogenous agonist
Rank order of potency
PGI2 >> PGD2, PGE2, PGF > thromboxane A2
Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
taprostene Hs Partial agonist 9.11 pKd 65
pKd 9.11 (Kd 7.69x10-10 M) [65]
[3H]iloprost Hs Full agonist 7.7 – 9.0 pKd 1,8,66
pKd 7.7 – 9.0 (Kd 2x10-8 – 1x10-9 M) [1,8,66]
[3H]iloprost Mm Full agonist 8.3 pKd 46
pKd 8.3 [46]
FK-788 Hs Full agonist 8.05 pKi 20
pKi 8.05 [20]
iloprost Mm Full agonist 8.0 pKi 31
pKi 8.0 [31]
cicaprost Mm Full agonist 8.0 pKi 31
pKi 8.0 [31]
beraprost Mm Full agonist 7.8 pKi 31
pKi 7.8 [31]
isocarbacyclin Mm Full agonist 7.8 pKi 31
pKi 7.8 [31]
cicaprost Hs Full agonist 7.8 pKi 1
pKi 7.8 [1]
iloprost Hs Full agonist 7.5 – 8.0 pKi 1,66
pKi 7.5 – 8.0 [1,66]
MRE-269 Hs Full agonist 7.7 pKi 34
pKi 7.7 [34]
PGE1 Mm Full agonist 7.5 pKi 31
pKi 7.5 [31]
treprostinil Hs Full agonist 7.49 pKi 65
pKi 7.49 [65]
ONO-1301 Mm Full agonist 7.3 pKi 31
pKi 7.3 [31]
FR-181157 Hs Full agonist 7.27 pKi 59
pKi 7.27 [59]
carbacyclin Mm Full agonist 7.0 pKi 31
pKi 7.0 [31]
PGE1 Hs Full agonist 6.82 pKi 37
pKi 6.82 (Ki 1.5x10-7 M) [37]
carbacyclin Hs Full agonist 6.5 – 6.6 pKi 1
pKi 6.5 – 6.6 [1]
butaprost (free acid form) Hs Full agonist 4.3 pKi 1
pKi 4.3 [1]
U46619 Hs Full agonist 4.2 pKi 1
pKi 4.2 [1]
treprostinil Hs Full agonist 8.72 pEC50 65
pEC50 8.72 [65]
AFP-07 Hs Full agonist 8.5 pIC50 11
pIC50 8.5 [11]
TEI-9063 Hs Full agonist 8.5 pIC50 27
pIC50 8.5 [27]
BMY 45778 Hs Full agonist 8.0 pIC50 27
pIC50 8.0 [27]
taprostene Hs Full agonist 6.9 pIC50 27
pIC50 6.9 [27]
EP 157 Hs Full agonist 4.95 – 5.69 pIC50 3
pIC50 4.95 – 5.69 (IC50 1.12x10-5 – 2.03x10-6 M) [3]
View species-specific agonist tables
Agonist Comments
References [11,27] use human platelet preparations instead of transfected cells.

Stable analogues of prostacyclin (e.g. iloprost, carbacyclin, AFP-07) often show potent EP1 agonist and modest EP3 agonism; cicaprost is the most selective IP agonist [14,35]. Treprostinil has high affinity for the DP1 and EP2 receptors with pKi values of 8.36 and 8.44 respectively [65]. IP receptor agonism is generated by the introduction of a diaryl-heteroatomic unit into PGH analogues (e.g. EP-157) and other n-alkylcarboxylic acids (BMY-45778, ONO-1301, MRE-269) often designated as 'non-prostanoid prostacyclin mimetics' [28,38]. MRE 269 is the biologically-active metabolite of the pro-drug, NS304 (ACT-293987) known as Selexipag.
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
RO1138452 Hs Antagonist 8.2 – 9.0 pA2 7,47
pA2 8.2 – 9.0 [7,47]
RO3244794 Hs Antagonist 8.5 pA2 7
pA2 8.5 [7]
RO3244794 Hs Antagonist 9.1 – 9.53 pKB 67-68
pKB 9.1 – 9.53 [67-68]
RO1138452 Hs Antagonist 8.7 pKi 7
pKi 8.7 [7]
RO3244794 Hs Antagonist 6.9 pKi 7
pKi 6.9 [7]
BAY-73-1449 Hs Antagonist >10.0 pIC50 6
pIC50 >10.0 (IC50 <1x10-10 M) [6]
Antagonist Comments
RO-1138452 has similar pA2 values (8.1 - 8.4) for human, guinea-pig and rabbit IP receptors [29]. However, it also has moderately high affinity for imidazoline I2 and PAF receptors [7]. RO-3244794 appears to be more specific [7]. RO-1138452 may behave as a pseudo-irreversible antagonist [5,47].
Primary Transduction Mechanisms
Transducer Effector/Response
Gs family Adenylate cyclase stimulation
References:  46,53
Secondary Transduction Mechanisms
Transducer Effector/Response
Gi/Go family
Gq/G11 family
Adenylate cyclase inhibition
Phospholipase C stimulation
Comments:  Gq signalling has been reported in heterologous expression systems but it is unclear whether this coupling occurs widely in native cells or tissues [39].
References:  39,53
Tissue Distribution
Airway smooth muscle cells.
Species:  Human
Technique:  RT-PCR.
References:  13
Basophils.
Species:  Human
Technique:  Radioligand binding.
References:  61
Kidney > lung, liver > skeletal muscle, heart.
Species:  Human
Technique:  Northern blotting.
References:  8
Aorta, lung, atrium, ventricle, kidney.
Species:  Human
Technique:  Northern blotting.
References:  44
Thymus > spleen > heart > lung.
Species:  Mouse
Technique:  Northern blotting.
References:  46
Kidney: medullary thick ascending limb.
Species:  Rat
Technique:  In situ hybridisation and RT-PCR.
References:  24
CNS: dorsal root ganglion neurons.
Species:  Rat
Technique:  RT-PCR.
References:  42
Expression Datasets

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays
Measurement of cAMP levels in Xenopus oocytes transfected with the human IP1 receptor and the cystic fibrosis transmembrane conductance regulator (a cAMP-activated Cl- channel).
Species:  Human
Tissue:  Xenopus oocytes.
Response measured:  Stimulation of cAMP accumulation.
References:  8,17
Measurement of cAMP levels in CHO cells transfected with the mouse IP1 receptor.
Species:  Mouse
Tissue:  CHO cells.
Response measured:  Stimulation of cAMP accumulation.
References:  46
Measurement of PI metabolite formation in CHO cells transfected with the mouse IP1 receptor.
Species:  Mouse
Tissue:  CHO cells.
Response measured:  Stimulation of PI hydrolysis.
References:  46
Measurement of cAMP levels in COS-7 cells transfected with the human IP1 receptor.
Species:  Human
Tissue:  COS-7 cells.
Response measured:  Stimulation of cAMP accumulation.
References:  44
Measurement of cAMP levels in adult rat cardiomyocytes endogenously expressing the IP1 receptor.
Species:  Rat
Tissue:  Cardiomyocytes.
Response measured:  Stimulation of cAMP accumulation.
References:  51
Measurement of cAMP and substance P levels in cultured rat dorsal root ganglion neurons endogenously expressing the IP1 receptor.
Species:  Rat
Tissue:  Cultured dorsal root ganglion neurons.
Response measured:  Stimulation of cAMP accumulation and substance P release.
References:  42
Measurement of cAMP levels in human platelets endogenously expressing the IP1 receptor.
Species:  Human
Tissue:  Platelets.
Response measured:  Stimulation of cAMP accumulation.
References:  54
Measurement of cAMP levels in HEL cells endogenously expressing the IP1 receptor.
Species:  Human
Tissue:  HEL cells.
Response measured:  Stimulation of cAMP accumulation.
References:  15
Measurement of Ca2+ levels in human erythroleukemia (HEL) cells endogenously expressing the IP1 receptor.
Species:  Human
Tissue:  HEL cells.
Response measured:  Increase in Ca2+ concentration.
References:  15
Measurement of CRE-dependent transcription and augmentation of GRE-dependent transcription in cells endogenously expressing the IP1receptor
Species:  Human
Tissue:  BEAS-2B airway epithelial cells.
Response measured:  Activation of CRE and GRE luciferase reporter constructs.
References:  5,67-68
Measurement of cAMP in dorsal root ganglion neurons and UMR 108 cells endogenously expressing the IP1 receptor.
Species:  Rat
Tissue:  Dorsal root ganglion neurons and UMR 108 osteosarcoma cells.
Response measured:  Stimulation of cAMP accumulation.
References:  43
Physiological Functions
Relaxation of pulmonary arterial smooth muscle.
Species:  Human
Tissue:  Pulmonary vascular preparations.
References:  62
Relaxation of bronchial smooth muscle.
Species:  Human
Tissue:  Bronchial preparations.
References:  48
Inhibition of platelet aggregation.
Species:  Human
Tissue:  Platelets.
References:  4,54
Inhibition of platelet aggregation.
Species:  Rat
Tissue:  Platelets.
References:  4,54
Antihypertrophy.
Species:  Rat
Tissue:  Cardiomyocytes.
References:  51
Relaxation.
Species:  Human
Tissue:  Pulmonary artery.
References:  21
Inhibition of chemokine/cytokine release.
Species:  Mouse
Tissue:  Th1 and Th2 cells.
References:  71
Augmentation of glucocorticoid-induced gene expression
Species:  Human
Tissue:  Airway epithelial cells.
References:  68
Inhibition of chemokine release.
Species:  Human
Tissue:  Airway epithelial cells.
References:  5
Sensitisation of sensory neurons.
Species:  Rat
Tissue:  Dorsal root ganglion neurons.
References:  43
Physiological Consequences of Altering Gene Expression
IP1 receptor knockout mice exhibit reduced inflammatory and pain responses and increased susceptibility to thrombosis.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  40
IP1 receptor knockout mice exhibit reduced inflammatory nociception.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  60
IP1 receptor knockout mice exhibit increased cardiomyocyte and cardiac hypertrophy and increased cardiac fibrosis.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  18
IP1 receptor knockout mice exhibit increased allergic inflammation in airways and skin, as well as increased capillary pemeability and increased IgE and IgG production.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  57
IP1 knockout mice exhibit enhanced atherogenesis.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  32
Injury-induced vascular proliferation and platelet activation are enhanced in mice that are genetically deficient in the IP1 receptor.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  12
Cardiac injury upon post-ischemic reperfusion was worsened in mice lacking the IP2 receptor.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  69
IP1 knockout mice develop more severe pulmonary hypertension and vascular remodeling after chronic hypoxic exposure, when compared to the wild-type.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  23
IP1-deficient mice are more susceptible to respiratory syncytial virus-induced illness.
Species:  Mouse
Tissue:  Respiratory tract.
Technique:  Gene targeting in embryonic stem cells.
References:  19
Th1 cell differentiation in a model of contact hypersensitivity is inhibited in IP1 receptor knockout mice.
Species:  Mouse
Tissue:  T-lymphocytes.
Technique:  Gene targeting in embryonic stem cells.
References:  45
Mice deficient in the IP1 receptor are protected against experimental osteoarthritis and rheumatoid arthritis
Species:  Mouse
Tissue:  Knee joint.
Technique:  Gene targeting in embryonic stem cells.
References:  50
IP1 receptor-deficient mice have impaired Th17 differentiation and delayed onset of experimental autoimmune encephalomyelitis.
Species:  Mouse
Tissue:  Th17 T-lymphocytes and CNS.
Technique:  Gene targeting in embryonic stem cells.
References:  72
IP1 receptor deficiency inhibits recruitment of endothelial progenitor cells and accelerates vascular remodelling in wire injury-mediated neointimal hyperplasia.
Species:  Mouse
Tissue:  Endothelial progenitor cells and femoral artery.
Technique:  Gene targeting in embryonic stem cells.
References:  30
IP1 receptor-deficient mice develop salt-sensitive hypertension, cardiac hypertrophy, and cardiac fibrosis.
Species:  Mouse
Tissue:  Myocardium, vascular smooth muscle.
Technique:  Gene targeting in embryonic stem cells.
References:  10,16
IP1 receptor inactivation promotes anatomical and functional damage following ischemic stroke.
Species:  Mouse
Tissue:  Middle cerebral artery.
Technique:  Gene targeting in embryonic stem cells.
References:  52
IP1 receptor deletion aggravates hippocampal neuronal loss after bilateral common carotid artery occlusion.
Species:  Mouse
Tissue:  Brain.
Technique:  Gene targeting in embryonic stem cells.
References:  64
IP1 receptor deletion inhibits the development of IL-17-producing γδ T cells.
Species:  Mouse
Tissue:  Thymus and lungs during allergic inflammation.
Technique:  Gene targeting in embryonic stem cells.
References:  26
IP1 receptor deletion attenuates zymosan-induced pleurisy.
Species:  Mouse
Tissue:  Pleural cavity.
Technique:  Gene targeting in embryonic stem cells.
References:  70
CCL17-induced chemotaxis of CD4+ Th2 T-cells is unaffected in cells harvested from IP1 receptor deficient mice compared to wild type. mice.
Species:  Mouse
Tissue:  CD4+ Th2 T-cells.
Technique:  Gene targeting in embryonic stem cells.
References:  25
Neuronal cell loss after brain trauma is enhanced in IP1 receptor deficient mice compared to wild type animals.
Species:  Mouse
Tissue:  Brain.
Technique:  Gene targeting in embryonic stem cells.
References:  36
Migration and cell fusion are attenuated in myoblasts harvested from IP1 receptor-deficient mice compared to wild type animals.
Species:  Mouse
Tissue:  Skeletal muscle.
Technique:  Gene targeting in embryonic stem cells.
References:  9
IP1 receptor deficient mice exhibited significant reduction in arthritis scores compared to wild-type mice.
Species:  Mouse
Tissue:  Knee joint.
Technique:  Gene targeting in embryonic stem cells.
References:  22
Ischemia/reperfusion-induced gastric lesions are aggravated in IP1 receptor-deficient mice.
Species:  Mouse
Tissue:  Stomach.
Technique:  Gene targeting in embryonic stem cells.
References:  33
In sensitized mice, prolonged allergen exposure increases pulmonary eosinophil and lymphocyte burden, Th2 cytokines and ovalbumin-specific immunoglobulin IgE and IgG1 in serum that is significantly enhanced in animals lacking the IP1 receptor.
Species:  Mouse
Tissue:  Lung and T-lymphocytes
Technique:  Gene targeting in embryonic stem cells.
References:  41
Phenotypes, Alleles and Disease Models Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Ptgirtm1Sna Ptgirtm1Sna/Ptgirtm1Sna
involves: 129P2/OlaHsd * C57BL/6
MGI:99535  MP:0002551 abnormal blood coagulation PMID: 9262402 
Ptgirtm1Sna Ptgirtm1Sna/Ptgirtm1Sna
involves: 129P2/OlaHsd * C57BL/6
MGI:99535  MP:0000249 abnormal blood vessel physiology PMID: 11964481 
Ptgirtm1Sna Ptgirtm1Sna/Ptgirtm1Sna
involves: 129P2/OlaHsd * C57BL/6
MGI:99535  MP:0001544 abnormal cardiovascular system physiology PMID: 11964481 
Ptgirtm1Sna Ptgirtm1Sna/Ptgirtm1Sna
involves: 129P2/OlaHsd * C57BL/6
MGI:99535  MP:0005464 abnormal platelet physiology PMID: 11964481 
Ptgirtm1Sna Ptgirtm1Sna/Ptgirtm1Sna
involves: 129P2/OlaHsd * C57BL/6
MGI:99535  MP:0009818 abnormal thromboxane level PMID: 11964481 
Ptgirtm1Sna Ptgirtm1Sna/Ptgirtm1Sna
involves: 129P2/OlaHsd * C57BL/6
MGI:99535  MP:0005087 decreased acute inflammation PMID: 9262402 
Ptgirtm1Sna Ptgirtm1Sna/Ptgirtm1Sna
involves: 129P2/OlaHsd * C57BL/6
MGI:99535  MP:0009815 decreased prostaglandin level PMID: 9262402 
Ptgirtm1Sna Ptgirtm1Sna/Ptgirtm1Sna
involves: 129P2/OlaHsd * C57BL/6
MGI:99535  MP:0008531 increased chemical nociceptive threshold PMID: 9262402 
Ptgirtm1Sna Ptgirtm1Sna/Ptgirtm1Sna
involves: 129P2/OlaHsd * C57BL/6
MGI:99535  MP:0002080 prenatal lethality PMID: 9262402 
Ptgirtm1Sna Ptgirtm1Sna/Ptgirtm1Sna
involves: 129P2/OlaHsd * C57BL/6
MGI:99535  MP:0005048 thrombosis PMID: 16614756  9262402 
Ptgirtm1Sna Ptgirtm1Sna/Ptgirtm1Sna
involves: 129P2/OlaHsd * C57BL/6
MGI:99535  MP:0005413 vascular restenosis PMID: 11964481 
Biologically Significant Variants
Type:  Single nucleotide polymorphisms.
Species:  Human
Description:  R212C; enhances cardiovascular disease progression if risk factors co-exist.
Amino acids:  386
References:  2,49
Type:  Single nucleotide polymorphisms.
Species:  Human
Description:  Coronary artery occlusion.
Amino acids:  386
References:  55
Type:  Single nucleotide polymorphisms.
Species:  Human
Description:  IP1 variants including R77C, L104R, M113T, R212H, R212C, R215C, R279C, I293N have impaired cAMP signalling.
Amino acids:  386
References:  55-56
General Comments
Pharmacological evidence for a second IP receptor, denoted IP2, in the central nervous system [58,63] and in the BEAS-2B human airway epithelial cell line [67] is available. This receptor is selectively activated by 15R-17,18,19,20-tetranor-16-m-tolyl-isocarbacyclin (15R-TIC; Ligand ID 5864) and 15R-Deoxy 17,18,19,20-tetranor-16-m-tolyl-isocarbacyclin (15-deoxy-TIC; Ligand ID 5865). However, molecular biological evidence for the IP2 subtype is currently lacking.
Available Assays
DiscoveRx PathHunter® CHO-K1 PTGIR β-Arrestin Cell Line (Cat no. 93-0305C2)
PathHunter® HEK 293 PTGIR β-Arrestin Cell Line (Cat no. 93-0305C1)
more info

REFERENCES

1. Abramovitz M, Adam M, Boie Y, Carriere M, Denis D, Godbout C, Lamontagne S, Rochette C, Sawyer N, Tremblay NM, Belley M, Gallant M, Dufresne C, Gareau Y, Ruel R, Juteau H, Labelle M, Ouimet N, Metters KM. (2000) The utilization of recombinant prostanoid receptors to determine the affinities and selectivities of prostaglandins and related analogues. Biochim. Biophys. Acta.1483: 285-293. [PMID:10634944]

2. Arehart E, Stitham J, Asselbergs FW, Douville K, MacKenzie T, Fetalvero KM, Gleim S, Kasza Z, Rao Y, Martel L et al.. (2008) Acceleration of cardiovascular disease by a dysfunctional prostacyclin receptor mutation: potential implications for cyclooxygenase-2 inhibition. Circ. Res.102 (8): 986-93. [PMID:18323528]

3. Armstrong RA, Jones RL, MacDermot J, Wilson NH. (1986) Prostaglandin endoperoxide analogues which are both thromboxane receptor antagonists and prostacyclin mimetics. Br J Pharmacol87: 543-551. [PMID:3026540]

4. Armstrong RA, Lawrence RA, Jones RL, Wilson NH, Collier A. (1989) Functional and ligand binding studies suggest heterogeneity of platelet prostacyclin receptors. Br. J. Pharmacol.97: 657-668. [PMID:2474350]

5. Ayer LM, Wilson SM, Traves SL, Proud D, Giembycz MA. (2008) 4,5-Dihydro-1H-imidazol-2-yl)-[4-(4-isopropoxy-benzyl)-phenyl]-amine (RO1138452) is a selective, pseudo-irreversible orthosteric antagonist at the prostacyclin (IP)-receptor expressed by human airway epithelial cells: IP-receptor-mediated inhibition of CXCL9 and CXCL10 release. J. Pharmacol. Exp. Ther.324 (2): 815-26. [PMID:17962517]

6. Bexis S, McCormick PA, Docherty JR. (2008) Vascular actions of the prostacyclin receptor antagonist BAY 73-1449 in the portal hypertensive rat. Eur. J. Pharmacol.590 (1-3): 322-6. [PMID:18603238]

7. Bley KR, Bhattacharya A, Daniels DV, Gever J, Jahangir A, O'yang C, Smith S, Srinivasan D, Ford AP, Jett MF. (2006) RO1138452 and RO3244794: characterization of structurally distinct, potent and selective IP (prostacyclin) receptor antagonists. Br J Pharmacol147: 335-345. [PMID:16331286]

8. Boie Y, Rushmore TH, Darmon-Goodwin A, Grygorczyk R, Slipetz DM, Metters KM, Abramovitz M. (1994) Cloning and expression of a cDNA for the human prostanoid IP receptor. J. Biol. Chem.269: 12173-12178. [PMID:7512962]

9. Bondesen BA, Jones KA, Glasgow WC, Pavlath GK. (2007) Inhibition of myoblast migration by prostacyclin is associated with enhanced cell fusion. FASEB J.21 (12): 3338-45. [PMID:17488951]

10. Chan EC, Dusting GJ, Guo N, Peshavariya HM, Taylor CJ, Dilley R, Narumiya S, Jiang F. (2010) Prostacyclin receptor suppresses cardiac fibrosis: role of CREB phosphorylation. J. Mol. Cell. Cardiol.49 (2): 176-85. [PMID:20403362]

11. Chang CS, Negishi M, Nakano T, Morizawa Y, Matsumura Y, Ichikawa A. (1997) 7,7-Difluoroprostacyclin derivative, AFP-07, a highly selective and potent agonist for the prostacyclin receptor. Prostaglandins53: 83-90. [PMID:9112287]

12. Cheng Y, Austin SC, Rocca B, Koller BH, Coffman TM, Grosser T, Lawson JA, FitzGerald GA. (2002) Role of prostacyclin in the cardiovascular response to thromboxane A2. Science296: 539-541. [PMID:11964481]

13. Clarke DL, Belvisi MG, Smith SJ, Hardaker E, Yacoub MH, Meja KK, Newton R, Slater DM, Giembycz MA. (2005) Prostanoid receptor expression by human airway smooth muscle cells and regulation of the secretion of granulocyte colony-stimulating factor. Am. J. Physiol. Lung Cell Mol. Physiol.288 (2): L238-50. [PMID:15640521]

14. Dong YJ, Jones RL, Wilson NH. (1986) Prostaglandin E receptor subtypes in smooth muscle: agonist activities of stable prostacyclin analogues. Br J Pharmacol87: 97-107. [PMID:2420404]

15. Feoktistov I, Breyer RM, Biaggioni I. (1997) Prostanoid receptor with a novel pharmacological profile in human erythroleukemia cells. Biochem Pharmacol54: 917-926. [PMID:9354592]

16. Francois H, Athirakul K, Howell D, Dash R, Mao L, Kim HS, Rockman HA, Fitzgerald GA, Koller BH, Coffman TM. (2005) Prostacyclin protects against elevated blood pressure and cardiac fibrosis. Cell Metab.2 (3): 201-7. [PMID:16154102]

17. Grygorczyk R, Abramovitz M, Boie Y, Bastien L, Adam M. (1995) Detection of adenylate cyclase-coupled receptors in Xenopus oocytes by coexpression with cystic fibrosis transmembrane conductance regulator. Anal Biochem227: 27-31. [PMID:7545356]

18. Hara A, Yuhki K, Fujino T, Yamada T, Takayama K, Kuriyama S, Takahata O, Karibe H, Okada Y, Xiao CY, Ma H, Narumiya S, Ushikubi F. (2005) Augmented cardiac hypertrophy in response to pressure overload in mice lacking the prostaglandin I2 receptor. Circulation112: 84-92. [PMID:15983244]

19. Hashimoto K, Graham BS, Geraci MW, FitzGerald GA, Egan K, Zhou W, Goleniewska K, O'Neal JF, Morrow JD, Durbin RK et al.. (2004) Signaling through the prostaglandin I2 receptor IP protects against respiratory syncytial virus-induced illness. J. Virol.78 (19): 10303-9. [PMID:15367596]

20. Hattori K, Tanaka A, Okitsu O, Tabuchi S, Taniguchi K, Nishio M, Koyama S, Higaki M, Seki J, Sakane K. (2005) Discovery of diphenylcarbamate derivatives as highly potent and selective IP receptor agonists: orally active prostacyclin mimetics. Part 3. Bioorg. Med. Chem. Lett.15 (12): 3091-5. [PMID:15914004]

21. Haye-Legrand I, Bourdillat B, Labat C, Cerrina J, Norel X, Benveniste J, Brink C. (1987) Relaxation of isolated human pulmonary muscle preparations with prostacyclin (PGI2) and its analogs. Prostaglandins33 (6): 845-54. [PMID:2445003]

22. Honda T, Segi-Nishida E, Miyachi Y, Narumiya S. (2006) Prostacyclin-IP signaling and prostaglandin E2-EP2/EP4 signaling both mediate joint inflammation in mouse collagen-induced arthritis. J. Exp. Med.203 (2): 325-35. [PMID:16446378]

23. Hoshikawa Y, Voelkel NF, Gesell TL, Moore MD, Morris KG, Alger LA, Narumiya S, Geraci MW. (2001) Prostacyclin receptor-dependent modulation of pulmonary vascular remodeling. Am J Respir Crit Care Med164: 314-318. [PMID:11463607]

24. Hébert RL, O'Connor T, Neville C, Burns KD, Laneuville O, Peterson LN. (1998) Prostanoid signaling, localization, and expression of IP receptors in rat thick ascending limb cells. Am J Physiol275: F904-F914. [PMID:9843907]

25. Jaffar Z, Ferrini ME, Buford MC, Fitzgerald GA, Roberts K. (2007) Prostaglandin I2-IP signaling blocks allergic pulmonary inflammation by preventing recruitment of CD4+ Th2 cells into the airways in a mouse model of asthma. J. Immunol.179 (9): 6193-203. [PMID:17947695]

26. Jaffar Z, Ferrini ME, Shaw PK, FitzGerald GA, Roberts K. (2011) Prostaglandin I₂promotes the development of IL-17-producing γδ T cells that associate with the epithelium during allergic lung inflammation. J. Immunol.187 (10): 5380-91. [PMID:21976777]

27. Jones RL, Qian YM, Wise H, Wong HN, Lam WL, Chan HW, Yim AP, Ho JK. (1997) Relaxant actions of nonprostanoid prostacyclin mimetics on human pulmonary artery. J Cardiovasc Pharmacol29: 525-535. [PMID:9156364]

28. Jones RL, Wilson NH, Marr CG, Muir G, Armstrong RA. (1993) Diphenylmethylazine prostanoids with prostacyclin-like actions on human platelets. J Lipid Mediat6 (1-3): 405-10. [PMID:8357998]

29. Jones RL, Wise H, Clark R, Whiting RL, Bley KR. (2006) Investigation of the prostacyclin (IP) receptor antagonist RO1138452 on isolated blood vessel and platelet preparations. Br J Pharmacol149: 110-120. [PMID:16880763]

30. Kawabe J, Yuhki K, Okada M, Kanno T, Yamauchi A, Tashiro N, Sasaki T, Okumura S, Nakagawa N, Aburakawa Y et al.. (2010) Prostaglandin I2 promotes recruitment of endothelial progenitor cells and limits vascular remodeling. Arterioscler. Thromb. Vasc. Biol.30 (3): 464-70. [PMID:20007911]

31. Kiriyama M, Ushikubi F, Kobayashi T, Hirata M, Sugimoto Y, Narumiya S. (1997) Ligand binding specificities of the eight types and subtypes of the mouse prostanoid receptors expressed in Chinese hamster ovary cells. Br. J. Pharmacol.122: 217-224. [PMID:9313928]

32. Kobayashi T, Tahara Y, Matsumoto M, Iguchi M, Sano H, Murayama T, Arai H, Oida H, Yurugi-Kobayashi T, Yamashita JK, Katagiri H, Majima M, Yokode M, Kita T, Narumiya S. (2004) Roles of thromboxane A(2) and prostacyclin in the development of atherosclerosis in apoE-deficient mice. J Clin Invest114: 784-794. [PMID:15372102]

33. Kotani T, Kobata A, Nakamura E, Amagase K, Takeuchi K. (2006) Roles of cyclooxygenase-2 and prostacyclin/IP receptors in mucosal defense against ischemia/reperfusion injury in mouse stomach. J. Pharmacol. Exp. Ther.316 (2): 547-55. [PMID:16236816]

34. Kuwano K, Hashino A, Asaki T, Hamamoto T, Yamada T, Okubo K, Kuwabara K. (2007) 2-[4-[(5,6-diphenylpyrazin-2-yl)(isopropyl)amino]butoxy]-N-(methylsulfonyl)acetamide (NS-304), an orally available and long-acting prostacyclin receptor agonist prodrug. J. Pharmacol. Exp. Ther.322 (3): 1181-8. [PMID:17545310]

35. Lawrence RA, Jones RL, Wilson NH. (1992) Characterization of receptors involved in the direct and indirect actions of prostaglandins E and I on the guinea pig ileum. Br. J. Pharmacol.105: 271-278. [PMID:1559125]

36. Lundblad C, Grände PO, Bentzer P. (2008) Increased cortical cell loss and prolonged hemodynamic depression after traumatic brain injury in mice lacking the IP receptor for prostacyclin. J. Cereb. Blood Flow Metab.28 (2): 367-76. [PMID:17713464]

37. Maruyama T, Asada M, Shiraishi T, Ishida A, Egashira H, Yoshida H, Maruyama T, Ohuchida S, Nakai H, Kondo K et al.. (2001) Design and synthesis of a highly selective EP4-receptor agonist. Part 1: 3,7-dithiaPG derivatives with high selectivity. Bioorg. Med. Chem. Lett.11 (15): 2029-31. [PMID:11454473]

38. Meanwell NA, Romine JL, Seiler SM. (1994) Non-prostanoid prostacyclin mimetics. Drugs of the Future19 (4): 361-385.

39. Miggin SM, Kinsella BT. (2002) Investigation of the mechanisms of G protein: effector coupling by the human and mouse prostacyclin receptors. Identification of critical species-dependent differences. J. Biol. Chem.277 (30): 27053-64. [PMID:12016224]

40. Murata T, Ushikubi F, Matsuoka T, Hirata M, Yamasaki A, Sugimoto Y, Ichikawa A, Aze Y, Tanaka T, Yoshida N, Ueno A, Oh-ishi S, Narumiya S. (1997) Altered pain perception and inflammatory response in mice lacking prostacyclin receptor. Nature288: 678-682. [PMID:9262402]

41. Nagao K, Tanaka H, Komai M, Masuda T, Narumiya S, Nagai H. (2003) Role of prostaglandin I2 in airway remodeling induced by repeated allergen challenge in mice. Am. J. Respir. Cell Mol. Biol.29 (3 Pt 1): 314-20. [PMID:12676807]

42. Nakae K, Hayashi F, Hayashi M, Yamamoto N, Iino T, Yoshikawa S, Gupta J. (2005) Functional role of prostacyclin receptor in rat dorsal root ganglion neurons. Neurosci Lett388: 132-137. [PMID:16039053]

43. Nakae K, Saito K, Iino T, Yamamoto N, Wakabayashi M, Yoshikawa S, Matsushima S, Miyashita H, Sugimoto H, Kiba A, Gupta J. (2005) A prostacyclin receptor antagonist inhibits the sensitized release of substance P from rat sensory neurons. J Pharmacol Exp Ther315: 1136-1142. [PMID:16109742]

44. Nakagawa O, Tanaka I, Usui T, Harada M, Sasaki Y, Itoh H, Yoshimasa T, Namba T, Narumiya S, Nakao K. (1994) Molecular cloning of human prostacyclin receptor cDNA and its gene expression in the cardiovascular system. Circulation90: 1643-1647. [PMID:7923647]

45. Nakajima S, Honda T, Sakata D, Egawa G, Tanizaki H, Otsuka A, Moniaga CS, Watanabe T, Miyachi Y, Narumiya S et al.. (2010) Prostaglandin I2-IP signaling promotes Th1 differentiation in a mouse model of contact hypersensitivity. J. Immunol.184 (10): 5595-603. [PMID:20400695]

46. Namba T, Oida H, Sugmoto Y, Kakizuka A, Negishi M, Ichikawa A, Narumiya S. (1994) cDNA cloning of a mouse prostacyclin receptor: multiple signalling pathways and expression in thymic medulla. J. Biol. Chem.269: 9986-9992. [PMID:7511597]

47. Ng KY, Wong YH, Wise H. (2011) Glial cells isolated from dorsal root ganglia express prostaglandin E(2) (EP(4)) and prostacyclin (IP) receptors. Eur. J. Pharmacol.661 (1-3): 42-8. [PMID:21549696]

48. Norel X, Walch L, Labat C, Gascard JP, Dulmet E, Brink C. (1999) Prostanoid receptors involved in the relaxation of human bronchial preparations. Br J Pharmacol126: 867-872. [PMID:10193766]

49. Patrignani P, Di Febbo C, Tacconelli S, Douville K, Guglielmi MD, Horvath RJ, Ding M, Sierra K, Stitham J, Gleim S et al.. (2008) Differential association between human prostacyclin receptor polymorphisms and the development of venous thrombosis and intimal hyperplasia: a clinical biomarker study. Pharmacogenet. Genomics18 (7): 611-20. [PMID:18551041]

50. Pulichino AM, Rowland S, Wu T, Clark P, Xu D, Mathieu MC, Riendeau D, Audoly LP. (2006) Prostacyclin antagonism reduces pain and inflammation in rodent models of hyperalgesia and chronic arthritis. J. Pharmacol. Exp. Ther.319 (3): 1043-50. [PMID:16973887]

51. Ritchie RH, Rosenkranz AC, Huynh LP, Stephenson T, Kaye DM, Dusting GJ. (2004) Activation of IP prostanoid receptors prevents cardiomyocyte hypertrophy via cAMP-dependent signaling. Am J Physiol Heart Circ Physiol287: H1179-H1185. [PMID:15072955]

52. Saleem S, Shah ZA, Maruyama T, Narumiya S, Doré S. (2010) Neuroprotective properties of prostaglandin I2 IP receptor in focal cerebral ischemia. Neuroscience170 (1): 317-23. [PMID:20621166]

53. Schwaner I, Offermanns S, Spicher K, Seifert R, Schultz G. (1995) Differential activation of Gi and Gs proteins by E- and I-type prostaglandins in membranes from the human erythroleukaemia cell line, HEL. Biochim Biophys Acta1265: 8-14. [PMID:7532011]

54. Seiler SM, Brassard CL, Federici ME, Romine J, Meanwell NA. (1997) [3-[4-(4,5-Diphenyl-2-oxazolyl)-5-oxazolyl]phenoxy]acetic acid (BMY 45778) is a potent non-prostanoid prostacyclin partial agonist: effects on platelet aggregation, adenylyl cyclase, cAMP levels, protein kinase, and iloprost binding. Prostaglandins53: 21-35. [PMID:9068064]

55. Stitham J, Arehart E, Elderon L, Gleim SR, Douville K, Kasza Z, Fetalvero K, MacKenzie T, Robb J, Martin KA et al.. (2011) Comprehensive biochemical analysis of rare prostacyclin receptor variants: study of association of signaling with coronary artery obstruction. J. Biol. Chem.286 (9): 7060-9. [PMID:21189259]

56. Stitham J, Stojanovic A, Hwa J. (2002) Impaired receptor binding and activation associated with a human prostacyclin receptor polymorphism. J. Biol. Chem.277 (18): 15439-44. [PMID:11854299]

57. Takahashi Y, Tokuoka S, Masuda T, Hirano Y, Nagao M, Tanaka H, Inagaki N, Narumiya S, Nagai H. (2002) Augmentation of allergic inflammation in prostanoid IP receptor deficient mice. Br J Pharmacol137: 315-322. [PMID:12237250]

58. Takechi H, Matsumura K, Watanabe Y, Kato K, Noyori R, Suzuki M, Watanabe Y. (1996) A novel subtype of the prostacyclin receptor expressed in the central nervous system. J. Biol. Chem.271: 5901-5906. [PMID:8621463]

59. Tanaka A, Hattori K, Taniguchi K, Okitsu O, Tabuchi S, Nishio M, Nagakura Y, Maeda N, Murai H, Seki J. (2006) Replacing the cyclohexene-linker of FR181157 leading to novel IP receptor agonists: orally active prostacyclin mimetics. Part 6. Bioorg. Med. Chem. Lett.16 (18): 4861-4. [PMID:16837197]

60. Ueno A, Matsumoto H, Naraba H, Ikeda Y, Ushikubi F, Matsuoka T, Narumiya S, Sugimoto Y, Ichikawa A, Oh-ishi S. (2001) Major roles of prostanoid receptors IP and EP(3) in endotoxin-induced enhancement of pain perception. Biochem Pharmacol62: 157-160. [PMID:11389873]

61. Virgolini I, Li S, Sillaber C, Majdic O, Sinzinger H, Lechner K, Bettelheim P, Valent P. (1992) Characterization of prostaglandin (PG)-binding sites expressed on human basophils. Evidence for a prostaglandin E1, I2, and a D2 receptor. J. Biol. Chem.267 (18): 12700-8. [PMID:1377673]

62. Walch L, Labat C, Gascard JP, de Montpreville V, Brink C, Norel X. (1999) Prostanoid receptors involved in the relaxation of human pulmonary vessels. Br J Pharmacol126: 859-866. [PMID:10193765]

63. Watanabe Y, Matsumura K, Takechi H, Kato K, Morii H, Björkman M, Långström B, Noyori R, Suzuki M, Watanabe Y. (1999) A novel subtype of prostacyclin receptor in the central nervous system. J. Neurochem.72 (6): 2583-92. [PMID:10349870]

64. Wei G, Kibler KK, Koehler RC, Maruyama T, Narumiya S, Doré S. (2008) Prostacyclin receptor deletion aggravates hippocampal neuronal loss after bilateral common carotid artery occlusion in mouse. Neuroscience156 (4): 1111-7. [PMID:18790018]

65. Whittle BJ, Silverstein AM, Mottola DM, Clapp LH. (2012) Binding and activity of the prostacyclin receptor (IP) agonists, treprostinil and iloprost, at human prostanoid receptors: treprostinil is a potent DP1 and EP2 agonist. Biochem. Pharmacol.84 (1): 68-75. [PMID:22480736]

66. Wilson RJ, Giblin GM, Roomans S, Rhodes SA, Cartwright KA, Shield VJ, Brown J, Wise A, Chowdhury J, Pritchard S, Coote J, Noel LS, Kenakin T, Burns-Kurtis CL, Morrison V, Gray DW, Giles H. (2006) GW627368X ((N-{2-[4-(4,9-diethoxy-1-oxo-1,3-dihydro-2H-benzo[f]isoindol-2-yl)phenyl]acetyl} benzene sulphonamide): a novel, potent and selective prostanoid EP4 receptor antagonist. Br J Pharmacol148: 326-339. [PMID:16604093]

67. Wilson SM, Sheddan NA, Newton R, Giembycz MA. (2011) Evidence for a second receptor for prostacyclin on human airway epithelial cells that mediates inhibition of CXCL9 and CXCL10 release. Mol. Pharmacol.79 (3): 586-95. [PMID:21173040]

68. Wilson SM, Shen P, Rider CF, Traves SL, Proud D, Newton R, Giembycz MA. (2009) Selective prostacyclin receptor agonism augments glucocorticoid-induced gene expression in human bronchial epithelial cells. J. Immunol.183 (10): 6788-99. [PMID:19880449]

69. Xiao CY, Hara A, Yuhki K, Fujino T, Ma H, Okada Y, Takahata O, Yamada T, Murata T, Narumiya S, Ushikubi F. (2001) Roles of prostaglandin I(2) and thromboxane A(2) in cardiac ischemia-reperfusion injury: a study using mice lacking their respective receptors. Circulation104: 2210-2215. [PMID:11684633]

70. Yuhki K, Ushikubi F, Naraba H, Ueno A, Kato H, Kojima F, Narumiya S, Sugimoto Y, Matsushita M, Oh-Ishi S. (2008) Prostaglandin I2 plays a key role in zymosan-induced mouse pleurisy. J. Pharmacol. Exp. Ther.325 (2): 601-9. [PMID:18256172]

71. Zhou W, Blackwell TS, Goleniewska K, O'Neal JF, Fitzgerald GA, Lucitt M, Breyer RM, Peebles RS. (2007) Prostaglandin I2 analogs inhibit Th1 and Th2 effector cytokine production by CD4 T cells. J. Leukoc. Biol.81 (3): 809-17. [PMID:17135575]

72. Zhou W, Dowell DR, Huckabee MM, Newcomb DC, Boswell MG, Goleniewska K, Lotz MT, Toki S, Yin H, Yao S et al.. (2012) Prostaglandin I2 signaling drives Th17 differentiation and exacerbates experimental autoimmune encephalomyelitis. PLoS ONE7 (5): e33518. [PMID:22590492]

To cite this database page, please use the following:

Mark Giembycz, Robert L. Jones, Shuh Narumiya, Xavier Norel, David F. Woodward, Robert A. Coleman, Mark Abramovitz, Richard M. Breyer, Rebecca Hills.
Prostanoid receptors: IP1 receptor. Last modified on 08/04/2014. Accessed on 25/10/2014. IUPHAR database (IUPHAR-DB), http://www.iuphar-db.org/DATABASE/ObjectDisplayForward?objectId=345.

Contact us | Print | Back to top | Help
Copyright © 2014 IUPHAR