Nomenclature: AT1 receptor

Family: Angiotensin receptors

Annotation status:  image of a green circle Annotated and expert reviewed. Please contact us if you can help with updates. 

Contents

Gene and Protein Information
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 359 3q21-q25 AGTR1 angiotensin II receptor, type 1 12,28,30,47,101
Mouse 7 359 3 7.6 cM Agtr1b angiotensin II receptor, type 1b 136,170
Mouse 7 359 13 16.0 cM Agtr1a angiotensin II receptor, type 1a 136,170
Rat 7 359 2q24 Agtr1b angiotensin II receptor, type 1b 39,63,67,74,110,134,146,169
Rat 7 359 17q12 Agtr1a angiotensin II receptor, type 1a 67-68,84,110
Gene and Protein Information Comments
Both rat and mouse have a second gene that codes for the AT1 receptor.
Previous and Unofficial Names
AII-B
AII-I
AII α
AGTR1B
AT1
AT2R1
AGTR1A
AT2R1A
HAT1R
AG2S
AT2R1B
AT1B
angiotensin receptor 1B
AT3
AT1R
Agtr1
Angiotensin II receptor, type 1 (AT1B)
angiotensin II receptor, type-1
angiotensin II type-1 receptor
angiotensin II type-1B receptor
angiotensin receptor 1
type-1B angiotensin II receptor
AT1A
AT1R
Angiotensin II receptor type 1 (AT1A)
Angiotensin II receptor, type 1 (AT1A)
angiotensin II receptor, type 1
angiotensin II receptor, type 1a
angiotensin II type-1A receptor
angiotensin receptor 1a
type-1A angiotensin II receptor
vascular type-1 angiotensin II receptor
Agtr-1b
Angtr-1b
Angtr-1a
Agtr-1a
1810074K20Rik
AI551199
AT1AR
AT1BR
HAT(1)
Type-1 angiotensin II receptor
Database Links
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
GPCRDB
GeneCards
GenitoUrinary Development Molecular Anatomy Project
HomoloGene
Human Protein Reference Database
InterPro
KEGG Gene
OMIM
Orphanet Gene
PharmGKB Gene
PhosphoSitePlus
Protein Ontology (PRO)
RefSeq Nucleotide
RefSeq Protein
TreeFam
UniGene Hs.
UniProtKB
Wikipedia
Natural/Endogenous Ligand(s)
angiotensin II {Sp: Human, Mouse, Rat}
angiotensin III {Sp: Human, Mouse, Rat}
Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
[125I][Sar1]Ang-II Rn Full agonist 9.48 pKd 42
pKd 9.48 (Kd 3.3x10-10 M) [42]
[125I][Sar1,Ile8]Ang-II Rn Partial agonist 9.43 pKd 42
pKd 9.43 (Kd 3.7x10-10 M) [42]
[Sar1,Cha8]Ang-II Rn Partial agonist 9.33 pKd 61,107
pKd 9.33 (Kd 4.7x10-10 M) [61,107]
[Sar1,Cha4]Ang-II Rn Partial agonist 7.12 pKd 61,107
pKd 7.12 (Kd 7.59x10-8 M) [61,107]
angiotensin A {Sp: Human} Hs Full agonist 8.8 pKi 166
pKi 8.8 IP accumulation in hAT1 expressing CHO cells [166]
[Sar1,Ile8]Ang-II Rn Partial agonist 8.82 pEC50 115
pEC50 8.82 (EC50 1.5x10-9 M) [115]
angiotensin A {Sp: Human} Hs Full agonist 8.17 pEC50 166
pEC50 8.17 IP accumulation in hAT1 expressing CHO cells [166]
angiotensin IV {Sp: Human, Mouse, Rat} Hs Partial agonist 5.9 pEC50 89
pEC50 5.9 [89]
angiotensin A {Sp: Human} Rn Partial agonist 9.54 pIC50 71
pIC50 9.54 calcium release in rat VSMC [71]
angiotensin II {Sp: Human, Mouse, Rat} Hs Full agonist 9.0 – 9.3 pIC50 35,155
pIC50 9.0 – 9.3 [35,155]
angiotensin III {Sp: Human, Mouse, Rat} Hs Full agonist 8.4 – 8.5 pIC50 35
pIC50 8.4 – 8.5 [35]
L-163,101 Hs Partial agonist 7.89 pIC50 152
pIC50 7.89 (IC50 1.3x10-8 M) [152]
L-162,313 Hs Full agonist 7.85 – 7.92 pIC50 124
pIC50 7.85 – 7.92 (IC50 1.42x10-8 – 1.19x10-8 M) [124]
View species-specific agonist tables
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
5-butyl-methyl immidazole carboxylate 30 Hs Antagonist 7.83 pA2 3
pA2 7.83 [3]
[3H]candesartan Hs Antagonist 10.29 pKd 44
pKd 10.29 [44]
[Sar1,Ile8]Ang-II Hs Antagonist 9.43 pKd 61
pKd 9.43 (Kd 3.7x10-10 M) [61]
[3H]A81988 Rn Antagonist 9.24 pKd 52
pKd 9.24 (Kd 5.7x10-10 M) [52]
[3H]L158809 Rn Antagonist 9.18 pKd 23
pKd 9.18 (Kd 6.6x10-10 M) [23]
[Sar1,Ala8]Ang-II Hs Antagonist 9.05 pKd 61
pKd 9.05 (Kd 9x10-10 M) [61]
[125I]EXP985 Rn Antagonist 8.83 pKd 24
pKd 8.83 (Kd 1.49x10-9 M) [24]
[3H]irbesartan Hs Antagonist 8.71 pKd 153
pKd 8.71 [153]
[3H]losartan Rn Antagonist 8.21 pKd 19
pKd 8.21 (Kd 6.2x10-9 M) [19]
TRV120027 Hs Antagonist 7.72 pKd 157
pKd 7.72 (Kd 1.9x10-8 M) [157]
[Sar1,Gly4,Gly8]Ang-II Hs Antagonist 6.51 pKd 61
pKd 6.51 (Kd 3.1x10-7 M) [61]
[Sar1,Ile4,Ile8]Ang-II Hs Antagonist 6.51 pKd 161
pKd 6.51 (Kd 3.1x10-7 M) [161]
5-oxo-1-2-4-oxadiazol biphenyl Rn Antagonist 8.99 pKi 114
pKi 8.99 (Ki 1.03x10-9 M) [114]
candesartan Hs Antagonist 9.5 – 9.7 pIC50 155
pIC50 9.5 – 9.7 [155]
tasosartan Hs Antagonist 8.92 pIC50 95
pIC50 8.92 (IC50 1.2x10-9 M) [95]
[3H]valsartan Hs Antagonist 8.8 – 9.0 pIC50 156
pIC50 8.8 – 9.0 (IC50 1x10-9 – 1.58x10-9 M) [156]
5-oxo-1-2-4-oxadiazol biphenyl Rn Antagonist 8.8 pIC50 114
pIC50 8.8 (IC50 1.6x10-9 M) [114]
irbesartan Hs Antagonist 8.7 – 8.8 pIC50 155
pIC50 8.7 – 8.8 [155]
valsartan Hs Antagonist 8.61 pIC50 34
pIC50 8.61 (IC50 2.43x10-9 M) [34]
eprosartan Hs Antagonist 8.4 – 8.8 pIC50 38
pIC50 8.4 – 8.8 [38]
5-butyl-methyl immidazole carboxylate 30 Hs Antagonist 8.5 pIC50 3
pIC50 8.5 [3]
EXP3174 Hs Antagonist 7.4 – 9.5 pIC50 145,155
pIC50 7.4 – 9.5 [145,155]
telmisartan Hs Antagonist 8.4 pIC50 103
pIC50 8.4 [103]
forasartan Rn Antagonist 8.2 – 8.6 pIC50 120
pIC50 8.2 – 8.6 (IC50 2.8x10-9 – 6.9x10-9 M) [120]
azilsartan Hs Antagonist 8.1 – 8.6 pIC50 119
pIC50 8.1 – 8.6 (IC50 2.6x10-9 – 7.4x10-9 M) [119]
LY303336 Hs Antagonist 8.28 pIC50 154
pIC50 8.28 [154]
LY301875 Hs Antagonist 8.23 pIC50 154
pIC50 8.23 [154]
olmesartan Hs Antagonist 8.1 pIC50 78
pIC50 8.1 [78]
N,N`-bis-alkyl butylimmidazole 12b Hs Antagonist 8.07 pIC50 4
pIC50 8.07 (IC50 8.5x10-9 M) [4]
losartan Hs Antagonist 7.4 – 8.7 pIC50 35,145
pIC50 7.4 – 8.7 [35,145]
[3H]eprosartan Hs Antagonist - -
View species-specific antagonist tables
Antagonist Comments
LY301875, LY303336, telmisartan, candesartan, irbesartan, valsartan, EXP3174, azilsartan medoxomil and saprisartan [143-144] are all classed as insurmountable antagonists.

Partial agonist: Activate the receptor but have only partial efficacy (less than 50%) at the receptor relative to a full agonist.

Insurmountable antagonists: When preincubated on cells/tissues these competitive antagonists cause a full or partial depression of the maximal response induced by an agonist (e.g. Angiotensin II) in a concentration-response curve. The degree of insurmountable inhibition is related to the formation of a slow dissociating receptor-antagonist complex [45,103,154-156].

Selective ligands ([Sar1,Ile4,Ile8]Ang II, [Sar1-Ala8]-Ang II, [Sar1-Ile8]-Ang II, [Sar1-Gly4,Gly8]-Ang II and TRV120027): Produce greater than 80% activation of G-protein-independent signal and less than 20% activation of G-protein-dependent signal. For an overview of AT1R antagonist binding properties see [105].

An overview of AT1R antagonist binding properties is [105].
Primary Transduction Mechanisms
Transducer Effector/Response
Gi/Go family
Gq/G11 family
Adenylate cyclase inhibition
Phospholipase C stimulation
Calcium channel
Phospholipase A2 stimulation
Phospholipase D stimulation
Other - See Comments
Comments:  Other effectors and responses are inositol phosphate turnover, protein kinase C activation and RhoA activation. Other transducers are JAK2 resulting in STAT3 phosphorylation [97].; Src with effectors FAK, GIT1, CamK II, Cas [112,122]; pp60c-src with effector phospholipase C-gamma 1 [65,98]; β-arrestin resulting in MAPK phosphorylation in the cytoplasm; and CARMA3 with effector NF-κB [102].

Like many growth factors, activation of several tyrosine kinases (receptor (EGFR), non-receptor (JAK, Src, Pyk2)) and phosphorylation and activation of several downstream cascades such as mitogen activated protein (MAP kinase) cascade, the JAK-STAT pathway are observed. AT1R activation also lead to ROS production via activation of the NADH-NADPH oxidase pathways, modulation of ion channels, transactivation of EGFR [13,33,37,50,137-138,148,165]. G-protein dependent signalling leads to phosphorylation and nuclear translocation of Elk-1 and MAPK whereas β-arrestin dependent signalling leads to MAPK phosphorylation in the cytoplasm [5,147] but not nuclear translocation.
References:  33
Tissue Distribution
Liver, kidney, adrenal, lung >heart, thymus, uterus, ovary, aorta, colon, eye, lymphocyte, macrophage, mammary gland, mucous gland, muscle, nervous system, pituitary gland, placenta, spleen, testis.
Species:  Human
Technique:  Northern blotting.
References:  6,16,26-27,33,100-101,142
The overall amino acid sequence homology is greater than 92% in rat and mouse. The AT1A is mainly located on vascular smooth muscle cells, lung, liver, brain, kidney, heart, whereas the AT1B is predominantly detected in adrenal and pituitary glands. AT1A and AT1B differ in their 5'- and 3'-untranslated regions and are distinct in their regulation.
Species:  Rat
Technique:  Not specified
References:  33
Expression Datasets

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays
Na+ transport
Species:  Rat
Tissue:  Kidney
Response measured: 
References:  53
Ang II-induced aldosterone release
Species:  Human
Tissue:  Bovine adrenal glomerulosa cells
Response measured:  Aldosterone release
References:  25
Second messenger response
Species:  None
Tissue:  COS-1 and HEK293 cells
Response measured:  Inositol Phosphate, Calcium response, ERK activation
References:  14,42,115,150-151
Fractional shortening
Species:  Mouse
Tissue:  Endothelial cells
Response measured:  ΔP/Δt
References:  128
IL17 production
Species:  Mouse
Tissue:  Smooth muscle cells, T cells
Response measured: 
References:  94
AngII-induced Gβγ translocation to nucleus
Species:  Human
Tissue:  Human aortic smooth muscle cells
Response measured:  Gβγ translocation to nucleus, MEF2A transcriptional activity, HDAC5 regulation
References:  14
AngII-induced Gβgamma; translocation to nucleus
Species:  Rat
Tissue:  Neonatal ventricular myocytes
Response measured:  Gβγ translocation to nucleus, MEF2A transcriptional activity, HDAC5 regulation
References:  14
AngII-induced Gβγ translocation to nucleus
Species:  Mouse
Tissue:  Adult ventricualar myocytes
Response measured:  Gβγ translocation to nucleus, MEF2A transcriptional activity, HDAC5 regulation
References:  14
AngII-induced STAT3 expression
Species:  Human
Tissue:  HEK293 cells, neonatal cardiac myocytes and fibroblasts
Response measured:  Unphosphorylated STAT3 accumulation in the nucleus
References:  171
AngII-induced histone code alteration
Species:  Human
Tissue:  HEK293 cells, HASMCs, HL1 cells
Response measured:  Histone H2A posttranslational modifications
References:  70
AngII-induced histone code alteration
Species:  Mouse
Tissue:  HEK293 cells, HASMCs, HL1 cells
Response measured:  Histone H2A posttranslational modifications
References:  70
AngII-induced STAT3 expression
Species:  Mouse
Tissue:  HEK293 cells neonatal cardiac myocytes and fibroblasts
Response measured:  Unphosphorylated STAT3 accumulation in the nucleus
References:  171
Physiological Functions
Smooth muscle cell contraction, proliferation and migration
Species:  Human
Tissue:  Not specified
References:  9,11,62,106,125,148,172
Central and peripheral sympathetic stimulation
Species:  Rat
Tissue:  Heart
References:  117,140
Extracellular matrix formation and fibrotic deposition
Species:  Human
Tissue:  Not specified
References:  41,51,133,148
Aldosterone release
Species:  Human
Tissue:  Bovine glomerulosa cell
References:  25
ADH release
Species:  Human
Tissue:  Ang III > Ang II
References:  127,129
Endothelin release
Species:  Human
Tissue:  Endothelial cells
References:  43,121,139,141
Tubular sodium reabsorption
Species:  Human
Tissue:  Not specified
References:  17,83,113
Kidney development
Species:  Human
Tissue: 
References:  49
Response to estrogen stimulus
Species:  Rat
Tissue: 
References:  8,162
Positive regulation of cholesterol esterification
Species:  Human
Tissue: 
References:  75
Positive regulation of cellular protein metabolic process
Species:  Human
Tissue: 
References:  75
Positive regulation of NAD(P)H oxidase activity
Species:  Human
Tissue: 
References:  56
Aging
Species:  Rat
Tissue: 
References:  76
Dopamine biosynthetic process
Species:  Rat
Tissue: 
References:  104
Smooth muscle cell contraction, proliferation and migration
Species:  Rat
Tissue: 
References:  85
Smooth muscle cell contraction, proliferation and migration
Species:  Mouse
Tissue: 
References:  108
Aldosterone release
Species:  Mouse
Tissue: 
References:  96
Aldosterone release
Species:  Rat
Tissue: 
References:  76
Regulation of blood vessel size and development
Species:  Human
Tissue: 
References:  2
Regulation of blood vessel size and development
Species:  Mouse
Tissue: 
References:  149
Regulation of vasoconstriction
Species:  Rat
Tissue: 
References:  29
Regulation of vasoconstriction
Species:  Human
Tissue: 
References:  10,56,101
Cell chemotaxis
Species:  Human
Tissue: 
References:  56
Regulation of smooth muscle cell apoptotic process
Species:  Mouse
Tissue: 
References:  108
Drinking behaviour
Species:  Mouse
Tissue: 
References:  31,96
Acetyltransferase activator activity
Species:  Human
Tissue: 
References:  75
Regulation of cell growth
Species:  Human
Tissue: 
References:  56
Kidney development
Species:  Human
Tissue: 
References:  96,149
Regulation of systemic arterial blood pressure
Species:  Human
Tissue: 
References:  101
Regulation of systemic arterial blood pressure
Species:  Rat
Tissue: 
References:  116,158
Regulation of systemic arterial blood pressure
Species:  Mouse
Tissue: 
References:  7,60,149
Positive regulation of macrophage derived foam cell differentiation
Species:  Human
Tissue: 
References:  75
Low-density lipoprotein particle remodeling
Species:  Human
Tissue: 
References:  93
Regulation of inflammatory response
Species:  Mouse
Tissue: 
References:  40
Regulation of inflammatory response
Species:  Human
Tissue: 
References:  101
Positive regulation of reactive oxygen species metabolic process
Species:  Human
Tissue: 
References:  56
Augmentation of peripheral noradrenergic activity, decreased renal blood flow, renal renin inhibition, cardiac contractility, central osmocontrol
Species:  Human
Tissue: 
References:  18
Positive regulation of reactive oxygen species metabolic process
Species:  Human
Tissue: 
References:  56
Positive regulation of reactive oxygen species metabolic process
Species:  Rat
Tissue: 
References:  109
Renal secretion
Species:  Mouse
Tissue: 
References:  96
Heart development
Species:  Mouse
Tissue: 
References:  66
Positive regulation of cytokine secretion
Species:  Mouse
Tissue: 
References:  69
Regulation of pH
Species:  Rat
Tissue: 
References:  118
Physiological Consequences of Altering Gene Expression
AGTR1 overexpression due to increased copy number is linked to breast cancer and oesophageal cancer (Rhodes et al. , 2009, Chen et al., 2008). A1166C gene polymorphism is more frequent in hypertensive patients. There is a greater decreased of left ventricular mass, collagen synthesis in AA after AT1 receptor blockade than after beta-blockade. There is an increased cardiovascular risk in CC, independent of blood pressure. Several polymorphisms in the promoter region of AT1 gene were reported among which A-810T and A-153G polymorphisms might be a genetic risk factor for the pathogenesis of coronary heart disease complicated with essential hypertension in Chinese Han population (Jin et al., 2003, Zhang et al., 2009).
Species:  Human
Tissue: 
Technique:  Not specified
References:  15,22,36,72-73,80,130,160
Physiological Consequences of Altering Gene Expression Comments
Mice lacking the AT1a receptor have a marked reduction of systolic blood pressure [167]. There is no impairment of development and no major abnormalities of the heart and vascular system in AT1A KO mice but there are mild signs of mesangial expansion and juxtaglomerular cell hypertrophy. The tubuloglomerular feedback loop is undetectable. The lack of AT1a signaling causes structural abnormalities in the renal vascular system and transforms the phenotype of VSMCs into cell proliferation, induces the escape of VSMCs from the circular mechanical integrity, and results in increased synthesis of extracellular matrices [64]. AT1a receptor knockout mice display less left ventricular remodeling and improved survival after myocardial infarction [54]. Deficiency of angiotensin type 1a receptors in adipocytes reduces differentiation and promotes hypertrophy of adipocytes in lean mice [126]. AngII can elicit renal vasoconstriction, albeit attenuated, in AT1A knockout mice [132]. Ischemia-induced angiogenesis was also impaired in in AT1a receptor knockout mice suggesting that AT1 receptor pathway promotes early angiogenesis by supporting inflammatory cell infiltration and angiogenic cytokine expression [135]. Genetic disruption of AT1a receptor improves long-term survival of mice with chronic severe aortic regurgitation (AR). In cases of chronic severe AR, blockade of AT1 receptor attenuates the progression of LV dilatation, hypertrophy and fibrosis, thereby mitigating heart failure and improving long-term survival [111]. AT1a receptor knockout in mice causes polyuria and urine concentration defects by reducing basal vasopressin levels and its receptor signaling proteins in the inner medulla [92]. AT1a receptor deficient mice exhibited reduced angiogenesis and delay in wound healing in angiotensin II type 1a receptor- [82]. AT1a receptor plays an important role in skin wound healing by accelerating keratinocyte and fibroblast migration via heparin-binding epidermal growth factor (EGF)-like growth factor-mediated EGF receptor transactivation [164]. Expression of AT1a receptors in C1 neurons restores the sympathoexcitation to angiotensin in the rostral ventrolateral medulla of AT1a knockout mice [21]. Mice lacking the AT1B receptor do not differ from wild-type. The AT1B receptor has a minor role but may compensate for much of the regulatory action in AT1A deleted rodent. For example, AT1B receptor mediates calcium signaling in vascular smooth muscle cells of AT1A receptor-deficient mice [173]. Animals with both AT1A and AT1B gene deletion have an impaired growth, hypotension and marked abnormalities in renal structures. There is a complete absence of pressor responses to Ang II. Transgenic mice overexpressing the AT1 receptor exhibit a drastic cardiac hypertrophy and die within several days of age. The transgenic rats however appear normal unless there is pressure or volume overload, which elicit a more pronounced hypertrophy than in normal rats. Overexpression of angiotensin II type I receptor in cardiomyocytes induces cardiac hypertrophy and remodeling with increased expression of ventricular atrial natriuretic factor and interstitial collagen deposition and died prematurely of heart failure. Neither the systolic blood pressure nor the heart rate were changed [123]. AT1R overexpression in the mouse myocardium produces a lethal phenotype associated with myocyte hyperplasia and heart block [55]. Increased expression of cardiac AT1a receptors decreases myocardial microvessel density after experimental myocardial infarction and this is amenable to AT(1) receptor blockade, suggesting that efficacy of AT1 receptor blockers post-myocardial infarction may be due to a stimulatory effect on angiogenesis [32]. Overexpression of AT1a receptors impairs excitation-contraction coupling in the mouse heart before the development of cardiac hypertrophy [131]. Overexpression of AT(1) receptor under the control of alpha-myosin heavy chain promoter in angiotensinogen-knockout background mice showed spontaneous systolic dysfunction and chamber dilatation, accompanied by severe interstitial fibrosis. Progression of cardiac remodeling in this model was prevented by treatment with candesartan, an inverse agonist for the AT(1) receptor demonstrating that constitutive activity of the AT(1) receptor under basal conditions contributes to the cardiac remodeling even in the absence of Ang II, when the AT(1) receptor is upregulated in the heart [168]. Transgenic rat model that exhibits an upregulated myocardial AT1 receptor density demonstrates augmented cardiac hypertrophy and contractile response to angiotensin II after volume and pressure overload, but not under baseline conditions [58]. Brain-selective overexpression of AT1a receptors resulted in enhanced cardiovascular responsiveness to intracerebroventricular (ICV) Ang II injection with no change in baseline blood. However, blockade of central AT1 receptors with ICV losartan reduced basal blood pressure suggesting an enhanced contribution of central AT1 receptors to the maintenance of baseline blood pressure in this model [86]. Renovascular hypertension in mice with brain-selective overexpression of AT1a receptors is buffered by increased nitric oxide production in the periphery suggesting that activation of endogenous NO systems plays an important role in buffering the maintenance of hypertension caused by overexpression of AT(1a) receptors in the brain [87]. Brain-selective overexpression of AT(1A) receptors results in enhanced salt appetite and altered water intake [88]. AT1 receptor overexpression in podocytes induces protein leakage and structural podocyte damage progressing to focal segmental glomerulosclerosis in transgenic rats [59]. Mice with overexpression of a constitutively active AT1a receptor transgene in renal proximal tubule caused increased baseline blood pressure. Depletion of endogenous AT1a receptors in the proximal tubule reduced blood pressure. In contrast to the changes observed at baseline, there was no difference in the blood pressure response to a pressor dose of Ang II in either experimental model suggesting that Ang II signaling via the AT1a receptor in the renal proximal tubule is a regulator of systemic blood pressure under baseline conditions [91].
Phenotypes, Alleles and Disease Models Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Agtr1atm1Unc Agtr1atm1Unc/Agtr1atm1Unc
involves: 129P2/OlaHsd
MGI:87964  MP:0000818 abnormal amygdala morphology PMID: 11384784 
Agtr1atm1Ecl Agtr1atm1Ecl/Agtr1atm1Ecl
involves: 129S2/SvPas * C57BL/6
MGI:87964  MP:0009642 abnormal blood homeostasis PMID: 17607364 
Agtr1atm1Ecl Agtr1atm1Ecl/Agtr1atm1Ecl
involves: 129S2/SvPas * C57BL/6
MGI:87964  MP:0001544 abnormal cardiovascular system physiology PMID: 17607364 
Agtr1atm1Unc|Agtr1btm1Cof Agtr1atm1Unc/Agtr1atm1Unc,Agtr1btm1Cof/Agtr1btm1Cof
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87965  MP:0005416 abnormal circulating protein level PMID: 18497303 
Agtr1atm1Unc|Agtr2tm1Tin Agtr1atm1Unc/Agtr1atm1Unc,Agtr2tm1Tin/Y
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87966  MP:0005416 abnormal circulating protein level PMID: 18497303 
Agtr1atm1Unc|Agtr2tm1Tin Agtr1atm1Unc/Agtr1atm1Unc,Agtr2tm1Tin/Agtr2tm1Tin
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87966  MP:0005416 abnormal circulating protein level PMID: 18497303 
Agtr1atm1Ecl Agtr1atm1Ecl/Agtr1atm1Ecl
involves: 129S2/SvPas * C57BL/6
MGI:87964  MP:0003921 abnormal heart left ventricle morphology PMID: 17607364 
Agtr1atm1Unc|Agtr1btm1Cof|Agtr2tm1Tin Agtr1atm1Unc/Agtr1atm1Unc,Agtr1btm1Cof/Agtr1btm1Cof,Agtr2tm1Tin/Agtr2tm1Tin
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87965  MGI:87966  MP:0001629 abnormal heart rate PMID: 18497303 
Agtr1atm1Unc|Agtr1btm1Cof|Agtr2tm1Tin Agtr1atm1Unc/Agtr1atm1Unc,Agtr1btm1Cof/Agtr1btm1Cof,Agtr2tm1Tin/Y
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87965  MGI:87966  MP:0001629 abnormal heart rate PMID: 18497303 
Agtr1atm1Unc|Agtr2tm1Tin Agtr1atm1Unc/Agtr1atm1Unc,Agtr2tm1Tin/Y
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87966  MP:0001629 abnormal heart rate PMID: 18497303 
Agtr1atm1Unc|Agtr2tm1Tin Agtr1atm1Unc/Agtr1atm1Unc,Agtr2tm1Tin/Agtr2tm1Tin
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87966  MP:0001629 abnormal heart rate PMID: 18497303 
Agtr1atm1Unc Agtr1atm1Unc/Agtr1atm1Unc
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MP:0001629 abnormal heart rate PMID: 18497303 
Agtr1atm1Tma Agtr1atm1Tma/Agtr1atm1Tma
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MP:0002829 abnormal juxtaglomerular apparatus PMID: 8878439 
Agtr1atm2Tma Agtr1atm2Tma/Agtr1atm2Tma
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MP:0002829 abnormal juxtaglomerular apparatus PMID: 8878439 
Agtr1atm1Tma|Agtr1btm1Ii Agtr1atm1Tma/Agtr1atm1Tma,Agtr1btm1Ii/Agtr1btm1Ii
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87965  MP:0004195 abnormal kidney calyx morphology PMID: 9466969 
Agtr1atm1Tma|Agtr1btm1Ii Agtr1atm1Tma/Agtr1atm1Tma,Agtr1btm1Ii/Agtr1btm1Ii
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87965  MP:0000527 abnormal kidney development PMID: 9466969 
Agtr1atm1Afu Agtr1atm1Afu/Agtr1atm1Afu
involves: C57BL/6 * CBA
MGI:87964  MP:0002135 abnormal kidney morphology PMID: 11292619 
Agtr1atm1Unc|Agtr1btm1Cof Agtr1atm1Unc/Agtr1atm1Unc,Agtr1btm1Cof/Agtr1btm1Cof
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87965  MP:0002135 abnormal kidney morphology PMID: 18497303 
Agtr1atm1Tma|Agtr1btm1Ii Agtr1atm1Tma/Agtr1atm1Tma,Agtr1btm1Ii/Agtr1btm1Ii
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87965  MP:0004193 abnormal kidney papilla morphology PMID: 9466969 
Agtr1atm1Tma|Agtr1btm1Ii Agtr1atm1Tma/Agtr1atm1Tma,Agtr1btm1Ii/Agtr1btm1Ii
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87965  MP:0004194 abnormal kidney pelvis morphology PMID: 10432390 
Agtr1atm1Ecl Agtr1atm1Ecl/Agtr1atm1Ecl
involves: 129S2/SvPas * C57BL/6
MGI:87964  MP:0002136 abnormal kidney physiology PMID: 17607364 
Agtr1atm1Tma|Agtr1btm1Ii Agtr1atm1Tma/Agtr1atm1Tma,Agtr1btm1Ii/Agtr1btm1Ii
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87965  MP:0000530 abnormal kidney vasculature morphology PMID: 10432390  9466969 
Agtr1atm1Tma Agtr1atm1Tma/Agtr1atm1Tma
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MP:0000530 abnormal kidney vasculature morphology PMID: 8878439 
Agtr1atm2Tma Agtr1atm2Tma/Agtr1atm2Tma
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MP:0000530 abnormal kidney vasculature morphology PMID: 8878439 
Agtr1atm1Ecl Agtr1atm1Ecl/Agtr1atm1Ecl
involves: 129S2/SvPas * C57BL/6
MGI:87964  MP:0000530 abnormal kidney vasculature morphology PMID: 17607364 
Agtr1atm1Unc|Agtr1btm1Cof|Agtr2tm1Tin Agtr1atm1Unc/Agtr1atm1Unc,Agtr1btm1Cof/Agtr1btm1Cof,Agtr2tm1Tin/Agtr2tm1Tin
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87965  MGI:87966  MP:0008872 abnormal physiological response to xenobiotic PMID: 18497303 
Agtr1atm1Unc|Agtr1btm1Cof|Agtr2tm1Tin Agtr1atm1Unc/Agtr1atm1Unc,Agtr1btm1Cof/Agtr1btm1Cof,Agtr2tm1Tin/Y
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87965  MGI:87966  MP:0008872 abnormal physiological response to xenobiotic PMID: 18497303 
Agtr1atm1Unc|Agtr1btm1Cof Agtr1atm1Unc/Agtr1atm1Unc,Agtr1btm1Cof/Agtr1btm1Cof
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87965  MP:0008872 abnormal physiological response to xenobiotic PMID: 18497303 
Agtr1atm1Unc Agtr1atm1Unc/Agtr1atm1Unc
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MP:0008872 abnormal physiological response to xenobiotic PMID: 18497303 
Agtr1atm1Unc|Agtr1btm1Cof Agtr1atm1Unc/Agtr1atm1Unc,Agtr1btm1Cof/Agtr1btm1Cof
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87965  MP:0005325 abnormal renal glomerulus morphology PMID: 18497303 
Agtr1btm1Cof|Agtr2tm1Tin Agtr1btm1Cof/Agtr1btm1Cof,Agtr2tm1Tin/Y
involves: 129P2/OlaHsd * C57BL/6
MGI:87965  MGI:87966  MP:0005325 abnormal renal glomerulus morphology PMID: 18497303 
Agtr1btm1Cof|Agtr2tm1Tin Agtr1btm1Cof/Agtr1btm1Cof,Agtr2tm1Tin/Agtr2tm1Tin
involves: 129P2/OlaHsd * C57BL/6
MGI:87965  MGI:87966  MP:0005325 abnormal renal glomerulus morphology PMID: 18497303 
Agtr1atm1Unc|Agtr2tm1Tin Agtr1atm1Unc/Agtr1atm1Unc,Agtr2tm1Tin/Y
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87966  MP:0005325 abnormal renal glomerulus morphology PMID: 18497303 
Agtr1atm1Unc|Agtr2tm1Tin Agtr1atm1Unc/Agtr1atm1Unc,Agtr2tm1Tin/Agtr2tm1Tin
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87966  MP:0005325 abnormal renal glomerulus morphology PMID: 18497303 
Agtr1atm1Unc|Agtr1btm1Cof|Agtr2tm1Tin Agtr1atm1Unc/Agtr1atm1Unc,Agtr1btm1Cof/Agtr1btm1Cof,Agtr2tm1Tin/Agtr2tm1Tin
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87965  MGI:87966  MP:0003638 abnormal response/metabolism to endogenous compounds PMID: 18497303 
Agtr1atm1Unc|Agtr1btm1Cof|Agtr2tm1Tin Agtr1atm1Unc/Agtr1atm1Unc,Agtr1btm1Cof/Agtr1btm1Cof,Agtr2tm1Tin/Y
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87965  MGI:87966  MP:0003638 abnormal response/metabolism to endogenous compounds PMID: 18497303 
Agtr1atm1Unc|Agtr1btm1Cof Agtr1atm1Unc/Agtr1atm1Unc,Agtr1btm1Cof/Agtr1btm1Cof
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87965  MP:0003638 abnormal response/metabolism to endogenous compounds PMID: 18497303 
Agtr1atm1Unc|Agtr2tm1Tin Agtr1atm1Unc/Agtr1atm1Unc,Agtr2tm1Tin/Y
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87966  MP:0003638 abnormal response/metabolism to endogenous compounds PMID: 18497303 
Agtr1atm1Unc|Agtr2tm1Tin Agtr1atm1Unc/Agtr1atm1Unc,Agtr2tm1Tin/Agtr2tm1Tin
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87966  MP:0003638 abnormal response/metabolism to endogenous compounds PMID: 18497303 
Agtr1atm1Unc Agtr1atm1Unc/Agtr1atm1Unc
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MP:0003638 abnormal response/metabolism to endogenous compounds PMID: 18497303 
Agtr1atm1Unc Agtr1atm1Unc/Agtr1atm1Unc
involves: 129P2/OlaHsd * C57BL/6J
MGI:87964  MP:0000230 abnormal systemic arterial blood pressure PMID: 7724593 
Agtr1a+|Agtr1atm1Unc Agtr1atm1Unc/Agtr1a+
involves: 129P2/OlaHsd * C57BL/6J
MGI:87964  MP:0000230 abnormal systemic arterial blood pressure PMID: 7724593 
Agtr1atm1Afu|Agtr2tm1Gsb Agtr1atm1Afu/Agtr1atm1Afu,Agtr2tm1Gsb/Y
mixed
MGI:87964  MGI:87966  MP:0000230 abnormal systemic arterial blood pressure PMID: 12388241 
Agtr1atm1Tma|Agtr1btm1Ii Agtr1atm1Tma/Agtr1atm1Tma,Agtr1btm1Ii/Agtr1btm1Ii
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87965  MP:0000230 abnormal systemic arterial blood pressure PMID: 9466969 
Agtr1atm1Unc|Agtr1btm1Cof|Agtr2tm1Tin Agtr1atm1Unc/Agtr1atm1Unc,Agtr1btm1Cof/Agtr1btm1Cof,Agtr2tm1Tin/Agtr2tm1Tin
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87965  MGI:87966  MP:0000230 abnormal systemic arterial blood pressure PMID: 18497303 
Agtr1atm1Unc|Agtr1btm1Cof|Agtr2tm1Tin Agtr1atm1Unc/Agtr1atm1Unc,Agtr1btm1Cof/Agtr1btm1Cof,Agtr2tm1Tin/Y
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87965  MGI:87966  MP:0000230 abnormal systemic arterial blood pressure PMID: 18497303 
Agtr1atm1Unc|Agtr1btm1Cof Agtr1atm1Unc/Agtr1atm1Unc,Agtr1btm1Cof/Agtr1btm1Cof
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87965  MP:0000230 abnormal systemic arterial blood pressure PMID: 18497303 
Agtr1atm1Unc|Agtr2tm1Tin Agtr1atm1Unc/Agtr1atm1Unc,Agtr2tm1Tin/Y
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87966  MP:0000230 abnormal systemic arterial blood pressure PMID: 18497303 
Agtr1atm1Unc|Agtr2tm1Tin Agtr1atm1Unc/Agtr1atm1Unc,Agtr2tm1Tin/Agtr2tm1Tin
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87966  MP:0000230 abnormal systemic arterial blood pressure PMID: 18497303 
Agtr1atm1Unc Agtr1atm1Unc/Agtr1atm1Unc
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MP:0000230 abnormal systemic arterial blood pressure PMID: 18497303 
Agtr1atm1Unc Agtr1atm1Unc/Agtr1atm1Unc
involves: 129P2/OlaHsd
MGI:87964  MP:0000832 abnormal thalamus morphology PMID: 11384784 
Agtr1atm1Ecl Agtr1atm1Ecl/Agtr1atm1Ecl
involves: 129S2/SvPas * C57BL/6
MGI:87964  MP:0003141 cardiac fibrosis PMID: 17607364 
Agtr1atm1Ecl Agtr1atm1Ecl/Agtr1atm1Ecl
involves: 129S2/SvPas * C57BL/6
MGI:87964  MP:0005608 cardiac interstitial fibrosis PMID: 17607364 
Agtr1atm1Ecl Agtr1atm1Ecl/Agtr1atm1Ecl
involves: 129S2/SvPas * C57BL/6
MGI:87964  MP:0001262 decreased body weight PMID: 17607364 
Agtr1atm1Unc|Agtr1btm1Cof|Agtr2tm1Tin Agtr1atm1Unc/Agtr1atm1Unc,Agtr1btm1Cof/Agtr1btm1Cof,Agtr2tm1Tin/Agtr2tm1Tin
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87965  MGI:87966  MP:0001262 decreased body weight PMID: 18497303 
Agtr1atm1Unc|Agtr1btm1Cof|Agtr2tm1Tin Agtr1atm1Unc/Agtr1atm1Unc,Agtr1btm1Cof/Agtr1btm1Cof,Agtr2tm1Tin/Y
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87965  MGI:87966  MP:0001262 decreased body weight PMID: 18497303 
Agtr1atm1Unc|Agtr1btm1Cof Agtr1atm1Unc/Agtr1atm1Unc,Agtr1btm1Cof/Agtr1btm1Cof
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87965  MP:0001262 decreased body weight PMID: 18497303 
Agtr1btm1Cof|Agtr2tm1Tin Agtr1btm1Cof/Agtr1btm1Cof,Agtr2tm1Tin/Y
involves: 129P2/OlaHsd * C57BL/6
MGI:87965  MGI:87966  MP:0001262 decreased body weight PMID: 18497303 
Agtr1btm1Cof|Agtr2tm1Tin Agtr1btm1Cof/Agtr1btm1Cof,Agtr2tm1Tin/Agtr2tm1Tin
involves: 129P2/OlaHsd * C57BL/6
MGI:87965  MGI:87966  MP:0001262 decreased body weight PMID: 18497303 
Agtr1atm1Ecl Agtr1atm1Ecl/Agtr1atm1Ecl
involves: 129S2/SvPas * C57BL/6
MGI:87964  MP:0006376 decreased circulating angiotensinogen level PMID: 17607364 
Agtr1atm1Ecl Agtr1atm1Ecl/Agtr1atm1Ecl
involves: 129S2/SvPas * C57BL/6
MGI:87964  MP:0003353 decreased circulating renin level PMID: 17607364 
Agtr1atm1Ecl Agtr1atm1Ecl/Agtr1atm1Ecl
involves: 129S2/SvPas * C57BL/6
MGI:87964  MP:0005558 decreased creatinine clearance PMID: 17607364 
Agtr1atm1Unc|Agtr1btm1Cof|Agtr2tm1Tin Agtr1atm1Unc/Agtr1atm1Unc,Agtr1btm1Cof/Agtr1btm1Cof,Agtr2tm1Tin/Agtr2tm1Tin
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87965  MGI:87966  MP:0005333 decreased heart rate PMID: 18497303 
Agtr1atm1Unc|Agtr1btm1Cof|Agtr2tm1Tin Agtr1atm1Unc/Agtr1atm1Unc,Agtr1btm1Cof/Agtr1btm1Cof,Agtr2tm1Tin/Y
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87965  MGI:87966  MP:0005333 decreased heart rate PMID: 18497303 
Agtr1atm1Unc|Agtr1btm1Cof Agtr1atm1Unc/Agtr1atm1Unc,Agtr1btm1Cof/Agtr1btm1Cof
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87965  MP:0005333 decreased heart rate PMID: 18497303 
Agtr1atm1Unc|Agtr2tm1Tin Agtr1atm1Unc/Agtr1atm1Unc,Agtr2tm1Tin/Y
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87966  MP:0005333 decreased heart rate PMID: 18497303 
Agtr1atm1Unc|Agtr2tm1Tin Agtr1atm1Unc/Agtr1atm1Unc,Agtr2tm1Tin/Agtr2tm1Tin
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87966  MP:0005333 decreased heart rate PMID: 18497303 
Agtr1atm1Unc Agtr1atm1Unc/Agtr1atm1Unc
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MP:0005333 decreased heart rate PMID: 18497303 
Agtr1atm1Tma|Agtr1btm1Ii Agtr1atm1Tma/Agtr1atm1Tma,Agtr1btm1Ii/Agtr1btm1Ii
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87965  MP:0002834 decreased heart weight PMID: 9466969 
Agtr1atm1Unc|Agtr1btm1Cof|Agtr2tm1Tin Agtr1atm1Unc/Agtr1atm1Unc,Agtr1btm1Cof/Agtr1btm1Cof,Agtr2tm1Tin/Agtr2tm1Tin
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87965  MGI:87966  MP:0002834 decreased heart weight PMID: 18497303 
Agtr1atm1Unc|Agtr1btm1Cof|Agtr2tm1Tin Agtr1atm1Unc/Agtr1atm1Unc,Agtr1btm1Cof/Agtr1btm1Cof,Agtr2tm1Tin/Y
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87965  MGI:87966  MP:0002834 decreased heart weight PMID: 18497303 
Agtr1atm1Unc|Agtr1btm1Cof Agtr1atm1Unc/Agtr1atm1Unc,Agtr1btm1Cof/Agtr1btm1Cof
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87965  MP:0002834 decreased heart weight PMID: 18497303 
Agtr1atm1Unc|Agtr2tm1Tin Agtr1atm1Unc/Agtr1atm1Unc,Agtr2tm1Tin/Y
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87966  MP:0002834 decreased heart weight PMID: 18497303 
Agtr1atm1Unc|Agtr2tm1Tin Agtr1atm1Unc/Agtr1atm1Unc,Agtr2tm1Tin/Agtr2tm1Tin
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87966  MP:0002834 decreased heart weight PMID: 18497303 
Agtr1atm1Unc Agtr1atm1Unc/Agtr1atm1Unc
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MP:0002834 decreased heart weight PMID: 18497303 
Agtr1atm1Unc|Agtr1btm1Cof|Agtr2tm1Tin Agtr1atm1Unc/Agtr1atm1Unc,Agtr1btm1Cof/Agtr1btm1Cof,Agtr2tm1Tin/Agtr2tm1Tin
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87965  MGI:87966  MP:0003918 decreased kidney weight PMID: 18497303 
Agtr1atm1Unc|Agtr1btm1Cof|Agtr2tm1Tin Agtr1atm1Unc/Agtr1atm1Unc,Agtr1btm1Cof/Agtr1btm1Cof,Agtr2tm1Tin/Y
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87965  MGI:87966  MP:0003918 decreased kidney weight PMID: 18497303 
Agtr1atm1Unc|Agtr1btm1Cof Agtr1atm1Unc/Agtr1atm1Unc,Agtr1btm1Cof/Agtr1btm1Cof
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87965  MP:0003918 decreased kidney weight PMID: 18497303 
Agtr1btm1Cof|Agtr2tm1Tin Agtr1btm1Cof/Agtr1btm1Cof,Agtr2tm1Tin/Y
involves: 129P2/OlaHsd * C57BL/6
MGI:87965  MGI:87966  MP:0003918 decreased kidney weight PMID: 18497303 
Agtr1btm1Cof|Agtr2tm1Tin Agtr1btm1Cof/Agtr1btm1Cof,Agtr2tm1Tin/Agtr2tm1Tin
involves: 129P2/OlaHsd * C57BL/6
MGI:87965  MGI:87966  MP:0003918 decreased kidney weight PMID: 18497303 
Agtr1atm1Unc|Agtr2tm1Tin Agtr1atm1Unc/Agtr1atm1Unc,Agtr2tm1Tin/Y
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87966  MP:0003918 decreased kidney weight PMID: 18497303 
Agtr1atm1Unc|Agtr2tm1Tin Agtr1atm1Unc/Agtr1atm1Unc,Agtr2tm1Tin/Agtr2tm1Tin
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87966  MP:0003918 decreased kidney weight PMID: 18497303 
Agtr1atm1Unc|Agtr1btm1Cof|Agtr2tm1Tin Agtr1atm1Unc/Agtr1atm1Unc,Agtr1btm1Cof/Agtr1btm1Cof,Agtr2tm1Tin/Agtr2tm1Tin
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87965  MGI:87966  MP:0004876 decreased mean systemic arterial blood pressure PMID: 18497303 
Agtr1atm1Unc|Agtr1btm1Cof|Agtr2tm1Tin Agtr1atm1Unc/Agtr1atm1Unc,Agtr1btm1Cof/Agtr1btm1Cof,Agtr2tm1Tin/Y
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87965  MGI:87966  MP:0004876 decreased mean systemic arterial blood pressure PMID: 18497303 
Agtr1atm1Unc|Agtr1btm1Cof Agtr1atm1Unc/Agtr1atm1Unc,Agtr1btm1Cof/Agtr1btm1Cof
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87965  MP:0004876 decreased mean systemic arterial blood pressure PMID: 18497303 
Agtr1atm1Unc|Agtr2tm1Tin Agtr1atm1Unc/Agtr1atm1Unc,Agtr2tm1Tin/Y
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87966  MP:0004876 decreased mean systemic arterial blood pressure PMID: 18497303 
Agtr1atm1Unc|Agtr2tm1Tin Agtr1atm1Unc/Agtr1atm1Unc,Agtr2tm1Tin/Agtr2tm1Tin
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87966  MP:0004876 decreased mean systemic arterial blood pressure PMID: 18497303 
Agtr1atm1Unc Agtr1atm1Unc/Agtr1atm1Unc
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MP:0004876 decreased mean systemic arterial blood pressure PMID: 18497303 
Agtr1atm1Ecl Agtr1atm1Ecl/Agtr1atm1Ecl
involves: 129S2/SvPas * C57BL/6
MGI:87964  MP:0008874 decreased physiological sensitivity to xenobiotic PMID: 17607364 
Agtr1atm1Ecl Agtr1atm1Ecl/Agtr1atm1Ecl
involves: 129S2/SvPas * C57BL/6
MGI:87964  MP:0005618 decreased potassium excretion PMID: 17607364 
Agtr1atm1Unc|Agtr1btm1Cof|Hprttm1(Ggt1-Agtr1)Cof Agtr1atm1Unc/Agtr1atm1Unc,Agtr1btm1Cof/Agtr1btm1Cof,Hprttm1(Ggt1-Agtr1)Cof/Y
involves: 129P2/OlaHsd
MGI:87964  MGI:87965  MGI:96217  MP:0005583 decreased renin activity PMID: 15306694 
Agtr1atm1Unc Agtr1atm1Unc/Agtr1atm1Unc
involves: 129P2/OlaHsd * C57BL/6J
MGI:87964  MP:0002843 decreased systemic arterial blood pressure PMID: 7724593 
Agtr1a+|Agtr1atm1Unc Agtr1atm1Unc/Agtr1a+
involves: 129P2/OlaHsd * C57BL/6J
MGI:87964  MP:0002843 decreased systemic arterial blood pressure PMID: 7724593 
Agtr1atm1Tma|Agtr1btm1Ii Agtr1atm1Tma/Agtr1atm1Tma,Agtr1btm1Ii/Agtr1btm1Ii
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87965  MP:0002843 decreased systemic arterial blood pressure PMID: 9466969 
Agtr1atm1Afu Agtr1atm1Afu/Agtr1atm1Afu
involves: C57BL/6 * CBA * ICR
MGI:87964  MP:0006264 decreased systemic arterial systolic blood pressure PMID: 12388241  7642517 
Agtr1a+|Agtr1atm1Afu Agtr1atm1Afu/Agtr1a+
involves: C57BL/6 * CBA * ICR
MGI:87964  MP:0006264 decreased systemic arterial systolic blood pressure PMID: 7642517 
Agtr1atm1Unc Agtr1atm1Unc/Agtr1atm1Unc
involves: 129P2/OlaHsd * C57BL/6J
MGI:87964  MP:0006264 decreased systemic arterial systolic blood pressure PMID: 7724593 
Agtr1a+|Agtr1atm1Unc Agtr1atm1Unc/Agtr1a+
involves: 129P2/OlaHsd * C57BL/6J
MGI:87964  MP:0006264 decreased systemic arterial systolic blood pressure PMID: 7724593 
Agtr1atm1Unc|Hprttm1(Ggt1-Agtr1)Cof Agtr1atm1Unc/Agtr1atm1Unc,Hprttm1(Ggt1-Agtr1)Cof/Y
involves: 129P2/OlaHsd
MGI:87964  MGI:96217  MP:0002988 decreased urine osmolality PMID: 15306694 
Agtr1atm1Ecl Agtr1atm1Ecl/Agtr1atm1Ecl
involves: 129S2/SvPas * C57BL/6
MGI:87964  MP:0003620 decreased urine output PMID: 17607364 
Agtr1atm1Unc|Agtr1btm1Cof Agtr1atm1Unc/Agtr1atm1Unc,Agtr1btm1Cof/Agtr1btm1Cof
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87965  MP:0003670 dilated renal glomerular capsule PMID: 18497303 
Agtr1atm1Unc|Agtr1btm1Cof Agtr1atm1Unc/Agtr1atm1Unc,Agtr1btm1Cof/Agtr1btm1Cof
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87965  MP:0002705 dilated renal tubules PMID: 18497303 
Agtr1atm1Ecl Agtr1atm1Ecl/Agtr1atm1Ecl
involves: 129S2/SvPas * C57BL/6
MGI:87964  MP:0002593 high mean erythrocyte cell number PMID: 17607364 
Agtr1atm1Unc|Agtr1btm1Cof|Agtr2tm1Tin Agtr1atm1Unc/Agtr1atm1Unc,Agtr1btm1Cof/Agtr1btm1Cof,Agtr2tm1Tin/Agtr2tm1Tin
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87965  MGI:87966  MP:0000519 hydronephrosis PMID: 18497303 
Agtr1atm1Unc|Agtr1btm1Cof|Agtr2tm1Tin Agtr1atm1Unc/Agtr1atm1Unc,Agtr1btm1Cof/Agtr1btm1Cof,Agtr2tm1Tin/Y
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87965  MGI:87966  MP:0000519 hydronephrosis PMID: 18497303 
Agtr1atm1Afu Agtr1atm1Afu/Agtr1atm1Afu
involves: C57BL/6 * CBA
MGI:87964  MP:0001596 hypotension PMID: 15087458 
Agtr1atm1Unc|Hprttm1(Ggt1-Agtr1)Cof Agtr1atm1Unc/Agtr1atm1Unc,Hprttm1(Ggt1-Agtr1)Cof/Y
involves: 129P2/OlaHsd
MGI:87964  MGI:96217  MP:0001596 hypotension PMID: 15306694 
Agtr1atm1Afu Agtr1atm1Afu/Agtr1atm1Afu
involves: C57BL/6 * CBA * ICR
MGI:87964  MP:0001596 hypotension PMID: 7642517 
Agtr1a+|Agtr1atm1Afu Agtr1atm1Afu/Agtr1a+
involves: C57BL/6 * CBA * ICR
MGI:87964  MP:0001596 hypotension PMID: 7642517 
Agtr1atm1Ecl Agtr1atm1Ecl/Agtr1atm1Ecl
involves: 129S2/SvPas * C57BL/6
MGI:87964  MP:0005565 increased blood urea nitrogen level PMID: 17607364 
Agtr1atm1Afu Agtr1atm1Afu/Agtr1atm1Afu
involves: C57BL/6 * CBA * ICR
MGI:87964  MP:0003352 increased circulating renin level PMID: 7642517 
Agtr1atm1Afu Agtr1atm1Afu/Agtr1atm1Afu
involves: C57BL/6 * CBA * ICR
MGI:87964  MP:0003911 increased drinking behavior PMID: 12388241 
Agtr1atm1Afu|Agtr2tm1Gsb Agtr1atm1Afu/Agtr1atm1Afu,Agtr2tm1Gsb/Y
mixed
MGI:87964  MGI:87966  MP:0003911 increased drinking behavior PMID: 12388241 
Agtr1atm1Ecl Agtr1atm1Ecl/Agtr1atm1Ecl
involves: 129S2/SvPas * C57BL/6
MGI:87964  MP:0002833 increased heart weight PMID: 17607364 
Agtr1atm1Ecl Agtr1atm1Ecl/Agtr1atm1Ecl
involves: 129S2/SvPas * C57BL/6
MGI:87964  MP:0005564 increased hemoglobin content PMID: 17607364 
Agtr1btm1Cof|Agtr2tm1Tin Agtr1btm1Cof/Agtr1btm1Cof,Agtr2tm1Tin/Y
involves: 129P2/OlaHsd * C57BL/6
MGI:87965  MGI:87966  MP:0004875 increased mean systemic arterial blood pressure PMID: 18497303 
Agtr1btm1Cof|Agtr2tm1Tin Agtr1btm1Cof/Agtr1btm1Cof,Agtr2tm1Tin/Agtr2tm1Tin
involves: 129P2/OlaHsd * C57BL/6
MGI:87965  MGI:87966  MP:0004875 increased mean systemic arterial blood pressure PMID: 18497303 
Agtr1atm1Afu Agtr1atm1Afu/Agtr1atm1Afu
involves: C57BL/6 * CBA * ICR
MGI:87964  MP:0005582 increased renin activity PMID: 7642517 
Agtr1atm1Tma Agtr1atm1Tma/Agtr1atm1Tma
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MP:0002842 increased systemic arterial blood pressure PMID: 9466969 
Agtr1atm1Ecl Agtr1atm1Ecl/Agtr1atm1Ecl
involves: 129S2/SvPas * C57BL/6
MGI:87964  MP:0006144 increased systemic arterial systolic blood pressure PMID: 17607364 
Agtr1atm1Ecl Agtr1atm1Ecl/Agtr1atm1Ecl
involves: 129S2/SvPas * C57BL/6
MGI:87964  MP:0008055 increased urine osmolality PMID: 17607364 
Agtr1atm1Unc|Agtr1btm1Cof|Hprttm1(Ggt1-Agtr1)Cof Agtr1atm1Unc/Agtr1atm1Unc,Agtr1btm1Cof/Agtr1btm1Cof,Hprttm1(Ggt1-Agtr1)Cof/Y
involves: 129P2/OlaHsd
MGI:87964  MGI:87965  MGI:96217  MP:0003675 kidney cysts PMID: 15306694 
Agtr1atm1Unc|Agtr1btm1Cof Agtr1atm1Unc/Agtr1atm1Unc,Agtr1btm1Cof/Agtr1btm1Cof
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87965  MP:0003675 kidney cysts PMID: 18497303 
Agtr1atm1Unc|Agtr1btm1Cof Agtr1atm1Unc/Agtr1atm1Unc,Agtr1btm1Cof/Agtr1btm1Cof
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87965  MP:0001859 kidney inflammation PMID: 18497303 
Agtr1atm1Tma|Agtr1btm1Ii Agtr1atm1Tma/Agtr1atm1Tma,Agtr1btm1Ii/Agtr1btm1Ii
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87965  MP:0010420 muscular ventricular septal defect PMID: 9466969 
Agtr1atm1Tma|Agtr1btm1Ii Agtr1atm1Tma/Agtr1atm1Tma,Agtr1btm1Ii/Agtr1btm1Ii
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87965  MP:0010418 perimembraneous ventricular septal defect PMID: 9466969 
Agtr1atm1Tma|Agtr1btm1Ii Agtr1atm1Tma/Agtr1atm1Tma,Agtr1btm1Ii/Agtr1btm1Ii
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87965  MP:0002082 postnatal lethality PMID: 9466969 
Agtr1atm1Unc|Agtr1btm1Cof|Agtr2tm1Tin Agtr1atm1Unc/Agtr1atm1Unc,Agtr1btm1Cof/Agtr1btm1Cof,Agtr2tm1Tin/Agtr2tm1Tin
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87965  MGI:87966  MP:0002082 postnatal lethality PMID: 18497303 
Agtr1atm1Unc|Agtr1btm1Cof|Agtr2tm1Tin Agtr1atm1Unc/Agtr1atm1Unc,Agtr1btm1Cof/Agtr1btm1Cof,Agtr2tm1Tin/Y
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87965  MGI:87966  MP:0002082 postnatal lethality PMID: 18497303 
Agtr1atm1Unc|Agtr1btm1Cof Agtr1atm1Unc/Agtr1atm1Unc,Agtr1btm1Cof/Agtr1btm1Cof
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87965  MP:0002082 postnatal lethality PMID: 18497303 
Agtr1atm1Ecl Agtr1atm1Ecl/Agtr1atm1Ecl
involves: 129S2/SvPas * C57BL/6
MGI:87964  MP:0003985 renal fibrosis PMID: 17607364 
Agtr1atm1Tma|Agtr1btm1Ii Agtr1atm1Tma/Agtr1atm1Tma,Agtr1btm1Ii/Agtr1btm1Ii
involves: 129P2/OlaHsd * C57BL/6
MGI:87964  MGI:87965  MP:0010402 ventricular septal defect PMID: 9466969 
Clinically-Relevant Mutations and Pathophysiology
Disease:  Cardiac hypertrophy
References:  18,57
Mutations not determined
Disease:  Hypertension
OMIM:  145500
References:  15,77,160
Mutations not determined
Disease:  Stature as a quantitative trait
OMIM:  606255
References:  20
Mutations not determined
Disease:  Renal tubular dysgenesis
OMIM:  267430
Orphanet:  97369
References:  49
Mutations not determined
Clinically-Relevant Mutations and Pathophysiology Comments
Other pathophysiological actions of AT1 receptor include induction of cardiac fibrosis, renal fibrosis, perivascular fibrosis, induction of cell and tissue senescence, induction of insulin resistance, induction of endothelial dysfunction, induction of skeletal muscle wasting, reduction of exercise tolerance, induction of tissue ER stress, induction of aortic aneurysm, acceleration of atherosclerosis. Preeclampsia is associated with the presence of autoantibodies capable of activating the AT1R [159,163]. AT(1)-B(2)-receptor heterodimerization is also reported to be correlated to preeclampsia [1].
Biologically Significant Variants
Type:  Not specified
Species:  Human
Description:  Human tissues that express the angiotensin II (Ang II) type 1 receptor (hAT(1)R) can synthesize four distinct alternatively spliced hAT(1)R mRNA transcripts. A long AT1 receptor isoform has 3-fold reduced affinity for Ang II
References:  99
Type:  Not specified
Species:  Human
Description:  In contrast to rodents, the existence of various isoforms for the human AT1 receptor is not proven.
References:  48,79,81
General Comments
For information on miRNAs predicted to target AGTR1 3'-UTR please see TargetScan [46,90].
Available Assays
DiscoveRx PathHunter® CHO-K1 AGTR1 β-Arrestin Cell Line (Cat no. 93-0312C2)
PathHunter® eXpress AGTR1 CHO-K1 β-Arrestin GPCR Assay (Cat no. 93-0312E2CP0M)
more info

REFERENCES

1. AbdAlla S, Lother H, el Massiery A, Quitterer U. (2001) Increased AT(1) receptor heterodimers in preeclampsia mediate enhanced angiotensin II responsiveness. Nat. Med.7 (9): 1003-9. [PMID:11533702]

2. AbdAlla S, Lother H, Quitterer U. (2000) AT1-receptor heterodimers show enhanced G-protein activation and altered receptor sequestration. Nature407 (6800): 94-8. [PMID:10993080]

3. Agelis G, Resvani A, Durdagi S, Spyridaki K, Tůmová T, Slaninová J, Giannopoulos P, Vlahakos D, Liapakis G, Mavromoustakos T et al.. (2012) The discovery of new potent non-peptide Angiotensin II AT1 receptor blockers: a concise synthesis, molecular docking studies and biological evaluation of N-substituted 5-butylimidazole derivatives. Eur J Med Chem55: 358-74. [PMID:22889560]

4. Agelis G, Resvani A, Koukoulitsa C, Tůmová T, Slaninová J, Kalavrizioti D, Spyridaki K, Afantitis A, Melagraki G, Siafaka A et al.. (2013) Rational design, efficient syntheses and biological evaluation of N,N'-symmetrically bis-substituted butylimidazole analogs as a new class of potent Angiotensin II receptor blockers. Eur J Med Chem62: 352-70. [PMID:23376252]

5. Ahn S, Shenoy SK, Wei H, Lefkowitz RJ. (2004) Differential kinetic and spatial patterns of beta-arrestin and G protein-mediated ERK activation by the angiotensin II receptor. J. Biol. Chem.279 (34): 35518-25. [PMID:15205453]

6. Allen AM, Moeller I, Jenkins TA, Zhuo J, Aldred GP, Chai SY, Mendelsohn FA. (1998) Angiotensin receptors in the nervous system. Brain Res. Bull.47 (1): 17-28. [PMID:9766385]

7. Asico LD, Ladines C, Fuchs S, Accili D, Carey RM, Semeraro C, Pocchiari F, Felder RA Eisner G, Jose PA. (1998) Disruption of the dopamine D3 receptor gene produces renin-dependent hypertension. J. Clin. Invest.102: 493-498. [PMID:9691085]

8. Baiardi G, Macova M, Armando I, Ando H, Tyurmin D, Saavedra JM. (2005) Estrogen upregulates renal angiotensin II AT1 and AT2 receptors in the rat. Regul. Pept.124 (1-3): 7-17. [PMID:15544836]

9. Baker KM, Aceto JF. (1990) Angiotensin II stimulation of protein synthesis and cell growth in chick heart cells. Am. J. Physiol.259: H610-H618. [PMID:2143633]

10. Batenburg WW, Garrelds IM, Bernasconi CC, Juillerat-Jeanneret L, van Kats JP, Saxena PR, Danser AH. (2004) Angiotensin II type 2 receptor-mediated vasodilation in human coronary microarteries. Circulation109 (19): 2296-301. [PMID:15117835]

11. Bell L, Madri JA. (1990) Influence of the angiotensin system on endothelial and smooth muscle cell migration. Am. J. Pathol.137: 7-12. [PMID:2372038]

12. Bergsma DJ, Ellis C, Kumar C, Nuthulaganti P, Kersten H, Elshourbagy N, Griffin E, Stadel JM, Aiyar N. (1992) Cloning and characterization of a human angiotensin II type 1 receptor. Biochem. Biophys. Res. Commun.183: 989-995. [PMID:1567413]

13. Berk BC, Corson MA. (1997) Angiotensin II Signal Transduction in Vascular Smooth Muscle : Role of Tyrosine Kinases. Circ. Res.80: 607-616. [PMID:9130441]

14. Bhatnagar A, Unal H, Jagannathan R, Kaveti S, Duan ZH, Yong S, Vasanji A, Kinter M, Desnoyer R, Karnik SS. (2013) Interaction of G-protein βγ complex with chromatin modulates GPCR-dependent gene regulation. PLoS ONE8 (1): e52689. [PMID:23326349]

15. Bonnardeaux A, Davies E, Jeunemaitre X, Fery I, Charru A, Clauser E, Tiret L, Cambien F, Corvol P, Soubrier F. (1994) Angiotensin II type 1 receptor gene polymorphisms in human essential hypertension. Hypertension24: 63-69. [PMID:8021009]

16. Bullock GR, Steyaert I, Bilbe G, Carey RM, Kips J, De Paepe B, Pauwels R, Praet M, Siragy HM, de Gasparo M. (2001) Distribution of type-1 and type-2 angiotensin receptors in the normal human lung and in lungs from patients with chronic obstructive pulmonary disease. Histochem. Cell Biol.115 (2): 117-24. [PMID:11444146]

17. Burns KD, Li N. (2003) The role of angiotensin II-stimulated renal tubular transport in hypertension. Curr. Hypertens. Rep.5: 165-171. [PMID:12642017]

18. Catt KJ, Mendelsohn FA, Millan MA, Aguilera G. (1984) The role of angiotensin II receptors in vascular regulation. J. Cardiovasc. Pharmacol.6 Suppl 4: S575-86. [PMID:6083400]

19. Chansel D, Vandermeersch S, Pham P, Ardaillou R. (1993) Characterization of [3H]losartan receptors in isolated rat glomeruli. Eur. J. Pharmacol.247 (2): 193-8. [PMID:8282008]

20. Chaves FJ, Corella D, Sorli JV, Marin-Garcia P, Guillen M, Redon J. (2004) Polymorphisms of the renin-angiotensin system influence height in normotensive women in a Spanish population. J. Clin. Endocrinol. Metab.89 (5): 2301-5. [PMID:15126556]

21. Chen D, Bassi JK, Walther T, Thomas WG, Allen AM. (2010) Expression of angiotensin type 1A receptors in C1 neurons restores the sympathoexcitation to angiotensin in the rostral ventrolateral medulla of angiotensin type 1A knockout mice. Hypertension56 (1): 143-50. [PMID:20458002]

22. Chen J, Guo L, Peiffer DA, Zhou L, Chan OT, Bibikova M, Wickham-Garcia E, Lu SH, Zhan Q, Wang-Rodriguez J et al.. (2008) Genomic profiling of 766 cancer-related genes in archived esophageal normal and carcinoma tissues. Int. J. Cancer122 (10): 2249-54. [PMID:18241037]

23. Chen TB, Lotti VJ, Chang RS. (1992) Characterization of the binding of [3H]L-158,809: a new potent and selective nonpeptide angiotensin II receptor (AT1) antagonist radioligand. Mol. Pharmacol.42 (6): 1077-82. [PMID:1480133]

24. Chiu AT, McCall DE, Roscoe WA. (1992) [125I]EXP985: a highly potent and specific nonpeptide radioligand antagonist for the AT1 angiotensin receptor. Biochem. Biophys. Res. Commun.188 (3): 1030-9. [PMID:1445340]

25. Criscione L, de Gasparo M, Buhlmayer P, Whitebread S, Ramjoue HPR, Wood J. (1993) Pharmacological profile of valsartan: a potent, orally active, nonpeptide antagonist of the angiotensin-II AT1- receptor subtype. Br. J. Pharmacol.110: 761-771. [PMID:8242249]

26. Cullinane AB, Leung PS, Ortego J, Coca-Prados M, Harvey BJ. (2002) Renin-angiotensin system expression and secretory function in cultured human ciliary body non-pigmented epithelium. Br J Ophthalmol86 (6): 676-83. [PMID:12034692]

27. Curnow KM, Pascoe L, Davies E, White PC, Corvol P, Clauser E. (1995) Alternatively spliced human type 1 angiotensin II receptor mRNAs are translated at different efficiencies and encode two receptor isoforms. Mol. Endocrinol.9 (9): 1250-62. [PMID:7491117]

28. Curnow KM, Pascoe L, White PC. (1992) Genetic analysis of the human type-1 angiotensin II receptor. Mol. Endocrinol.6: 1113-1118. [PMID:1508224]

29. da Silva OG, Rossignoli Pde S, Carrillo-Sepúlveda MA, Barreto-Chaves ML, Chies AB. (2011) Involvement of the AT1 receptor in the venoconstriction induced by angiotensin II in both the inferior vena cava and femoral vein. Peptides32 (1): 112-7. [PMID:20955746]

30. Davies E, Bonnardeaux A, Lathrop GM, Corvol P, Clauser E, Soubrier F. (1994) Angiotensin II (type-1) receptor locus: CA repeat polymorphism and genetic mapping. Hum. Mol. Genet.3: 838---. [PMID:8081376]

31. Davisson RL, Oliverio MI, Coffman TM, Sigmund CD. (2000) Divergent functions of angiotensin II receptor isoforms in the brain. J. Clin. Invest.106 (1): 103-6. [PMID:10880053]

32. de Boer RA, Pinto YM, Suurmeijer AJ, Pokharel S, Scholtens E, Humler M, Saavedra JM, Boomsma F, van Gilst WH, van Veldhuisen DJ. (2003) Increased expression of cardiac angiotensin II type 1 (AT(1)) receptors decreases myocardial microvessel density after experimental myocardial infarction. Cardiovasc. Res.57 (2): 434-42. [PMID:12566116]

33. de Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T. (2000) International Union of Pharmacology. XXIII. The angiotensin II receptors. . Pharmacol. Rev.52: 415-472. [PMID:10977869]

34. de Gasparo M, Whitebread S. (1995) Binding of valsartan to mammalian angiotensin AT1 receptors. Regul. Pept.59 (3): 303-11. [PMID:8577935]

35. de Gasparo M, Whitebread S, Bottari SP, Levens NR. (1994) Heterogeneity of angiotensin receptor subtypes. in Medicinal Chemistry of the Renin-Angiotensin System. Edited by Timmermanns PBMWM, Wexler RR Elsevier. 269-294 [ISBN:0444820531]

36. Diez J, Laviades C, Orbe J, Zalba G, Lopez B, Gonzalez A, Mayor G, Paramo JA, Beloqui O. (2003) The A1166C polymorphism of the AT1 receptor gene is associated with collagen type I synthesis and myocardial stiffness in hypertensives. J. Hypertens.21: 2085-2092. [PMID:14597852]

37. Doan TN, Ali MS, Bernstein KE. (2001) Tyrosine kinase activation by the angiotensin II receptor in the absence of calcium signaling. J. Biol. Chem.276: 20954-20958. [PMID:11319216]

38. Edwards RM, Aiyar N, Ohlstein EH, Weidley EF, Griffin E, Ezekiel M, Keenan RM, Ruffolo RR, Weinstock J. (1992) Pharmacological characterization of the nonpeptide angiotensin II receptor antagonist, SK&F 108566. J. Pharmacol. Exp. Ther.260: 175-181. [PMID:1309870]

39. Elton TS, Stephan CC, Taylor GR, Kimball MG, Martin MM, Durand JN, Oparil S. (1992) Isolation of two distinct type I angiotensin II receptor genes. Biochem. Biophys. Res. Commun.184 (2): 1067-73. [PMID:1575725]

40. Esteban V, Heringer-Walther S, Sterner-Kock A, de Bruin R, van den Engel S, Wang Y, Mezzano S, Egido J, Schultheiss HP, Ruiz-Ortega M et al.. (2009) Angiotensin-(1-7) and the g protein-coupled receptor MAS are key players in renal inflammation. PLoS ONE4 (4): e5406. [PMID:19404405]

41. Eto H, Biro S, Miyata M, Kaieda H, Obata H, Kihara T, Orihara K, Tei C. (2003) Angiotensin II type 1 receptor participates in extracellular matrix production in the late stage of remodeling after vascular injury. Cardiovasc. Res.59: 200-211. [PMID:12829191]

42. Feng YH, Noda K, Saad Y, Liu XP, Husain A, Karnik SS. (1995) The docking of Arg2 of angiotensin II with Asp281 of AT1 receptor is essential for full agonism. J. Biol. Chem.270 (21): 12846-50. [PMID:7759541]

43. Ferri C, Desideri G, Baldoncini R, Bellini C, Valenti M, Santucci A, De Mattia G. (1999) Angiotensin II increases the release of endothelin-1 from human cultured endothelial cells but does not regulate its circulating levels. Clin. Sci.96: 261-270. [PMID:10029562]

44. Fierens F, Vanderheyden PM, De Backer JP, Vauquelin G. (1999) Binding of the antagonist [3H]candesartan to angiotensin II AT1 receptor-transfected [correction of tranfected] Chinese hamster ovary cells. Eur. J. Pharmacol.367 (2-3): 413-22. [PMID:10079018]

45. Fierens FL, Vanderheyden PM, De Backer JP, Vauquelin G. (1999) Insurmountable angiotensin AT1 receptor antagonists: the role of tight antagonist binding. Eur. J. Pharmacol.372 (2): 199-206. [PMID:10395100]

46. Friedman RC, Farh KK, Burge CB, Bartel DP. (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res.19 (1): 92-105. [PMID:18955434]

47. Furuta H, Guo DF, Inagami T. (1992) Molecular cloning and sequencing of the gene encoding human angiotensin II type 1 receptor. Biochem. Biophys. Res. Commun.183 (1): 8-13. [PMID:1543512]

48. Gasc JM, Shanmugam S, Sibony M, Corvol P. (1994) Tissue-specific expression of type 1 angiotensin II receptor subtypes. An in situ hybridization study. Hypertension24: 531-537. [PMID:7960011]

49. Gribouval O, Gonzales M, Neuhaus T, Aziza J, Bieth E, Laurent N, Bouton JM, Feuillet F, Makni S, Ben Amar H et al.. (2005) Mutations in genes in the renin-angiotensin system are associated with autosomal recessive renal tubular dysgenesis. Nat. Genet.37 (9): 964-8. [PMID:16116425]

50. Griendling KK, Ushio-Fukai M. (2000) Reactive oxygen species as mediators of angiotensin II signaling. Regul. Pept.91: 21-27. [PMID:10967199]

51. Ha H, Lee HB. (2003) Reactive oxygen species and matrix remodeling in diabetic kidney. J. Am. Soc. Nephrol.14: S246-S249. [PMID:12874439]

52. Hancock AA, Surber BW, Rotert G, Thomas S, Tasker AS, Sorensen BK, Vodenlich AD, Opgenorth TJ, Kerkman DJ, DeBernardis JF. (1994) [3H]A-81988, a potent, selective, competitive antagonist radioligand for angiotensin AT1 receptors. Eur. J. Pharmacol.267 (1): 49-54. [PMID:8206129]

53. Handa RK, Krebs LT, Harding JW, Handa SE. (1998) Angiotensin IV AT4-receptor system in the rat kidney. Am. J. Physiol.274 (2 Pt 2): F290-9. [PMID:9486224]

54. Harada K, Sugaya T, Murakami K, Yazaki Y, Komuro I. (1999) Angiotensin II type 1A receptor knockout mice display less left ventricular remodeling and improved survival after myocardial infarction. Circulation100 (20): 2093-9. [PMID:10562266]

55. Hein L, Stevens ME, Barsh GS, Pratt RE, Kobilka BK, Dzau VJ. (1997) Overexpression of angiotensin AT1 receptor transgene in the mouse myocardium produces a lethal phenotype associated with myocyte hyperplasia and heart block. Proc. Natl. Acad. Sci. U.S.A.94 (12): 6391-6. [PMID:9177228]

56. Hernandez Schulman I, Zhou MS, Raij L. (2007) Cross-talk between angiotensin II receptor types 1 and 2: potential role in vascular remodeling in humans. Hypertension49 (2): 270-1. [PMID:17159080]

57. Herzig TC, Jobe SM, Aoki H, Molkentin JD, Cowley Jr AW, Izumo S, Markham BE. (1997) Angiotensin II type1a receptor gene expression in the heart: AP-1 and GATA-4 participate in the response to pressure overload. Proc. Natl. Acad. Sci. U.S.A.94 (14): 7543-8. [PMID:9207128]

58. Hoffmann S, Krause T, van Geel PP, Willenbrock R, Pagel I, Pinto YM, Buikema H, van Gilst WH, Lindschau C, Paul M et al.. (2001) Overexpression of the human angiotensin II type 1 receptor in the rat heart augments load induced cardiac hypertrophy. J. Mol. Med.79 (10): 601-8. [PMID:11692158]

59. Hoffmann S, Podlich D, Hähnel B, Kriz W, Gretz N. (2004) Angiotensin II type 1 receptor overexpression in podocytes induces glomerulosclerosis in transgenic rats. J. Am. Soc. Nephrol.15 (6): 1475-87. [PMID:15153558]

60. Hollon TR, Bek MJ, Lachowicz JE, Ariano MA, Mezey E, Ramachandran R, Wersinger SR, Soares-da-Silva P, Liu ZF, Grinberg A, Drago J, Young WS, Westphal H, Jose PA, Sibley DR. (2002) Mice lacking D5 dopamine receptors have increased sympathetic tone and are hypertensive. J Neurosci22: 10801-10810. [PMID:12486173]

61. Holloway AC, Qian H, Pipolo L, Ziogas J, Miura S, Karnik S, Southwell BR, Lew MJ, Thomas WG. (2002) Side-chain substitutions within angiotensin II reveal different requirements for signaling, internalization, and phosphorylation of type 1A angiotensin receptors. Mol. Pharmacol.61 (4): 768-77. [PMID:11901215]

62. Holycross BJ, Peach MJ, Owens GK. (1993) Angiotensin II stimulates increased protein synthesis, not increased DNA synthesis, in intact rat aortic segments, in vitro. J. Vasc. Res.30: 80-86. [PMID:8504199]

63. Inagami T, Iwai N, Sasaki K, Yamano Y, Bardhan S, Chaki S, Guo DF, Furuta H, Ohyama K, Kambayashi Y. (1994) Cloning, expression and regulation of angiotensin II receptors. Eur. Heart. J.15: 104-107. [PMID:7713098]

64. Inokuchi S, Kimura K, Sugaya T, Inokuchi K, Murakami K, Sakai T. (2001) Hyperplastic vascular smooth muscle cells of the intrarenal arteries in angiotensin II type 1a receptor null mutant mice. Kidney Int.60 (2): 722-31. [PMID:11473655]

65. Ishida M, Marrero MB, Schieffer B, Ishida T, Bernstein KE, Berk BC. (1995) Angiotensin II activates pp60c-src in vascular smooth muscle cells. Circ. Res.77 (6): 1053-9. [PMID:7586216]

66. Itoh S, Ding B, Shishido T, Lerner-Marmarosh N, Wang N, Maekawa N, Berk BC, Takeishi Y, Yan C, Blaxall BC et al.. (2006) Role of p90 ribosomal S6 kinase-mediated prorenin-converting enzyme in ischemic and diabetic myocardium. Circulation113 (14): 1787-98. [PMID:16585392]

67. Iwai N, Inagami T. (1992) Identification of two subtypes in the rat type I angiotensin II receptor. FEBS Lett.298 (2-3): 257-60. [PMID:1544458]

68. Iwai N, Yamano Y, Chaki S, Konishi F, Bardhan S, Tibbetts C, Sasaki K, Hasegawa M, Matsuda Y, Inagami T. (1991) Rat angiotensin II receptor: cDNA sequence and regulation of the gene expression. Biochem. Biophys. Res. Commun.177 (1): 299-304. [PMID:2043116]

69. Jaffré F, Bonnin P, Callebert J, Debbabi H, Setola V, Doly S, Monassier L, Mettauer B, Blaxall BC, Launay JM et al.. (2009) Serotonin and angiotensin receptors in cardiac fibroblasts coregulate adrenergic-dependent cardiac hypertrophy. Circ. Res.104 (1): 113-23. [PMID:19023134]

70. Jagannathan R, Kaveti S, Desnoyer RW, Willard B, Kinter M, Karnik SS. (2010) AT1 receptor induced alterations in histone H2A reveal novel insights into GPCR control of chromatin remodeling. PLoS ONE5 (9): e12552. [PMID:20838438]

71. Jankowski V, Vanholder R, van der Giet M, Tölle M, Karadogan S, Gobom J, Furkert J, Oksche A, Krause E, Tran TN et al.. (2007) Mass-spectrometric identification of a novel angiotensin peptide in human plasma. Arterioscler. Thromb. Vasc. Biol.27 (2): 297-302. [PMID:17138938]

72. Jin W, Liu Y, Sheng HH, Jin L, Shen YY, Hua Q, Lu L, Yu JD, Huang W. (2003) Single nucleotide polymorphisms in promoter of angiotensin II type 1 receptor gene associated with essential hypertension and coronary heart disease in Chinese population. Acta Pharmacol. Sin.24 (11): 1083-8. [PMID:14627489]

73. Jones A, Dhamrait SS, Payne JR, Hawe E, Li P, Toor IS, Luong L, Wootton PT, Miller GJ, Humphries SE, Montgomery HE. (2003) Genetic Variants of Angiotensin II Receptors and Cardiovascular Risk in Hypertension. Hypertension42: 500-506. [PMID:12925562]

74. Kakar SS, Sellers JC, Devor DC, Musgrove LC, Neill JD. (1992) Angiotensin II type-1 receptor subtype cDNAs: differential tissue expression and hormonal regulation. Biochem. Biophys. Res. Commun.183 (3): 1090-6. [PMID:1567388]

75. Kanome T, Watanabe T, Nishio K, Takahashi K, Hongo S, Miyazaki A. (2008) Angiotensin II upregulates acyl-CoA:cholesterol acyltransferase-1 via the angiotensin II Type 1 receptor in human monocyte-macrophages. Hypertens. Res.31 (9): 1801-10. [PMID:18971559]

76. Kim JM, Heo HS, Ha YM, Ye BH, Lee EK, Choi YJ, Yu BP, Chung HY. (2012) Mechanism of Ang II involvement in activation of NF-κB through phosphorylation of p65 during aging. Age (Dordr)34 (1): 11-25. [PMID:21318332]

77. Kobashi G, Hata A, Ohta K, Yamada H, Kato EH, Minakami H, Fujimoto S, Kondo K. (2004) A1166C variant of angiotensin II type 1 receptor gene is associated with severe hypertension in pregnancy independently of T235 variant of angiotensinogen gene. J. Hum. Genet.49 (4): 182-6. [PMID:15042429]

78. Koike H, Sada T, Mizuno M. (2001) In vitro and in vivo pharmacology of olmesartan medoxomil, an angiotensin II type AT1 receptor antagonist. J. Hypertens.19: S3-S14. [PMID:11451212]

79. Konishi H, Kuroda S, Inada Y, Fujisawa Y. (1994) Novel subtype of human angiotensin II type 1 receptor: cDNA cloning and expression. Biochem. Biophys. Res. Commun.199: 467-474. [PMID:8135787]

80. Kurland L, Melhus H, Karlsson J, Kahan T, Malmqvist K, Ohman P, Nystrom F, Hagg A, Lind L. (2002) Polymorphisms in the angiotensinogen and angiotensin II type 1 receptor gene are related to change in left ventricular mass during antihypertensive treatment: results from the Swedish Irbesartan Left Ventricular Hypertrophy Investigation versus Atenolol (SILVHIA) trial. J. Hypertens.20: 657-663. [PMID:11910301]

81. Kuroda S, Konishi H, Okishio M, Fujisawa Y. (1994) Novel subtype of human angiotensin II type 1 receptor: analysis of signal transduction mechanism in transfected Chinese hamster ovary cells. Biochem. Biophys. Res. Commun.199: 475-481. [PMID:8135788]

82. Kurosaka M, Suzuki T, Hosono K, Kamata Y, Fukamizu A, Kitasato H, Fujita Y, Majima M. (2009) Reduced angiogenesis and delay in wound healing in angiotensin II type 1a receptor-deficient mice. Biomed. Pharmacother.63 (9): 627-34. [PMID:19464844]

83. Kwon TH, Nielsen J, Kim YH, Knepper MA, Frokiaer J, Nielsen S. (2003) Regulation of sodium transporters in the thick ascending limb of rat kidney: response to angiotensin II. Am. J. Physiol. Renal Physiol.285: F152-F165. [PMID:12657563]

84. Langford K, Frenzel K, Martin BM, Bernstein KE. (1992) The genomic organization of the rat AT1 angiotensin receptor. Biochem. Biophys. Res. Commun.183 (3): 1025-32. [PMID:1533121]

85. Lawnicka H, Ptasinska-Wnuk D, Mucha S, Kunert-Radek J, Pawlikowski M, Stepien H. (2012) The involvement of angiotensin type 1 and type 2 receptors in estrogen-induced cell proliferation and vascular endothelial growth factor expression in the rat anterior pituitary. ScientificWorldJournal2012: 358102. [PMID:22645419]

86. Lazartigues E, Dunlay SM, Loihl AK, Sinnayah P, Lang JA, Espelund JJ, Sigmund CD, Davisson RL. (2002) Brain-selective overexpression of angiotensin (AT1) receptors causes enhanced cardiovascular sensitivity in transgenic mice. Circ. Res.90 (5): 617-24. [PMID:11909827]

87. Lazartigues E, Lawrence AJ, Lamb FS, Davisson RL. (2004) Renovascular hypertension in mice with brain-selective overexpression of AT1a receptors is buffered by increased nitric oxide production in the periphery. Circ. Res.95 (5): 523-31. [PMID:15284190]

88. Lazartigues E, Sinnayah P, Augoyard G, Gharib C, Johnson AK, Davisson RL. (2008) Enhanced water and salt intake in transgenic mice with brain-restricted overexpression of angiotensin (AT1) receptors. Am. J. Physiol. Regul. Integr. Comp. Physiol.295 (5): R1539-45. [PMID:18753266]

89. Le MT, Vanderheyden PM, Szaszák M, Hunyady L, Vauquelin G. (2002) Angiotensin IV is a potent agonist for constitutive active human AT1 receptors. Distinct roles of the N-and C-terminal residues of angiotensin II during AT1 receptor activation. J. Biol. Chem.277 (26): 23107-10. [PMID:12006574]

90. Lewis BP, Burge CB, Bartel DP. (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell120 (1): 15-20. [PMID:15652477]

91. Li H, Weatherford ET, Davis DR, Keen HL, Grobe JL, Daugherty A, Cassis LA, Allen AM, Sigmund CD. (2011) Renal proximal tubule angiotensin AT1A receptors regulate blood pressure. Am. J. Physiol. Regul. Integr. Comp. Physiol.301 (4): R1067-77. [PMID:21753145]

92. Li XC, Shao Y, Zhuo JL. (2009) AT1a receptor knockout in mice impairs urine concentration by reducing basal vasopressin levels and its receptor signaling proteins in the inner medulla. Kidney Int.76 (2): 169-77. [PMID:19387470]

93. Luchtefeld M, Bandlow N, Tietge UJ, Grote K, Pfeilschifter J, Kaszkin M, Beck S, Drexler H, Schieffer B. (2007) Angiotensin II type 1-receptor antagonism prevents type IIA secretory phospholipase A2-dependent lipid peroxidation. Atherosclerosis194 (1): 62-70. [PMID:17069818]

94. Madhur MS, Lob HE, McCann LA, Iwakura Y, Blinder Y, Guzik TJ, Harrison DG. (2010) Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction. Hypertension55 (2): 500-7. [PMID:20038749]

95. Maillard MP, Rossat J, Brunner HR, Burnier M. (2000) Tasosartan, enoltasosartan, and angiotensin II receptor blockade: the confounding role of protein binding. J. Pharmacol. Exp. Ther.295 (2): 649-54. [PMID:11046101]

96. Mangrum AJ, Gomez RA, Norwood VF. (2002) Effects of AT(1A) receptor deletion on blood pressure and sodium excretion during altered dietary salt intake. Am. J. Physiol. Renal Physiol.283 (3): F447-53. [PMID:12167595]

97. Marrero MB, Schieffer B, Paxton WG, Heerdt L, Berk BC, Delafontaine P, Bernstein KE. (1995) Direct stimulation of Jak/STAT pathway by the angiotensin II AT1 receptor. Nature375 (6528): 247-50. [PMID:7746328]

98. Marrero MB, Schieffer B, Paxton WG, Schieffer E, Bernstein KE. (1995) Electroporation of pp60c-src antibodies inhibits the angiotensin II activation of phospholipase C-gamma 1 in rat aortic smooth muscle cells. J. Biol. Chem.270 (26): 15734-8. [PMID:7541047]

99. Martin MM, Willardson BM, Burton GF, White CR, McLaughlin JN, Bray SM, Ogilvie JW Jr, Elton TS. (2001) Human angiotensin II type 1 receptor isoforms encoded by messenger RNA splice variants are functionally distinct. Mol. Endocrinol.15: 281-293. [PMID:11158334]

100. Matsusaka T, Ichikawa I. (1997) Biological functions of angiotensin and its receptors. Annu. Rev. Physiol.59: 395-412. [PMID:9074770]

101. Mauzy CA, Hwang O, Egloff AM, Wu LH, Chung FZ. (1992) Cloning, expression, and characterization of a gene encoding the human angiotensin II type 1A receptor. Biochem. Biophys. Res. Commun.186 (1): 277-84. [PMID:1378723]

102. McAllister-Lucas LM, Ruland J, Siu K, Jin X, Gu S, Kim DS, Kuffa P, Kohrt D, Mak TW, Nuñez G et al.. (2007) CARMA3/Bcl10/MALT1-dependent NF-kappaB activation mediates angiotensin II-responsive inflammatory signaling in nonimmune cells. Proc. Natl. Acad. Sci. U.S.A.104 (1): 139-44. [PMID:17101977]

103. McClellan KJ, Markham A. (1998) Telmisartan. Drugs56: 1039-1044. [PMID:9878991]

104. Mertens B, Vanderheyden P, Michotte Y, Sarre S. (2010) Direct angiotensin II type 2 receptor stimulation decreases dopamine synthesis in the rat striatum. Neuropharmacology58 (7): 1038-44. [PMID:20097214]

105. Michel MC, Foster C, Brunner HR, Liu L. (2013) A systematic comparison of the properties of clinically used angiotensin II type 1 receptor antagonists. Pharmacol. Rev.65 (2): 809-48. [PMID:23487168]

106. Mii S, Ware JA, Mallette SA, Kent KC. (1994) Effect of angiotensin II on human vascular smooth muscle cell growth. J. Surg. Res.57: 174-178. [PMID:8041134]

107. Miura S, Feng YH, Husain A, Karnik SS. (1999) Role of aromaticity of agonist switches of angiotensin II in the activation of the AT1 receptor. J. Biol. Chem.274 (11): 7103-10. [PMID:10066768]

108. Mueller CF, Berger A, Zimmer S, Tiyerili V, Nickenig G. (2009) The heterogenous nuclear riboprotein S1-1 regulates AT1 receptor gene expression via transcriptional and posttranscriptional mechanisms. Arch. Biochem. Biophys.488 (1): 76-82. [PMID:19508861]

109. Mukohda M, Yamawaki H, Okada M, Hara Y. (2010) Methylglyoxal augments angiotensin II-induced contraction in rat isolated carotid artery. J. Pharmacol. Sci.114 (4): 390-8. [PMID:21076237]

110. Murphy TJ, Alexander RW, Griendling KK, Runge MS, Bernstein KE. (1991) Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor. Nature351: 233-236. [PMID:2041570]

111. Nakanishi M, Harada M, Kishimoto I, Kuwahara K, Kawakami R, Nakagawa Y, Yasuno S, Usami S, Kinoshita H, Adachi Y et al.. (2007) Genetic disruption of angiotensin II type 1a receptor improves long-term survival of mice with chronic severe aortic regurgitation. Circ. J.71 (8): 1310-6. [PMID:17652901]

112. Natarajan K, Yin G, Berk BC. (2004) Scaffolds direct Src-specific signaling in response to angiotensin II: new roles for Cas and GIT1. Mol. Pharmacol.65 (4): 822-5. [PMID:15044610]

113. Navar LG, Kobori H, Prieto-Carrasquero M. (2003) Intrarenal angiotensin II and hypertension. Curr. Hypertens. Rep.5: 135-143. [PMID:12642013]

114. Nie YY, Da YJ, Zheng H, Yang XX, Jia L, Wen CH, Liang LS, Tian J, Chen ZL. (2012) Synthesis and biological evaluation of novel potent angiotensin II receptor antagonists with anti-hypertension effect. Bioorg. Med. Chem.20 (8): 2747-61. [PMID:22410249]

115. Noda K, Saad Y, Karnik SS. (1995) Interaction of Phe8 of angiotensin II with Lys199 and His256 of AT1 receptor in agonist activation. J. Biol. Chem.270 (48): 28511-4. [PMID:7499361]

116. Northcott CA, Watts S, Chen Y, Morris M, Chen A, Haywood JR. (2010) Adenoviral inhibition of AT1a receptors in the paraventricular nucleus inhibits acute increases in mean arterial blood pressure in the rat. Am. J. Physiol. Regul. Integr. Comp. Physiol.299 (5): R1202-11. [PMID:20702798]

117. Ohlstein EH, Brooks DP, Feuerstein GZ, Ruffolo RR Jr. (1997) Inhibition of sympathetic outflow by the angiotensin II receptor antagonist, eprosartan, but not by losartan, valsartan or irbesartan: relationship to differences in prejunctional angiotensin II receptor blockade. Pharmacology55: 244-251. [PMID:9399334]

118. Ohyama K, Yamano Y, Sano T, Nakagomi Y, Wada M, Inagami T. (2002) Role of the conserved DRY motif on G protein activation of rat angiotensin II receptor type 1A. Biochem. Biophys. Res. Commun.292 (2): 362-7. [PMID:11906170]

119. Ojima M, Igata H, Tanaka M, Sakamoto H, Kuroita T, Kohara Y, Kubo K, Fuse H, Imura Y, Kusumoto K et al.. (2011) In vitro antagonistic properties of a new angiotensin type 1 receptor blocker, azilsartan, in receptor binding and function studies. J. Pharmacol. Exp. Ther.336 (3): 801-8. [PMID:21123673]

120. Olins GM, Corpus VM, Chen ST, McMahon EG, Palomo MA, McGraw DE, Smits GJ, Null CL, Brown MA, Bittner SE et al.. (1993) Pharmacology of SC-52458, an orally active, nonpeptide angiotensin AT1 receptor antagonist. J. Cardiovasc. Pharmacol.22 (4): 617-25. [PMID:7505365]

121. Oriji GK. (1999) Angiotensin II-induced ET and PGI2 release in rat aortic endothelial cells is mediated by PKC. Prostaglandins Leukot. Essent. Fatty Acids61: 113-117. [PMID:10477041]

122. Pang J, Yan C, Natarajan K, Cavet ME, Massett MP, Yin G, Berk BC. (2008) GIT1 mediates HDAC5 activation by angiotensin II in vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol.28 (5): 892-8. [PMID:18292392]

123. Paradis P, Dali-Youcef N, Paradis FW, Thibault G, Nemer M. (2000) Overexpression of angiotensin II type I receptor in cardiomyocytes induces cardiac hypertrophy and remodeling. Proc. Natl. Acad. Sci. U.S.A.97 (2): 931-6. [PMID:10639182]

124. Perlman S, Schambye HT, Rivero RA, Greenlee WJ, Hjorth SA, Schwartz TW. (1995) Non-peptide angiotensin agonist. Functional and molecular interaction with the AT1 receptor. J. Biol. Chem.270 (4): 1493-6. [PMID:7829475]

125. Prescott MF, Webb RL, Reidy MA. (1991) Angiotensin-converting enzyme inhibitor versus angiotensin II, AT1 receptor antagonist. Effects on smooth muscle cell migration and proliferation after balloon catheter injury. Am. J. Pathol.139: 1291-1296. [PMID:1750504]

126. Putnam K, Batifoulier-Yiannikouris F, Bharadwaj KG, Lewis E, Karounos M, Daugherty A, Cassis LA. (2012) Deficiency of angiotensin type 1a receptors in adipocytes reduces differentiation and promotes hypertrophy of adipocytes in lean mice. Endocrinology153 (10): 4677-86. [PMID:22919058]

127. Qadri F, Culman J, Veltmar A, Maas K, Rascher W, Unger T. (1993) Angiotensin II-induced vasopressin release is mediated through α1-adrenoceptors and angiotensin II AT1 receptors in the supraoptic nucleus. Journal of Pharmacology And Experimental Therapeutics267: 567-574. [PMID:8246129]

128. Ramchandran R, Takezako T, Saad Y, Stull L, Fink B, Yamada H, Dikalov S, Harrison DG, Moravec C, Karnik SS. (2006) Angiotensinergic stimulation of vascular endothelium in mice causes hypotension, bradycardia, and attenuated angiotensin response. Proc. Natl. Acad. Sci. U.S.A.103 (50): 19087-92. [PMID:17148616]

129. Reaux A, Iturrioz X, Vazeux G, Fournie-Zaluski MC, David C, Roques BP, Corvol P, Llorens-Cortes C. (2000) Aminopeptidase A, which generates one of the main effector peptides of the brain renin-angiotensin system, angiotensin III, has a key role in central control of arterial blood pressure. Biochem. Soc. Trans.28: 435-440. [PMID:10961935]

130. Rhodes DR, Ateeq B, Cao Q, Tomlins SA, Mehra R, Laxman B, Kalyana-Sundaram S, Lonigro RJ, Helgeson BE, Bhojani MS et al.. (2009) AGTR1 overexpression defines a subset of breast cancer and confers sensitivity to losartan, an AGTR1 antagonist. Proc. Natl. Acad. Sci. U.S.A.106 (25): 10284-9. [PMID:19487683]

131. Rivard K, Grandy SA, Douillette A, Paradis P, Nemer M, Allen BG, Fiset C. (2011) Overexpression of type 1 angiotensin II receptors impairs excitation-contraction coupling in the mouse heart. Am. J. Physiol. Heart Circ. Physiol.301 (5): H2018-27. [PMID:21856918]

132. Ruan X, Oliverio MI, Coffman TM, Arendshorst WJ. (1999) Renal vascular reactivity in mice: AngII-induced vasoconstriction in AT1A receptor null mice. J. Am. Soc. Nephrol.10 (12): 2620-30. [PMID:10589703]

133. Ruiz-Ortega M, Ruperez M, Esteban V, Egido J. (2003) Molecular mechanisms of angiotensin II-induced vascular injury. Curr. Hypertens. Rep.5: 73-79. [PMID:12530939]

134. Sandberg K, Ji H, Clark AJ, Shapira H, Catt KJ. (1992) Cloning and expression of a novel angiotensin II receptor subtype. J. Biol. Chem.267 (14): 9455-8. [PMID:1374402]

135. Sasaki K, Murohara T, Ikeda H, Sugaya T, Shimada T, Shintani S, Imaizumi T. (2002) Evidence for the importance of angiotensin II type 1 receptor in ischemia-induced angiogenesis. J. Clin. Invest.109 (5): 603-11. [PMID:11877468]

136. Sasamura H, Hein L, Krieger JE, Pratt RE, Kobilka BK, Dzau VJ. (1992) Cloning, characterization, and expression of two angiotensin receptor (AT-1) isoforms from the mouse genome. Biochem. Biophys. Res. Commun.185 (1): 253-9. [PMID:1599461]

137. Satoh K, Ichihara K, Landon EJ, Inagami T, Tang H. (2001) 3-Hydroxy-3-methylglutaryl-CoA reductase inhibitors block calcium-dependent tyrosine kinase Pyk2 activation by angiotensin II in vascular endothelial cells. involvement of geranylgeranylation of small G protein Rap1. J. Biol. Chem.276: 15761-15767. [PMID:11278472]

138. Sayeski PP, Ali MS, Hawks K, Frank SJ, Bernstein KE. (1999) The angiotensin II-dependent association of Jak2 and c-Src requires the N-terminus of Jak2 and the SH2 domain of c-Src. Circ. Res.84: 1332-1338. [PMID:10364571]

139. Schiffrin EL, Touyz RM. (1998) Vascular biology of endothelin. J. Cardiovasc. Pharmacol.32: S2-S13. [PMID:9883741]

140. Shetty SS, DelGrande D. (2000) Differential inhibition of the prejunctional actions of angiotensin II in rat atria by valsartan, irbesartan, eprosartan, and losartan. J. Pharmacol. Exp. Ther.294: 179-186. [PMID:10871310]

141. Sung CP, Arleth AJ, Storer BL, Ohlstein EH. (1994) Angiotensin type 1 receptors mediate smooth muscle proliferation and endothelin biosynthesis in rat vascular smooth muscle. Journal of Pharmacology And Experimental Therapeutics271: 429-437. [PMID:7965744]

142. Takayanagi R, Ohnaka K, Sakai Y, Nakao R, Yanase T, Haji M, Inagami T, Furuta H, Gou DF, Nakamuta M et al.. (1992) Molecular cloning, sequence analysis and expression of a cDNA encoding human type-1 angiotensin II receptor. Biochem. Biophys. Res. Commun.183 (2): 910-6. [PMID:1550596]

143. Takezako T, Gogonea C, Saad Y, Noda K, Karnik SS. (2004) "Network leaning" as a mechanism of insurmountable antagonism of the angiotensin II type 1 receptor by non-peptide antagonists. J. Biol. Chem.279 (15): 15248-57. [PMID:14754891]

144. Timmermans PB. (1999) Pharmacological properties of angiotensin II receptor antagonists. Can J Cardiol15 Suppl F: 26F-8F. [PMID:10579749]

145. Timmermans PBMWM, Wong PC, Chiu AT, Herblin WF, Benfield P, Carini DJ, Lee RJ, Wexler RR, Saye JAM, Smith RD. (1993) Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol. Rev.45: 205-251. [PMID:8372104]

146. Tissir F, Riviere M, Guo DF, Tsuzuki S, Inagami T, Levan G, Szpirer J, Szpirer C. (1995) Localization of the genes encoding the three rat angiotensin II receptors, Agtr1a, Agtr1b, Agtr2, and the human AGTR2 receptor respectively to rat chromosomes 17q12, 2q24 and Xq34, and the human Xq22. Cytogenet. Cell Genet.71: 77-80. [PMID:7606933]

147. Tohgo A, Choy EW, Gesty-Palmer D, Pierce KL, Laporte S, Oakley RH, Caron MG, Lefkowitz RJ, Luttrell LM. (2003) The stability of the G protein-coupled receptor-beta-arrestin interaction determines the mechanism and functional consequence of ERK activation. J. Biol. Chem.278 (8): 6258-67. [PMID:12473660]

148. Touyz RM, He G, El Mabrouk M, Schiffrin EL. (2001) p38 Map kinase regulates vascular smooth muscle cell collagen synthesis by angiotensin II in SHR but not in WKY. Hypertension37: 574-580. [PMID:11230337]

149. Tsuchida S, Matsusaka T, Chen X, Okubo S, Niimura F, Nishimura H, Fogo A, Utsunomiya H, Inagami T, Ichikawa I. (1998) Murine double nullizygotes of the angiotensin type 1A and 1B receptor genes duplicate severe abnormal phenotypes of angiotensinogen nullizygotes. J. Clin. Invest.101 (4): 755-60. [PMID:9466969]

150. Unal H, Jagannathan R, Bhat MB, Karnik SS. (2010) Ligand-specific conformation of extracellular loop-2 in the angiotensin II type 1 receptor. J. Biol. Chem.285 (21): 16341-50. [PMID:20299456]

151. Unal H, Jagannathan R, Bhatnagar A, Tirupula K, Desnoyer R, Karnik SS. (2013) Long range effect of mutations on specific conformational changes in the extracellular loop 2 of angiotensin II type 1 receptor. J. Biol. Chem.288 (1): 540-51. [PMID:23139413]

152. Underwood DJ, Strader CD, Rivero R, Patchett AA, Greenlee W, Prendergast K. (1994) Structural model of antagonist and agonist binding to the angiotensin II, AT1 subtype, G protein coupled receptor. Chem. Biol.1 (4): 211-21. [PMID:9383393]

153. Vanderheyden PM, Verheijen I, Fierens FL, Backer JP, Vauquelin G. (2000) Binding characteristics of [(3)H]-irbesartan to human recombinant angiotensin type 1 receptors. J Renin Angiotensin Aldosterone Syst1 (2): 159-65. [PMID:11967808]

154. Vanderheyden PM, Verheijen I, Fierens FL, DeBacker JP, Vauquelin G. (2000) Inhibition of angiotensin II-induced inositol phosphate production by triacid nonpeptide antagonists in CHO cells expressing human AT1 receptors. Pharm. Res.17 (12): 1482-8. [PMID:11303957]

155. Vanderheyden PML, Fierens FLP, De Backer JP, Frayman N, Vauquelin G. (1999) Distinction between surmountable and insurmountable selective AT1 receptor antagonists by use of CHO-K1 cells expressing human angiotensin II AT1 receptors. Br. J. Pharmacol.126: 1057-1065. [PMID:10193788]

156. Verheijen I, Fierens FL, Debacker JP, Vauquelin G, Vanderheyden PM. (2000) Interaction between the partially insurmountable antagonist valsartan and human recombinant angiotensin II type 1 receptors. Fundam. Clin. Pharmacol.14: 577-585. [PMID:11206708]

157. Violin JD, DeWire SM, Yamashita D, Rominger DH, Nguyen L, Schiller K, Whalen EJ, Gowen M, Lark MW. (2010) Selectively engaging β-arrestins at the angiotensin II type 1 receptor reduces blood pressure and increases cardiac performance. J. Pharmacol. Exp. Ther.335 (3): 572-9. [PMID:20801892]

158. Vázquez J, Correa de Adjounian MF, Sumners C, González A, Diez-Freire C, Raizada MK. (2005) Selective silencing of angiotensin receptor subtype 1a (AT1aR) by RNA interference. Hypertension45 (1): 115-9. [PMID:15569855]

159. Wallukat G, Nissen E, Neichel D, Harris J. (2002) Spontaneously beating neonatal rat heart myocyte culture-a model to characterize angiotensin II at(1) receptor autoantibodies in patients with preeclampsia. In Vitro Cell. Dev. Biol. Anim.38 (7): 376-7. [PMID:12534336]

160. Wang WY, Zee RY, Morris BJ. (1997) Association of angiotensin II type 1 receptor gene polymorphism with essential hypertension. Clin. Genet.51: 31-34. [PMID:9084931]

161. Wei H, Ahn S, Shenoy SK, Karnik SS, Hunyady L, Luttrell LM, Lefkowitz RJ. (2003) Independent beta-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2. Proc. Natl. Acad. Sci. U.S.A.100 (19): 10782-7. [PMID:12949261]

162. Wu Z, Maric C, Roesch DM, Zheng W, Verbalis JG, Sandberg K. (2003) Estrogen regulates adrenal angiotensin AT1 receptors by modulating AT1 receptor translation. Endocrinology144 (7): 3251-61. [PMID:12810582]

163. Xia Y, Wen H, Bobst S, Day MC, Kellems RE. (2003) Maternal autoantibodies from preeclamptic patients activate angiotensin receptors on human trophoblast cells. J. Soc. Gynecol. Investig.10 (2): 82-93. [PMID:12593997]

164. Yahata Y, Shirakata Y, Tokumaru S, Yang L, Dai X, Tohyama M, Tsuda T, Sayama K, Iwai M, Horiuchi M et al.. (2006) A novel function of angiotensin II in skin wound healing. Induction of fibroblast and keratinocyte migration by angiotensin II via heparin-binding epidermal growth factor (EGF)-like growth factor-mediated EGF receptor transactivation. J. Biol. Chem.281 (19): 13209-16. [PMID:16543233]

165. Yan C, Kim D, Aizawa T, Berk BC. (2003) Functional Interplay Between Angiotensin II and Nitric Oxide: Cyclic GMP as a Key Mediator. Arterioscler Thromb. Vasc. Biol.23: 26-36. [PMID:12524221]

166. Yang R, Smolders I, Vanderheyden P, Demaegdt H, Van Eeckhaut A, Vauquelin G, Lukaszuk A, Tourwé D, Chai SY, Albiston AL et al.. (2011) Pressor and renal hemodynamic effects of the novel angiotensin A peptide are angiotensin II type 1A receptor dependent. Hypertension57 (5): 956-64. [PMID:21464395]

167. Yang R, Walther T, Gembardt F, Smolders I, Vanderheyden P, Albiston AL, Chai SY, Dupont AG. (2010) Renal vasoconstrictor and pressor responses to angiotensin IV in mice are AT1a-receptor mediated. J. Hypertens.28 (3): 487-94. [PMID:19907343]

168. Yasuda N, Akazawa H, Ito K, Shimizu I, Kudo-Sakamoto Y, Yabumoto C, Yano M, Yamamoto R, Ozasa Y, Minamino T et al.. (2012) Agonist-independent constitutive activity of angiotensin II receptor promotes cardiac remodeling in mice. Hypertension59 (3): 627-33. [PMID:22291447]

169. Ye MQ, Healy DP. (1992) Characterization of an angiotensin type-1 receptor partial cDNA from rat kidney: evidence for a novel AT1B receptor subtype. Biochem. Biophys. Res. Commun.185 (1): 204-10. [PMID:1599457]

170. Yoshida H, Kakuchi J, Guo DF, Furuta H, Iwai N, van der Meer-de Jong R, Inagami T, Ichikawa I. (1992) Analysis of the evolution of angiotensin II type 1 receptor gene in mammals (mouse, rat, bovine and human). Biochem. Biophys. Res. Commun.186 (2): 1042-9. [PMID:1497638]

171. Yue H, Li W, Desnoyer R, Karnik SS. (2010) Role of nuclear unphosphorylated STAT3 in angiotensin II type 1 receptor-induced cardiac hypertrophy. Cardiovasc. Res.85 (1): 90-9. [PMID:19696070]

172. Zahradka P, Werner JP, Buhay S, Litchie B, Helwer G, Thomas S. (2002) NF-κB activation is essential for angiotensin II-dependent proliferation and migration of vascular smooth muscle cells. J. Mol. Cell Cardiol.34: 1609-1621. [PMID:12505059]

173. Zhu Z, Zhang SH, Wagner C, Kurtz A, Maeda N, Coffman T, Arendshorst WJ. (1998) Angiotensin AT1B receptor mediates calcium signaling in vascular smooth muscle cells of AT1A receptor-deficient mice. Hypertension31 (5): 1171-7. [PMID:9576131]

To cite this database page, please use the following:

Hamiyet Unal, Sadashiva Karnik, Walter (Wally) Thomas, Satoru Eguchi, Patrick Vanderheyden, Wayne Alexander, Kenneth E. Bernstein, Kevin J. Catt, Marc de Gasparo, Theodore L. Goodfriend, Mastgugu Horiuchi, Ahsan Husain, Tadashi Inagami, Pieter B. M. W. M. Timmermans, Thomas Unger.
Angiotensin receptors: AT1 receptor. Last modified on 07/03/2014. Accessed on 21/04/2014. IUPHAR database (IUPHAR-DB), http://www.iuphar-db.org/DATABASE/ObjectDisplayForward?objectId=34.

Contact us | Print | Back to top | Help
Copyright © 2014 IUPHAR