Nomenclature: EP2 receptor

Family: Prostanoid receptors

Annotation status:  image of a green circle Annotated and expert reviewed. Please contact us if you can help with updates. 

Contents

Gene and Protein Information
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 358 14q22.1 PTGER2 prostaglandin E receptor 2 (subtype EP2), 53kDa 61
Mouse 7 362 14 B Ptger2 prostaglandin E receptor 2 (subtype EP2) 37
Rat 7 357 15p14 Ptger2 prostaglandin E receptor 2 (subtype EP2) 15,52
Previous and Unofficial Names
prostaglandin E
prostaglandin E receptor 2 (subtype EP2), 53kD
Ptger-ep2
PGE receptor EP2 subtype
PGE receptor, EP2 subtype
PGE2 receptor EP2 subtype
prostaglandin E receptor 2
prostaglandin E receptor 2 (subtype EP2)
prostaglandin E receptor EP2 subtype
prostaglandin E2 receptor EP2 subtype
prostaglandin E2 receptor EP2 subtype-like
prostaglandin E2 receptor type 2
prostanoid EP2 receptor
Ptgerep2
Database Links
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
GPCRDB
GeneCards
GenitoUrinary Development Molecular Anatomy Project
HomoloGene
Human Protein Reference Database
InterPro
KEGG Gene
OMIM
PharmGKB Gene
PhosphoSitePlus
Protein Ontology (PRO)
RefSeq Nucleotide
RefSeq Protein
TreeFam
UniGene Hs.
UniProtKB
Wikipedia
Natural/Endogenous Ligands
PGD2
PGE2
PGF
PGI2
Comments: PGE2 is the principal endogenous agonist
Rank order of potency
PGE2 > PGF, PGI2 > PGD2, thromboxane A2
Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
[3H]PGE2 Rn Full agonist 7.8 – 8.3 pKd 15,52
pKd 7.8 – 8.3 [15,52]
[3H]PGE2 Hs Full agonist 7.7 – 7.9 pKd 1,84
pKd 7.7 – 7.9 (Kd 1.25x10-8 – 1.99x10-8 M) [1,84]
[3H]PGE2 Mm Full agonist 7.7 pKd 76
pKd 7.7 [76]
ONO-AE1-259 Mm Full agonist 8.5 pKi 79
pKi 8.5 [79]
PGE2 Rn Full agonist 8.2 pKi 15
pKi 8.2 [15]
PGE1 Mm Full agonist 8.0 pKi 40
pKi 8.0 [40]
PGE1 Rn Full agonist 8.0 pKi 15
pKi 8.0 [15]
PGE2 Hs Full agonist 7.5 – 8.3 pKi 1,72,84
pKi 7.5 – 8.3 [1,72,84]
16,16-dimethyl-PGE2 Mm Full agonist 7.8 pKi 40
pKi 7.8 [40]
PGE2 Mm Full agonist 7.4 – 7.9 pKi 40,75,79
pKi 7.4 – 7.9 [40,75,79]
11-deoxy-PGE1 Rn Full agonist 7.5 pKi 15
pKi 7.5 [15]
misoprostol (free acid form) Hs Full agonist 7.5 pKi 1
pKi 7.5 [1]
11-deoxy-PGE1 Mm Full agonist 7.3 pKi 40
pKi 7.3 [40]
butaprost (free acid form) Rn Full agonist 7.2 pKi 15
pKi 7.2 [15]
19(R)-OH-PGE2 Rn Full agonist 6.8 pKi 15
pKi 6.8 [15]
AH13205 Mm Full agonist 6.6 pKi 40
pKi 6.6 [40]
butaprost (free acid form) Hs Full agonist 5.9 – 7.0 pKi 1,72
pKi 5.9 – 7.0 [1,72]
rivenprost Mm Full agonist 6.2 pKi 90
pKi 6.2 [90]
17-phenyl-ω-trinor-PGE2 Rn Full agonist 6.1 pKi 15
pKi 6.1 [15]
isocarbacyclin Mm Full agonist 6.0 pKi 40
pKi 6.0 [40]
AH13205 Hs Full agonist 6.0 pKi 72
pKi 6.0 [72]
carbacyclin Hs Full agonist 6.0 pKi 1
pKi 6.0 [1]
M&B 28767 Rn Full agonist 5.9 pKi 15
pKi 5.9 [15]
19(R)-OH-PGE2 Hs Full agonist 5.9 pKi 61
pKi 5.9 [61]
iloprost Rn Full agonist 5.9 pKi 15
pKi 5.9 [15]
cicaprost Mm Full agonist 5.9 pKi 40
pKi 5.9 [40]
iloprost Mm Full agonist 5.8 pKi 40
pKi 5.8 [40]
carbacyclin Mm Full agonist 5.8 pKi 40
pKi 5.8 [40]
ONO-AE1-329 Mm Full agonist 5.7 pKi 79
pKi 5.7 [79]
iloprost Hs Full agonist 5.7 pKi 1
pKi 5.7 [1]
M&B 28767 Hs Full agonist 5.3 – 6.0 pKi 1,72
pKi 5.3 – 6.0 [1,72]
PGF Hs Full agonist 5.2 – 6.0 pKi 1,72
pKi 5.2 – 6.0 [1,72]
PGF Rn Full agonist 5.6 pKi 15
pKi 5.6 [15]
ONO-AE-248 Mm Full agonist 5.4 pKi 79
pKi 5.4 [79]
PGD2 Rn Full agonist 5.3 pKi 15
pKi 5.3 [15]
U46619 Rn Full agonist 5.1 pKi 15
pKi 5.1 [15]
misoprostol (methyl ester) Hs Full agonist 5.0 pKi 1
pKi 5.0 [1]
PGD2 Hs Full agonist 5.0 pKi 72
pKi 5.0 [72]
U46619 Hs Full agonist 4.9 pKi 1
pKi 4.9 [1]
evatanepag Rn Full agonist 9.5 pEC50 17
pEC50 9.5 (EC50 3x10-10 M) [17]
taprenepag Rn Full agonist 8.3 pIC50 59
pIC50 8.3 [59]
taprenepag Hs Full agonist 8.0 pIC50 59
pIC50 8.0 [59]
evatanepag Rn Full agonist 7.3 pIC50 17
pIC50 7.3 [17]
View species-specific agonist tables
Agonist Comments
ONO-AE1-259 is the agonist of choice for selectively activating the EP2 receptor.

Butaprost and misoprostol may require enzymatic hydolysis of their ester moiety to achieve full bioactivity.

CP-533536 is a non prostanoid EP2 receptor agonist.

CP-544336 is the biologically-active metabolite of PF-04217329 (Taprenepag isopropyl) [59].

Another non-prostanoid EP2 agonist, o-(o-benzyloxy)-cinnamyl)-cinnamic acid [11], has very slow onset/offset of action on isolated tissue preparations, apparently due to its high lipophilicity [34].
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
PF-04418948 Hs Antagonist 8.74 pA2 2
pA2 8.74 [2]
TG4-155 Hs Antagonist 8.62 pKB 32
pKB 8.62 [32]
PF-04418948 Mm Antagonist 8.32 pKB 13
pKB 8.32 [13]
AH6809 Mm Antagonist 6.5 pKi 40
pKi 6.5 [40]
AH6809 Rn Antagonist 6.3 pKi 15
pKi 6.3 [15]
AH6809 Hs Antagonist 5.9 pKi 1
pKi 5.9 [1]
View species-specific antagonist tables
Antagonist Comments
The weak, non-selective EP2 receptor antagonist, AH-6809, has been superceded by PF-04418948. Currently, PF-04418948 is the antagonist of choice for defining EP2 receptor-mediated responses.
PF-04418948 has a lower affinity (pKB = 6.95) for the guinea-pig EP2 receptor compared to the human and murine orthologues [13].
TG4-155 also has high affinity for the DP1 receptor [31-32].
Allosteric Modulators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
compound 1 [PMID:20080612] Hs Positive - - 33
[33]
Allosteric Modulator Comments
Compound 1 (Jiang et al, 2010, and related thiophene carboxylates) is inactive at the human EP2 receptor at concentrations up to 100uM but potentiates conventional agonist-induced responses. This effect is described by a 4- to 5-fold left-shift of PGE2 and butaprost concentration-response curves [33].
Primary Transduction Mechanisms
Transducer Effector/Response
Gs family Adenylate cyclase stimulation
References:  68,75
Tissue Distribution
Articular cartilage.
Species:  Human
Technique:  RT-PCR and Immunohistochemistry.
References:  5
Kidney: media of arteries, media of arterioles.
Species:  Human
Technique:  Immunohistochemistry.
References:  50
Eye: sclera.
Species:  Human
Technique:  Immunocytochemistry and RT-PCR.
References:  4
Penis: corpus cavernosum.
Species:  Human
Technique:  RT-PCR and Immunohistochemistry.
References:  41
Mouth: gingival fibroblasts.
Species:  Human
Technique:  RT-PCR.
References:  53
Eye: corneal epithelium and choriocapillaries.
Species:  Human
Technique:  Immunohistochemistry.
References:  67
Myometrial cells.
Species:  Human
Technique:  Immunocytochemistry.
References:  51
Eosinophils.
Species:  Human
Technique:  Immunocytochemistry.
References:  73
Monocyte-derived dendritic cells.
Species:  Human
Technique:  RT-PCR.
References:  42
Aorta.
Species:  Human
Technique:  RT-PCR.
References:  10
Airway smooth muscle cells.
Species:  Human
Technique:  RT-PCR, immunocytochemistry.
References:  19
Airway epithelial cells.
Species:  Human
Technique:  RT-PCR.
References:  25
Peritoneal neutrophils.
Species:  Mouse
Technique:  Northern blot.
References:  87
Spinal cord.
Species:  Rat
Technique:  RT-PCR.
References:  38
Forebrain: meninges, ependymal layer of the lateral ventricle, hippocampus (dentate gyrus, CA1-3), lateral septal nucleus, subfornical organ, piriform cortex, bed nuclei stria terminalis, amygdala, hypothalamus (periventricular zone, ventromedial nucleus), thalamus.
Brainstem: locus coeruleus, area postrema.
Cerebellum: Purkinje cell layers.
Species:  Rat
Technique:  in situ hybridisation.
References:  92
Proximal caput epididymidis.
Species:  Rat
Technique:  RT-PCR and Northern Blotting.
References:  28
Expression Datasets

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays
Measurement of cAMP levels in non-pigmented epithelial (NPE) cells endogenously expressing the EP2 receptor.
Species:  Human
Tissue:  Non-pigmented epithelial (NPE) cells.
Response measured:  Stimulation of cAMP accumulation.
References:  35
Measurement of cAMP levels in COS-7 cells transfected with the human EP2 receptor.
Species:  Human
Tissue:  COS-7 cells.
Response measured:  Stimulation of cAMP accumulation.
References:  61
Measurement of cAMP levels in COS-7 cells transfected with the rat EP2 receptor.
Species:  Rat
Tissue:  COS-7 cells.
Response measured:  Stimulation of cAMP accumulation.
References:  52
Measurement of cAMP levels in CHO cells transfected with the human EP2 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Stimulation of cAMP accumulation.
References:  56,85
Measurement of neuronal excitability in rat spinal cord slices endogenously expressing the EP2 receptor.
Species:  Rat
Tissue:  Spinal cord slices.
Response measured:  Depolarisation of neurons.
References:  9
Measurement of Cl- current in rat osteoclasts endogenously expressing the EP2 receptor.
Species:  Rat
Tissue:  Osteoclasts.
Response measured:  Stimulation of Cl- current.
References:  57
Measurement of T-cell factor (Tcf)/lymphoid enhancer factor (Lef) signalling in HEK 293 cells transfected with the human EP2 receptor using a Tcf/Lef-responsive luciferase reporter gene. In addition, measurement of the phosphorylation of glycogen synthase kinase-3 (GSK-3) and Akt kinase.
Species:  Human
Tissue:  HEK 293 cells.
Response measured:  Activation of Tcf/Lef signalling via a PKA-dependent pathway, phosphorylation of GSK-3 and Akt kinase.
References:  23
Measurement of cAMP formation in cells over-expressing the EP2 receptor.
Species:  Human
Tissue:  C6 glioma cells.
Response measured:  Reduction in TR-FRET signal (Cisbio Bioassay).
References:  32
Physiological Functions
Relaxation of bronchial smooth muscle.
Species:  Human
Tissue:  Bronchial preparations.
References:  54
Bronchodilation.
Species:  Mouse
Tissue:  In vivo.
References:  22,70,83
Dilation of arterioles and venules.
Species:  Rat
Tissue:  Stomach.
References:  55
Blood pressure regulation (male and female).
Species:  Mouse
Tissue:  In vivo.
References:  8
Stimulation of renin release and renal vasodilation.
Species:  Mouse
Tissue:  In vivo.
References:  69
Downregulation of protease-activated receptors (PARs).
Species:  Human
Tissue:  Lung fibroblasts.
References:  71
Mediation of spinal inflammatory hyperalgesia.
Species:  Mouse
Tissue:  In vivo.
References:  62
Smooth muscle relaxation.
Species:  Rat
Tissue:  Pulmonary artery rings.
References:  24
Inhibition of sleep.
Species:  Rat
Tissue:  In vivo.
References:  91
Stimulation of calcitonin-gene related peptide (CGRP) release.
Species:  Rat
Tissue:  Primary cultures of trigeminal neurons.
References:  30
Apoptotic cell death.
Species:  Rat
Tissue:  Cortical cells.
References:  81
Bone formation.
Species:  Rat
Tissue:  In vivo.
References:  43,58
Stimulation of cell differentiation (simultaneously with EP4).
Species:  Rat
Tissue:  Primary chondrocytes.
References:  48
Reduction in osteoclast motility.
Species:  Rat
Tissue:  Osteoclasts.
References:  57
Inhibition of phagocytosis.
Species:  Rat
Tissue:  Alveolar macrophages.
References:  6
Apoptotic cell death.
Species:  Rat
Tissue:  Hippocampal cells.
References:  80
Promotion of cell growth.
Species:  Human
Tissue:  Articular chondrocytes.
References:  5
Follicle growth.
Species:  Rat
Tissue:  In vivo (ovary).
References:  20
Cumulus cell expansion in ovarian follicles.
Species:  Mouse
Tissue:  In vivo.
References:  27
Neuroprotection.
Species:  Rat
Tissue:  Hippocampal slices.
References:  47
Inhibition of TNFα formation.
Species:  Mouse
Tissue:  Kupffer cells.
References:  21
Inhibition of TNFα release.
Species:  Human
Tissue:  Alveolar macrophages.
References:  60
Reduction of intraocular pressure.
Species:  Human
Tissue:  Eye.
References:  66
Augementation of G-CSF secretion.
Species:  Human
Tissue:  Airway smooth muscle cells.
References:  19
Suppression of GM-CSF release.
Species:  Human
Tissue:  Airway smooth muscle cells.
References:  18
Relaxation.
Species:  Mouse
Tissue:  Tracheal smooth muscle.
References:  13
Carcinogenesis.
Species:  Human
Tissue:  Prostate cancer cell lines.
References:  31
Inhibition of migration.
Species:  Human
Tissue:  Airway smooth muscle cells.
References:  7
Physiological Consequences of Altering Gene Expression
EP2 receptor knockout mice exhibit a protective effect against neuronal oxidative damage.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  49
Peritoneal neutrophils from EP2 receptor knockout mice do not exhibit PGE2-mediated G-CSF (granulocyte colony-stimulating factor, a hemopoietic growth factor) release, as seen in wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  74
EP2 receptor knockout mice do not exhibit the bronchodilatory response to PGE2 seen in wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  22,70,83
EP2 receptor knockout mice exhibit salt-sensitive hypertension in response to PGE2 and reduced fertility.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  39,82
EP2 receptor knockout mice exhibit reduced PGE2-induced vasodepression compared to wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  8
EP2 receptor knockout mice exhibit PGE2-mediated renal vasoconstriction, in contrast to the vasodilation seen in wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  29
EP2 receptor knockout mice exhibit an increase in mean arterial pressure, in contrast to a decrease in wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  93
EP2 receptor knockout mice do not exhibit spinal PGE2-evoked hyperalgesia, as seen in wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  62
EP2 receptor knockout mice exhibit resistance to the inhibitory effect of PGE2 on phagocytosis by alveolar macrophages.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  6
EP2 receptor knockout mice do not exhibit complete cumulus expansion and hence display impaired fertility.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  27
Osteoblasts from EP2 receptor knockout mice have an impaired ability to stimulate osteoclast formation.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  44
EP2 receptor knockout mice exhibit weak bones.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  3
EP2 receptor knockout mice exhibit an impaired hypercalcemic response to PGE2.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  45
EP2 receptor knockout mice exhibit a reduced increase in aqueous humour protein concentration in the eye and an inhibition of the disruption of the blood-aqueous barrier, as seen in wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  12,14
EP2 receptor knockout mice subjected to permanent focal ischemia exhibit increased excitotoxicity compared to wild-type mice subjected to the same permanent focal ischemia.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  47
Tracheal rings from EP2 receptor knockout mice appear to be resistant to cytokine-mediated β2-adrenoceptor desensitisation.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  26
EP2 receptor knockout mice exhibit reduced keratinocyte proliferation and reduced tumour development.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  77
Transgenic mice overexpressing the EP2 receptor exhibit increased keratinocyte proliferation and increased tumour development.
Species:  Mouse
Tissue: 
Technique:  Transgenesis.
References:  78
EP2 receptor knockout mice exhibit impaired tumour angiogenesis.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  36
EP2 receptor agonists fail to reduce intraocular pressure in PTGER2-knockout mice.
Species:  Mouse
Tissue:  Eye.
Technique:  Gene knockouts.
References:  63
Deletion of the EP2 receptor protects against ultraviolet-induced carcinogenesis, but increases tumor aggressiveness.
Species:  Mouse
Tissue:  Skin.
Technique:  Gene targeting in embryonic stem cells.
References:  16
A familial model of Alzheimer's disease deficient in the EP2-receptor displays a reduction in lipid peroxidation that is associated with decreases in amyloid beta peptides and amyloid deposition.
Species:  Mouse
Tissue:  Brain.
Technique:  Gene targeting in embryonic stem cells.
References:  46
Mediation of immune suppression in cancer.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  89
EP2 receptor knockout mice have higher systolic blood pressure when compared to wild-type mice.
Species:  Mouse
Tissue:  Cardiovascular system.
Technique:  Gene targeting in embryonic stem cells.
References:  60
EP2 receptor deficiency results in impaired cognition, sensorimotor gating, and hippocampal long-term depression.
Species:  Mouse
Tissue:  Brain.
Technique:  Gene targeting in embryonic stem cells.
References:  65
EP2 receptor deficiency impairs hippocampal long-term synaptic plasticity and cognition.
Species:  Mouse
Tissue:  Brain.
Technique:  Gene targeting in embryonic stem cells.
References:  88
EP2 receptor deficiency exacerbates vascular neointimal formation.
Species:  Mouse
Tissue:  Femoral artery.
Technique:  Gene targeting in embryonic stem cells.
References:  94
Phenotypes, Alleles and Disease Models Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Ptger2tm1Brey Ptger2tm1Brey/Ptger2tm1Brey
involves: 129S6/SvEvTac * C57BL/6
MGI:97794  MP:0002334 abnormal airway responsiveness PMID: 10846038 
Ptger2tm1Brey Ptger2tm1Brey/Ptger2tm1Brey
either: (involves: 129S6/SvEvTac) or (involves: 129S6/SvEvTac * C57BL/6)
MGI:97794  MP:0001562 abnormal circulating calcium level PMID: 12013525 
Ptger2tm1Sna Ptger2tm1Sna/Ptger2tm1Sna
involves: 129P2/OlaHsd * C57BL/6
MGI:97794  MP:0009373 abnormal cumulus expansion PMID: 9751056 
Ptger2tm1Brey Ptger2tm1Brey/Ptger2tm1Brey
C.129S6-Ptger2
MGI:97794  MP:0002912 abnormal excitatory postsynaptic potential PMID: 19012750 
Ptger2tm1Brey Ptger2tm1Brey/Ptger2tm1Brey
C.129S6-Ptger2
MGI:97794  MP:0003691 abnormal microglial cell physiology PMID: 15793296 
Ptger2tm1Brey|Tg(APPswe,PSEN1dE9)85Dbo Ptger2tm1Brey/Ptger2tm1Brey,Tg(APPswe,PSEN1dE9)85Dbo/0
involves: 129S6/SvEvTac * C3H * C57BL/6
MGI:3525178  MGI:97794  MP:0003633 abnormal nervous system physiology PMID: 16267225 
Ptger2tm1Brey Ptger2tm1Brey/Ptger2tm1Brey
involves: 129S6/SvEvTac * BALB/c
MGI:97794  MP:0003633 abnormal nervous system physiology PMID: 12423256 
Ptger2tm1Sna Ptger2tm1Sna/Ptger2tm1Sna
involves: 129P2/OlaHsd * C57BL/6
MGI:97794  MP:0001125 abnormal oocyte morphology PMID: 10468638 
Ptger2tm1Rsz Ptger2tm1Rsz/Ptger2tm1Rsz
involves: 129S6/SvEvTac * C57BL/6
MGI:97794  MP:0008396 abnormal osteoclast differentiation PMID: 10830290 
Ptger2tm2Bhk Ptger2tm2Bhk/Ptger2tm2Bhk
involves: 129P2/OlaHsd * 129S/SvEv
MGI:97794  MP:0005581 abnormal renin activity PMID: 10359563 
Ptger2tm1Brey Ptger2tm1Brey/Ptger2tm1Brey
involves: 129S6/SvEvTac * C57BL/6
MGI:97794  MP:0005025 abnormal response to infection PMID: 17330822 
Ptger2tm1Brey Ptger2tm1Brey/Ptger2tm1Brey
involves: 129S6/SvEvTac * BALB/c
MGI:97794  MP:0005025 abnormal response to infection PMID: 12423256 
Ptger2tm1Brey Ptger2tm1Brey/Ptger2tm1Brey
B6.129S6-Ptger2
MGI:97794  MP:0005164 abnormal response to injury PMID: 14715958 
Hrhr|Ptger2tm1Brey Hrhr/Hrhr,Ptger2tm1Brey/Ptger2tm1Brey
involves: 129S6/SvEvTac * C57BL/6 * SKH1
MGI:96223  MGI:97794  MP:0005501 abnormal skin physiology PMID: 16977324 
Hrhr|Ptger2+|Ptger2tm1Brey Hrhr/Hrhr,Ptger2tm1Brey/Ptger2+
involves: 129S6/SvEvTac * C57BL/6 * SKH1
MGI:96223  MGI:97794  MP:0005501 abnormal skin physiology PMID: 16977324 
Ptger2tm1Brey Ptger2tm1Brey/Ptger2tm1Brey
B6.129S6-Ptger2
MGI:97794  MP:0001463 abnormal spatial learning PMID: 19012750 
Ptger2tm1Brey Ptger2tm1Brey/Ptger2tm1Brey
involves: 129S6/SvEvTac * C57BL/6
MGI:97794  MP:0009648 abnormal superovulation PMID: 11319164 
Ptger2tm1Brey Ptger2tm1Brey/Ptger2tm1Brey
involves: 129S6/SvEvTac * C57BL/6
MGI:97794  MP:0001613 abnormal vasodilation PMID: 9930871 
Ptger2tm1Brey Ptger2tm1Brey/Ptger2tm1Brey
involves: 129S6/SvEvTac
MGI:97794  MP:0001613 abnormal vasodilation PMID: 12167591 
Hrhr|Ptger2tm1Brey Hrhr/Hrhr,Ptger2tm1Brey/Ptger2tm1Brey
involves: 129S6/SvEvTac * C57BL/6 * SKH1
MGI:96223  MGI:97794  MP:0003448 altered tumor morphology PMID: 16977324 
Ptger2tm1Brey|Tg(APPswe,PSEN1dE9)85Dbo Ptger2tm1Brey/Ptger2tm1Brey,Tg(APPswe,PSEN1dE9)85Dbo/0
involves: 129S6/SvEvTac * C3H * C57BL/6
MGI:3525178  MGI:97794  MP:0000604 amyloidosis PMID: 16267225 
Ptger2tm1Sna Ptger2tm1Sna/Ptger2tm1Sna
involves: 129P2/OlaHsd * C57BL/6
MGI:97794  MP:0002680 decreased corpora lutea number PMID: 10468638 
Ptger2tm1Brey Ptger2tm1Brey/Ptger2tm1Brey
involves: 129S6/SvEvTac
MGI:97794  MP:0004502 decreased incidence of chemically-induced tumors PMID: 16886605 
Hrhr|Ptger2tm1Brey Hrhr/Hrhr,Ptger2tm1Brey/Ptger2tm1Brey
involves: 129S6/SvEvTac * C57BL/6 * SKH1
MGI:96223  MGI:97794  MP:0004504 decreased incidence of UV-induced tumors PMID: 16977324 
Ptger2tm1Brey Ptger2tm1Brey/Ptger2tm1Brey
involves: 129S6/SvEvTac * C57BL/6
MGI:97794  MP:0001935 decreased litter size PMID: 9930871 
Ptger2tm2Bhk Ptger2tm2Bhk/Ptger2tm2Bhk
involves: 129P2/OlaHsd * 129S/SvEv
MGI:97794  MP:0001935 decreased litter size PMID: 10359563 
Ptger2tm1Sna Ptger2tm1Sna/Ptger2tm1Sna
involves: 129P2/OlaHsd * C57BL/6
MGI:97794  MP:0001935 decreased litter size PMID: 10468638 
Ptger2tm1Sna Ptger2tm1Sna/Ptger2tm1Sna
involves: 129P2/OlaHsd * C57BL/6
MGI:97794  MP:0003355 decreased ovulation rate PMID: 10468638 
Ptger2tm1Brey Ptger2tm1Brey/Ptger2tm1Brey
involves: 129S6/SvEvTac
MGI:97794  MP:0003447 decreased tumor growth/size PMID: 16886605 
Ptger2tm1Sna Ptger2tm1Sna/Ptger2tm1Sna
involves: 129P2/OlaHsd * C57BL/6
MGI:97794  MP:0009374 failure of cumulus expansion PMID: 10468638 
Ptger2tm2Bhk Ptger2tm2Bhk/Ptger2tm2Bhk
involves: 129P2/OlaHsd * 129S/SvEv
MGI:97794  MP:0001596 hypotension PMID: 10359563 
Ptger2tm2Bhk Ptger2tm2Bhk/Ptger2tm2Bhk
involves: 129P2/OlaHsd * 129S/SvEv
MGI:97794  MP:0000242 impaired fertilization PMID: 10359563 
Ptger2tm1Sna Ptger2tm1Sna/Ptger2tm1Sna
involves: 129P2/OlaHsd * C57BL/6
MGI:97794  MP:0000242 impaired fertilization PMID: 10468638 
Ptger2tm1Brey Ptger2tm1Brey/Ptger2tm1Brey
B6.129S6-Ptger2
MGI:97794  MP:0006060 increased cerebral infarction size PMID: 14715958 
Ptger2tm1Brey Ptger2tm1Brey/Ptger2tm1Brey
involves: 129S6/SvEvTac * C57BL/6
MGI:97794  MP:0002842 increased systemic arterial blood pressure PMID: 9930871 
Hrhr|Ptger2tm1Brey Hrhr/Hrhr,Ptger2tm1Brey/Ptger2tm1Brey
involves: 129S6/SvEvTac * C57BL/6 * SKH1
MGI:96223  MGI:97794  MP:0003721 increased tumor growth/size PMID: 16977324 
Ptger2tm1Brey Ptger2tm1Brey/Ptger2tm1Brey
involves: 129S6/SvEvTac
MGI:97794  MP:0003025 increased vasoconstriction PMID: 12167591 
Ptger2tm1Brey Ptger2tm1Brey/Ptger2tm1Brey
involves: 129S6/SvEvTac * C57BL/6
MGI:97794  MP:0001923 reduced female fertility PMID: 9930871 
Ptger2tm2Bhk Ptger2tm2Bhk/Ptger2tm2Bhk
involves: 129P2/OlaHsd * 129S/SvEv
MGI:97794  MP:0001923 reduced female fertility PMID: 10359563 
Ptger2tm1Sna Ptger2tm1Sna/Ptger2tm1Sna
involves: 129P2/OlaHsd * C57BL/6
MGI:97794  MP:0001923 reduced female fertility PMID: 10468638 
Ptger2tm1Brey Ptger2tm1Brey/Ptger2tm1Brey
C.129S6-Ptger2
MGI:97794  MP:0001473 reduced long term potentiation PMID: 19012750 
Biologically Significant Variants
Type:  Naturally occurring SNPs.
Species:  Human
Description:  rs17197 is a more frequent polymorphism in Japanese men with essential hypertension when compared to normotensive counterparts. Proposed to be a genetic marker of essential hypertension.
SNP accession: 
References:  64
General Comments
For futher information on the properties of the EP2 receptor and its ligands, see the the NC-IUPHAR sponsored review of Woodward et al, 2011 [86].
Available Assays
DiscoveRx PathHunter® CHO-K1 PTGER2 β-Arrestin Cell Line (Cat no. 93-0214C2)
PathHunter® eXpress PTGER2 CHO-K1 β-Arrestin GPCR Assay (Cat no. 93-0214E2CP2M)
PathHunter® HEK 293 PTGER2 β-Arrestin Cell Line (Cat no. 93-0214C1)
more info

REFERENCES

1. Abramovitz M, Adam M, Boie Y, Carriere M, Denis D, Godbout C, Lamontagne S, Rochette C, Sawyer N, Tremblay NM, Belley M, Gallant M, Dufresne C, Gareau Y, Ruel R, Juteau H, Labelle M, Ouimet N, Metters KM. (2000) The utilization of recombinant prostanoid receptors to determine the affinities and selectivities of prostaglandins and related analogues. Biochim. Biophys. Acta.1483: 285-293. [PMID:10634944]

2. af Forselles KJ, Root J, Clarke T, Davey D, Aughton K, Dack K, Pullen N. (2011) In vitro and in vivo characterization of PF-04418948, a novel, potent and selective prostaglandin EP₂ receptor antagonist. Br. J. Pharmacol.164 (7): 1847-56. [PMID:21595651]

3. Akhter MP, Cullen DM, Gong G, Recker RR. (2001) Bone biomechanical properties in prostaglandin EP1 and EP2 knockout mice. Bone29: 121-125. [PMID:11502472]

4. Anthony TL, Lindsey JD, Aihara M, Weinreb RN. (2001) Detection of prostaglandin EP(1), EP(2), and FP receptor subtypes in human sclera. Invest Ophthalmol Vis Sci42: 3182-3186. [PMID:11726620]

5. Aoyama T, Liang B, Okamoto T, Matsusaki T, Nishijo K, Ishibe T, Yasura K, Nagayama S, Nakayama T, Nakamura T, Toguchida J. (2005) PGE2 signal through EP2 promotes the growth of articular chondrocytes. J Bone Miner Res20: 377-389. [PMID:15746982]

6. Aronoff DM, Canetti C, Peters-Golden M. (2004) Prostaglandin E2 inhibits alveolar macrophage phagocytosis through an E-prostanoid 2 receptor-mediated increase in intracellular cyclic AMP. J Immunol173: 559-565. [PMID:15210817]

7. Aso H, Ito S, Mori A, Suganuma N, Morioka M, Takahara N, Kondo M, Hasegawa Y. (2013) Differential regulation of airway smooth muscle cell migration by e-prostanoid receptor subtypes. Am. J. Respir. Cell Mol. Biol.48 (3): 322-9. [PMID:23221043]

8. Audoly LP, Tilley SL, Goulet J Key M, Nguyen M, Stock JL, McNeish JD, Koller BH, Coffman TM. (1999) Identification of specific EP receptors responsible for the hemodynamic effects of PGE2. Am. J. Physiol.277: H924-H930. [PMID:10484412]

9. Baba H, Kohno T, Moore KA, Woolf CJ. (2001) Direct activation of rat spinal dorsal horn neurons by prostaglandin E2. J Neurosci21: 1750-1756. [PMID:11222664]

10. Bayston T, Ramessur S, Reise J, Jones KG, Powell JT. (2003) Prostaglandin E2 receptors in abdominal aortic aneurysm and human aortic smooth muscle cells. J. Vasc. Surg.38 (2): 354-9. [PMID:12891120]

11. Belley M, Gallant M, Roy B, Houde K, Lachance N, Labelle M, Trimble LA, Chauret N, Li C, Sawyer N et al.. (2005) Structure-activity relationship studies on ortho-substituted cinnamic acids, a new class of selective EP(3) antagonists. Bioorg. Med. Chem. Lett.15 (3): 527-30. [PMID:15664806]

12. Bhattacherjee P, Mukhopadhyay P, Tilley SL, Koller BH, Geoghgan T, Paterson CA. (2002) Blood-aqueous barrier in prostaglandin EP2 receptor knockout mice. Ocul Immunol Inflamm10: 187-196. [PMID:12789594]

13. Birrell MA, Maher SA, Buckley J, Dale N, Bonvini S, Raemdonck K, Pullen N, Giembycz MA, Belvisi MG. (2013) Selectivity profiling of the novel EP2 receptor antagonist, PF-04418948, in functional bioassay systems: atypical affinity at the guinea pig EP2 receptor. Br. J. Pharmacol.168 (1): 129-38. [PMID:22747912]

14. Biswas S, Bhattacherjee P, Paterson CA, Tilley SL, Koller BH. (2006) Ocular inflammatory responses in the EP2 and EP4 receptor knockout mice. Ocul Immunol Inflamm14: 157-163. [PMID:16766399]

15. Boie Y, Stocco R, Sawyer N, Slipetz DM, Ungrin MD, Neuschafer-Rube F, Puschel GP, Metters KM, Abramovitz M. (1997) Molecular cloning and characterisation of the four rat prostaglandin E2 prostanoid receptor subtypes. Eur. J. Pharmacol.304: 227-241. [PMID:9537820]

16. Brouxhon S, Konger RL, VanBuskirk J, Sheu TJ, Ryan J, Erdle B, Almudevar A, Breyer RM, Scott G, Pentland AP. (2007) Deletion of prostaglandin E2 EP2 receptor protects against ultraviolet-induced carcinogenesis, but increases tumor aggressiveness. J. Invest. Dermatol.127 (2): 439-46. [PMID:16977324]

17. Cameron KO, Lefker BA, Ke HZ, Li M, Zawistoski MP, Tjoa CM, Wright AS, DeNinno SL, Paralkar VM, Owen TA et al.. (2009) Discovery of CP-533536: an EP2 receptor selective prostaglandin E2 (PGE2) agonist that induces local bone formation. Bioorg. Med. Chem. Lett.19 (7): 2075-8. [PMID:19250823]

18. Clarke DL, Belvisi MG, Catley MC, Yacoub MH, Newton R, Giembycz MA. (2004) Identification in human airways smooth muscle cells of the prostanoid receptor and signalling pathway through which PGE2 inhibits the release of GM-CSF. Br. J. Pharmacol.141 (7): 1141-50. [PMID:15023863]

19. Clarke DL, Belvisi MG, Smith SJ, Hardaker E, Yacoub MH, Meja KK, Newton R, Slater DM, Giembycz MA. (2005) Prostanoid receptor expression by human airway smooth muscle cells and regulation of the secretion of granulocyte colony-stimulating factor. Am. J. Physiol. Lung Cell Mol. Physiol.288 (2): L238-50. [PMID:15640521]

20. El-Nefiawy N, Abdel-Hakim K, Kanayama N, Terao T. (2005) Role of prostaglandin E2 receptor subtypes in ovarian follicle growth in the rat in vivo. Correlation with interleukin-8 and neutrophils. Histol Histopathol20: 825-831. [PMID:15944932]

21. Fennekohl A, Sugimoto Y, Segi E, Maruyama T, Ichikawa A, Püschel GP. (2002) Contribution of the two Gs-coupled PGE2-receptors EP2-receptor and EP4-receptor to the inhibition by PGE2 of the LPS-induced TNFalpha-formation in Kupffer cells from EP2-or EP4-receptor-deficient mice. Pivotal role for the EP4-receptor in wild type Kupffer cells. J Hepatol36: 328-334. [PMID:11867175]

22. Fortner CN, Breyer RM, Paul RJ. (2001) EP2 receptors mediate airway relaxation to substance P, ATP, and PGE2. Am J Physiol Lung Cell Mol Physiol281: L469-L474. [PMID:11435222]

23. Fujino H, West KA, Regan JW. (2002) Phosphorylation of glycogen synthase kinase-3 and stimulation of T-cell factor signaling following activation of EP2 and EP4 prostanoid receptors by prostaglandin E2. J Biol Chem277: 2614-2619. [PMID:11706038]

24. Fullerton DA, Agrafojo J, McIntyre RC. (1996) Pulmonary vascular smooth muscle relaxation by cAMP-mediated pathways. J Surg Res61: 444-448. [PMID:8656622]

25. Gray T, Nettesheim P, Loftin C, Koo JS, Bonner J, Peddada S, Langenbach R. (2004) Interleukin-1beta-induced mucin production in human airway epithelium is mediated by cyclooxygenase-2, prostaglandin E2 receptors, and cyclic AMP-protein kinase A signaling. Mol. Pharmacol.66 (2): 337-46. [PMID:15266025]

26. Guo M, Pascual RM, Wang S, Fontana MF, Valancius CA, Panettieri RA, Tilley SL, Penn RB. (2005) Cytokines regulate beta-2-adrenergic receptor responsiveness in airway smooth muscle via multiple PKA- and EP2 receptor-dependent mechanisms. Biochemistry44: 13771-13782. [PMID:16229467]

27. Hizaki H, Segi E, Sugimoto Y, Hirose M, Saji T, Ushikubi F, Matsuoka T, Noda Y, Tanaka T, Yoshida N, Narumiya S, Ichikawa A. (2000) Abortive expansion of the cumulus and impaired fertility in mice lacking the prostaglandin E receptor subtype EP2. Proc. Natl. Acad. Sci. U.S.A.96: 10501-10506. [PMID:10468638]

28. Ibrahim NM, Young LG, Fröhlich O. (2001) Epididymal specificity and androgen regulation of rat EP2. Biol Reprod65: 575-580. [PMID:11466228]

29. Imig JD, Breyer MD, Breyer RM. (2002) Contribution of prostaglandin EP(2) receptors to renal microvascular reactivity in mice. Am J Physiol Renal Physiol283: F415-F422. [PMID:12167591]

30. Jenkins DW, Feniuk W, Humphrey PP. (2001) Characterization of the prostanoid receptor types involved in mediating calcitonin gene-related peptide release from cultured rat trigeminal neurones. Br J Pharmacol134: 1296-1302. [PMID:11704650]

31. Jiang J, Dingledine R. (2013) Role of prostaglandin receptor EP2 in the regulations of cancer cell proliferation, invasion, and inflammation. J. Pharmacol. Exp. Ther.344 (2): 360-7. [PMID:23192657]

32. Jiang J, Ganesh T, Du Y, Quan Y, Serrano G, Qui M, Speigel I, Rojas A, Lelutiu N, Dingledine R. (2012) Small molecule antagonist reveals seizure-induced mediation of neuronal injury by prostaglandin E2 receptor subtype EP2. Proc. Natl. Acad. Sci. U.S.A.109 (8): 3149-54. [PMID:22323596]

33. Jiang J, Ganesh T, Du Y, Thepchatri P, Rojas A, Lewis I, Kurtkaya S, Li L, Qui M, Serrano G et al.. (2010) Neuroprotection by selective allosteric potentiators of the EP2 prostaglandin receptor. Proc. Natl. Acad. Sci. U.S.A.107 (5): 2307-12. [PMID:20080612]

34. Jones RL, Wan Ahmad WA, Woodward DF, Wang J. (2013) Nature of the slow relaxation of smooth muscle induced by a EP(2) receptor agonist with a non-prostanoid structure. Prostaglandins Leukot. Essent. Fatty Acids,  [Epub ahead of print]. [PMID:23419768]

35. Jumblatt MM, Neltner AA, Coca-Prados M, Paterson CA. (1994) EP2-receptor stimulated cyclic AMP synthesis in cultured human non-pigmented ciliary epithelium. Exp Eye Res58: 563-566. [PMID:7925693]

36. Kamiyama M, Pozzi A, Yang L, Debusk LM, Breyer RM, Lin PC. (2006) EP2, a receptor for PGE(2), regulates tumor angiogenesis through direct effects on endothelial cell motility and survival. Oncogene, : -. [PMID:16732324]

37. Katsuyama M, Nishigaki N, Sugimoto Y, Morimoto K, Negishi M, Narumiya S, Ichikawa A. (1995) The mouse prostaglandin E receptor EP2 subtype, cloning, expression and northern blot analysis. FEBS Lett.372: 151-156. [PMID:7556658]

38. Kawamura T, Yamauchi T, Koyama M, Maruyama T, Akira T, Nakamura N. (1997) Expression of prostaglandin EP2 receptor mRNA in the rat spinal cord. Life Sci61: 2111-2116. [PMID:9395252]

39. Kennedy CRJ, Zhang Y, Brandon S, Guan Y, Coffee K, Funk CD, Magnuson MA, Oates JA, Breyer MD, Breyer RM. (1999) Salt-sensitive hypertension and reduced fertility in mice lacking the prostaglandin EP2 receptor. Nat. Med.5: 217-220. [PMID:9930871]

40. Kiriyama M, Ushikubi F, Kobayashi T, Hirata M, Sugimoto Y, Narumiya S. (1997) Ligand binding specificities of the eight types and subtypes of the mouse prostanoid receptors expressed in Chinese hamster ovary cells. Br. J. Pharmacol.122: 217-224. [PMID:9313928]

41. Komuro M, Kamiyama M, Furuya Y, Takihana Y, Araki I, Takeda M. (2006) Gene and protein expression profiles of prostaglandin E2 receptor subtypes in the human corpus cavernosum. Int J Impot Res18: 275-281. [PMID:16239896]

42. Kubo S, Takahashi HK, Takei M, Iwagaki H, Yoshino T, Tanaka N, Mori S, Nishibori M. (2004) E-prostanoid (EP)2/EP4 receptor-dependent maturation of human monocyte-derived dendritic cells and induction of helper T2 polarization. J. Pharmacol. Exp. Ther.309 (3): 1213-20. [PMID:14872092]

43. Li M, Ke HZ, Qi H, Healy DR, Li Y, Crawford DT, Paralkar VM, Owen TA, Cameron KO, Lefker BA, Brown TA, Thompson DD. (2003) A novel, non-prostanoid EP2 receptor-selective prostaglandin E2 agonist stimulates local bone formation and enhances fracture healing. J Bone Miner Res18: 2033-2042. [PMID:14606517]

44. Li X, Okada Y, Pilbeam CC, Lorenzo JA, Kennedy CR, Breyer RM, Raisz LG. (2000) Knockout of the murine prostaglandin EP2 receptor impairs osteoclastogenesis in vitro. Endocrinology141: 2054-2061. [PMID:10830290]

45. Li X, Tomita M, Pilbeam CC, Breyer RM, Raisz LG. (2002) Prostaglandin receptor EP2 mediates PGE2 stimulated hypercalcemia in mice in vivo. Prostaglandins Other Lipid Mediat67: 173-180. [PMID:12013525]

46. Liang X, Wang Q, Hand T, Wu L, Breyer RM, Montine TJ, Andreasson K. (2005) Deletion of the prostaglandin E2 EP2 receptor reduces oxidative damage and amyloid burden in a model of Alzheimer's disease. J. Neurosci.25 (44): 10180-7. [PMID:16267225]

47. Liu D, Wu L, Breyer R, Mattson MP, Andreasson K. (2005) Neuroprotection by the PGE2 EP2 receptor in permanent focal cerebral ischemia. Ann Neurol57: 758-761. [PMID:15852374]

48. Miyamoto M, Ito H, Mukai S, Kobayashi T, Yamamoto H, Kobayashi M, Maruyama T, Akiyama H, Nakamura T. (2003) Simultaneous stimulation of EP2 and EP4 is essential to the effect of prostaglandin E2 in chondrocyte differentiation. Osteoarthritis Cartilage11: 644-652. [PMID:12954235]

49. Montine TJ, Milatovic D, Gupta RC, Valyi-Nagy T, Morrow JD, Breyer RM. (2002) Neuronal oxidative damage from activated innate immunity is EP2 receptor-dependent. J Neurochem83: 463-470. [PMID:12423256]

50. Morath R, Klein T, Seyberth HW, Nüsing RM. (1999) Immunolocalization of the four prostaglandin E2 receptor proteins EP1, EP2, EP3, and EP4 in human kidney. J Am Soc Nephrol10: 1851-1860. [PMID:10477136]

51. Mosher AA, Rainey KJ, Giembycz MA, Wood S, Slater DM. (2012) Prostaglandin E2 represses interleukin 1 beta-induced inflammatory mediator output from pregnant human myometrial cells through the EP2 and EP4 receptors. Biol. Reprod.87 (1): 7, 1-10. [PMID:22517618]

52. Nemoto K, Pilbeam CC, Bilak SR, Raisz LG. (1997) Molecular cloning and expression of a rat prostaglandin E2 receptor of the EP2 subtype. Prostaglandins54: 713-725. [PMID:9440134]

53. Noguchi K, Shitashige M, Endo H, Kondo H, Ishikawa I. (2002) Binary regulation of interleukin (IL)-6 production by EP1 and EP2/EP4 subtypes of PGE2 receptors in IL-1beta-stimulated human gingival fibroblasts. J Periodontal Res37: 29-36. [PMID:11842936]

54. Norel X, Walch L, Labat C, Gascard JP, Dulmet E, Brink C. (1999) Prostanoid receptors involved in the relaxation of human bronchial preparations. Br J Pharmacol126: 867-872. [PMID:10193766]

55. Ohno T, Katori M, Majima M, Saeki T, Boku K, Nishiyama K, Hayashi H, Saigenji K. (1999) Dilatation and constriction of rat gastric mucosal microvessels through prostaglandin EP2 and EP3 receptors. Aliment Pharmacol Ther13: 1243-1250. [PMID:10468708]

56. Okada Y, Taniguchi T, Morishima S, Suzuki F, Akagi Y, Muramatsu I. (2006) Characteristics of acid extrusion from Chinese hamster ovary cells expressing different prostaglandin EP receptors. Life Sci78: 2454-2462. [PMID:16300797]

57. Okamoto F, Kajiya H, Fukushima H, Jimi E, Okabe K. (2004) Prostaglandin E2 activates outwardly rectifying Cl(-) channels via a cAMP-dependent pathway and reduces cell motility in rat osteoclasts. Am J Physiol Cell Physiol287: C114-C124. [PMID:15044156]

58. Paralkar VM, Borovecki F, Ke HZ, Cameron KO, Lefker B, Grasser WA, Owen TA, Li M, DaSilva-Jardine P, Zhou M, Dunn RL, Dumont F, Korsmeyer R, Krasney P, Brown TA, Plowchalk D, Vukicevic S, Thompson DD. (2003) An EP2 receptor-selective prostaglandin E2 agonist induces bone healing. Proc Natl Acad Sci U S A100: 6736-6740. [PMID:12748385]

59. Prasanna G, Carreiro S, Anderson S, Gukasyan H, Sartnurak S, Younis H, Gale D, Xiang C, Wells P, Dinh D et al.. (2011) Effect of PF-04217329 a prodrug of a selective prostaglandin EP(2) agonist on intraocular pressure in preclinical models of glaucoma. Exp. Eye Res.93 (3): 256-64. [PMID:21376717]

60. Ratcliffe MJ, Walding A, Shelton PA, Flaherty A, Dougall IG. (2007) Activation of E-prostanoid4 and E-prostanoid2 receptors inhibits TNF-alpha release from human alveolar macrophages. Eur. Respir. J.29 (5): 986-94. [PMID:17331962]

61. Regan JW, Bailey TJ, Pepperl DJ, Pierce KL, Bogardus AM, Donello JE, Fairbairn CE, Kedzie KM, Woodward DF, Gil DW. (1994) Cloning of a novel human prostaglandin receptor with characteristics of the pharmacologically defined EP2 subtype. Mol. Pharmacol.40: 213-220. [PMID:8078484]

62. Reinold H, Ahmadi S, Depner UB, Layh B, Heindl C, Hamza M, Pahl A, Brune K, Narumiya S, Müller U, Zeilhofer HU. (2005) Spinal inflammatory hyperalgesia is mediated by prostaglandin E receptors of the EP2 subtype. J Clin Invest115: 673-679. [PMID:15719070]

63. Saeki T, Ota T, Aihara M, Araie M. (2009) Effects of prostanoid EP agonists on mouse intraocular pressure. Invest. Ophthalmol. Vis. Sci.50 (5): 2201-8. [PMID:19117925]

64. Sato M, Nakayama T, Soma M, Aoi N, Kosuge K, Haketa A, Izumi Y, Matsumoto K, Sato N, Kokubun S. (2007) Association between prostaglandin E2 receptor gene and essential hypertension. Prostaglandins Leukot. Essent. Fatty Acids77 (1): 15-20. [PMID:17644362]

65. Savonenko A, Munoz P, Melnikova T, Wang Q, Liang X, Breyer RM, Montine TJ, Kirkwood A, Andreasson K. (2009) Impaired cognition, sensorimotor gating, and hippocampal long-term depression in mice lacking the prostaglandin E2 EP2 receptor. Exp. Neurol.217 (1): 63-73. [PMID:19416671]

66. Schachar RA, Raber S, Courtney R, Zhang M, Bosworth C. (2010) Dose-Escalating, Double-Masked, Vehicle-Controlled Trial of the IOP-Reducing Effect of EP2 Agonist, Taprenepag Isopropyl (PF-04217329). ARVO Poster, : #175/A398.

67. Schlötzer-Schrehardt U, Zenkel M, Nüsing RM. (2002) Expression and localization of FP and EP prostanoid receptor subtypes in human ocular tissues. Invest Ophthalmol Vis Sci43: 1475-1487. [PMID:11980863]

68. Schwaner I, Offermanns S, Spicher K, Seifert R, Schultz G. (1995) Differential activation of Gi and Gs proteins by E- and I-type prostaglandins in membranes from the human erythroleukaemia cell line, HEL. Biochim Biophys Acta1265: 8-14. [PMID:7532011]

69. Schweda F, Klar J, Narumiya S, Nüsing RM, Kurtz A. (2004) Stimulation of renin release by prostaglandin E2 is mediated by EP2 and EP4 receptors in mouse kidneys. Am J Physiol Renal Physiol287: F427-F433. [PMID:15113745]

70. Sheller JR, Mitchell D, Meyrick B, Oates J, Breyer R. (2000) EP(2) receptor mediates bronchodilation by PGE(2) in mice. J Appl Physiol88: 2214-2218. [PMID:10846038]

71. Sokolova E, Grishina Z, Bühling F, Welte T, Reiser G. (2005) Protease-activated receptor-1 in human lung fibroblasts mediates a negative feedback downregulation via prostaglandin E2. Am J Physiol Lung Cell Mol Physiol288: L793-L802. [PMID:15563688]

72. Stillman BA, Breyer MD, Breyer RM. (1999) Importance of the extracellular domain for prostaglandin EP(2) receptor function. Mol Pharmacol56: 545-551. [PMID:10462542]

73. Sturm EM, Schratl P, Schuligoi R, Konya V, Sturm GJ, Lippe IT, Peskar BA, Heinemann A. (2008) Prostaglandin E2 inhibits eosinophil trafficking through E-prostanoid 2 receptors. J. Immunol.181 (10): 7273-83. [PMID:18981149]

74. Sugimoto Y, Fukada Y, Mori D, Tanaka S, Yamane H, Okuno Y, Deai K, Tsuchiya S, Tsujimoto G, Ichikawa A. (2005) Prostaglandin E2 stimulates granulocyte colony-stimulating factor production via the prostanoid EP2 receptor in mouse peritoneal neutrophils. J Immunol175: 2606-2612. [PMID:16081835]

75. Sugimoto Y, Nakato T, Kita A, Hatae N, Tabata H, Tanaka S, Ichikawa A. (2003) Functional domains essential for Gs activity in prostaglandin EP2 and EP3 receptors. Life Sci74: 135-141. [PMID:14607240]

76. Sugimoto Y, Nakato T, Kita A, Takahashi Y, Hatae N, Tabata H, Tanaka S, Ichikawa A. (2004) A cluster of aromatic amino acids in the i2 loop plays a key role for Gs coupling in prostaglandin EP2 and EP3 receptors. J Biol Chem279: 11016-11026. [PMID:14699136]

77. Sung YM, He G, Fischer SM. (2005) Lack of expression of the EP2 but not EP3 receptor for prostaglandin E2 results in suppression of skin tumor development. Cancer Res65: 9304-9311. [PMID:16230392]

78. Sung YM, He G, Hwang DH, Fischer SM. (2006) Overexpression of the prostaglandin E2 receptor EP2 results in enhanced skin tumor development. Oncogene, : -. [PMID:16607275]

79. Suzawa T, Miyaura C, Inada M, Maruyama T, Sugimoto Y, Ushikubi F, Ichikawa A, Narumiya S, Suda T. (2000) The role of prostaglandin E receptor subtypes (EP1, EP2, EP3, and EP4) in bone resorption: an analysis using specific agonists for the respective EPs. Endocrinology141: 1554-1559. [PMID:10746663]

80. Takadera T, Shiraishi Y, Ohyashiki T. (2004) Prostaglandin E2 induced caspase-dependent apoptosis possibly through activation of EP2 receptors in cultured hippocampal neurons. Neurochem Int45: 713-719. [PMID:15234114]

81. Takadera T, Yumoto H, Tozuka Y, Ohyashiki T. (2002) Prostaglandin E(2) induces caspase-dependent apoptosis in rat cortical cells. Neurosci Lett317: 61-64. [PMID:11755240]

82. Tilley SL, Audoly LP, Hicks EH, Kim HS, Flannery PJ, Coffman TM, Koller BH. (1999) Reproductive failure and reduced blood pressure in mice lacking the EP2 prostaglandin E2 receptor. J Clin Invest103: 1539-1545. [PMID:10359563]

83. Tilley SL, Hartney JM, Erikson CJ, Jania C, Nguyen M, Stock J, McNeisch J, Valancius C, Panettieri RA, Penn RB, Koller BH. (2003) Receptors and pathways mediating the effects of prostaglandin E2 on airway tone. Am J Physiol Lung Cell Mol Physiol284: L599-L606. [PMID:12618422]

84. Wilson RJ, Giblin GM, Roomans S, Rhodes SA, Cartwright KA, Shield VJ, Brown J, Wise A, Chowdhury J, Pritchard S, Coote J, Noel LS, Kenakin T, Burns-Kurtis CL, Morrison V, Gray DW, Giles H. (2006) GW627368X ((N-{2-[4-(4,9-diethoxy-1-oxo-1,3-dihydro-2H-benzo[f]isoindol-2-yl)phenyl]acetyl} benzene sulphonamide): a novel, potent and selective prostanoid EP4 receptor antagonist. Br J Pharmacol148: 326-339. [PMID:16604093]

85. Wilson RJ, Rhodes SA, Wood RL, Shield VJ, Noel LS, Gray DW, Giles H. (2004) Functional pharmacology of human prostanoid EP2 and EP4 receptors. Eur J Pharmacol501: 49-58. [PMID:15464062]

86. Woodward DF, Jones RL, Narumiya S. (2011) International union of basic and clinical pharmacology. LXXXIII: classification of prostanoid receptors, updating 15 years of progress. Pharmacol. Rev.63 (3): 471-538. [PMID:21752876]

87. Yamane H, Sugimoto Y, Tanaka S, Ichikawa A. (2000) Prostaglandin E(2) receptors, EP2 and EP4, differentially modulate TNF-alpha and IL-6 production induced by lipopolysaccharide in mouse peritoneal neutrophils. Biochem. Biophys. Res. Commun.278 (1): 224-8. [PMID:11071876]

88. Yang H, Zhang J, Breyer RM, Chen C. (2009) Altered hippocampal long-term synaptic plasticity in mice deficient in the PGE2 EP2 receptor. J. Neurochem.108 (1): 295-304. [PMID:19012750]

89. Yang L, Yamagata N, Yadav R, Brandon S, Courtney RL, Morrow JD, Shyr Y, Boothby M, Joyce S, Carbone DP, Breyer RM. (2003) Cancer-associated immunodeficiency and dendritic cell abnormalities mediated by the prostaglandin EP2 receptor. J Clin Invest111: 727-735. [PMID:12618527]

90. Yoshida K, Oida H, Kobayashi T, Maruyama T, Tanaka M, Katayama T, Yamaguchi K, Segi E, Tsuboyama T, Matsushita M, Ito K, Ito Y, Sugimoto Y, Ushikubi F, Ohuchida S, Kondo K, Nakamura T, Narumiya S. (2002) Stimulation of bone formation and prevention of bone loss by prostaglandin E EP4 receptor activation. Proc Natl Acad Sci U S A99: 4580-4585. [PMID:11917107]

91. Yoshida Y, Matsumura H, Nakajima T, Mandai M, Urakami T, Kuroda K, Yoneda H. (2000) Prostaglandin E (EP) receptor subtypes and sleep: promotion by EP4 and inhibition by EP1/EP2. Neuroreport11: 2127-2131. [PMID:10923657]

92. Zhang J, Rivest S. (1999) Distribution, regulation and colocalization of the genes encoding the EP2- and EP4-PGE2 receptors in the rat brain and neuronal responses to systemic inflammation. Eur J Neurosci11: 2651-2668. [PMID:10457163]

93. Zhang Y, Guan Y, Schneider A, Brandon S, Breyer RM, Breyer MD. (2000) Characterization of murine vasopressor and vasodepressor prostaglandin E(2) receptors. Hypertension35: 1129-1134. [PMID:10818076]

94. Zhu S, Xue R, Zhao P, Fan FL, Kong X, Zheng S, Han Q, Zhu Y, Wang N, Yang J et al.. (2011) Targeted disruption of the prostaglandin E2 E-prostanoid 2 receptor exacerbates vascular neointimal formation in mice. Arterioscler. Thromb. Vasc. Biol.31 (8): 1739-47. [PMID:21636806]

To cite this database page, please use the following:

Mark Giembycz, Robert L. Jones, Shuh Narumiya, Xavier Norel, David F. Woodward, Robert A. Coleman, Mark Abramovitz, Richard M. Breyer, Rebecca Hills.
Prostanoid receptors: EP2 receptor. Last modified on 08/04/2014. Accessed on 21/08/2014. IUPHAR database (IUPHAR-DB), http://www.iuphar-db.org/DATABASE/ObjectDisplayForward?objectId=341.

Contact us | Print | Back to top | Help
Copyright © 2014 IUPHAR