Nomenclature: OX2 receptor

Family: Orexin receptors

Annotation status:  image of a green circle Annotated and expert reviewed. Please contact us if you can help with updates. 


Gene and Protein Information
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 444 6p12.1 HCRTR2 hypocretin (orexin) receptor 2 33
Mouse 7 460 9q-D Hcrtr2 hypocretin (orexin) receptor 2 9
Rat 7 460 8q24 Hcrtr2 hypocretin (orexin) receptor 2 33
Previous and Unofficial Names
Hypocretin receptor type 2
Hypocretin (orexin) receptor 2
hypocretin receptor 2
orexin receptor type 2
Database Links
ChEMBL Target
Ensembl Gene
Entrez Gene
GenitoUrinary Development Molecular Anatomy Project
Human Protein Reference Database
PharmGKB Gene
Protein Ontology (PRO)
RefSeq Nucleotide
RefSeq Protein
UniGene Hs.
Natural/Endogenous Ligands
orexin-A {Sp: Human, Mouse, Rat}
orexin-B {Sp: Human} , orexin-B {Sp: Mouse, Rat}
Rank order of potency (Human)
orexin-A (HCRT, O43612) = orexin-B (HCRT, O43612)
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
[Ala11, D-Leu15]orexin-B Hs Full agonist 9.9 pEC50 3
pEC50 9.9 [3]
orexin-A {Sp: Human, Mouse, Rat} Hs Full agonist 6.5 – 10.0 pEC50 17,19,29,33,38
pEC50 6.5 – 10.0 [17,19,29,33,38]
orexin-B {Sp: Human} Hs Full agonist 6.5 – 10.0 pIC50 17,19,29,33,38
pIC50 6.5 – 10.0 [17,19,29,33,38]
Agonist Comments
Efficacy values for agonists are highly depended on assay conditions
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
[3H]SB-674042 Hs Antagonist 6.9 pKd 22,25
pKd 6.9 [22,25]
MK-6096 Hs Antagonist 9.5 pKi 42
pKi 9.5 [42]
suvorexant Hs Antagonist 9.46 pKi 11
pKi 9.46 [11]
EMPA Hs Antagonist 9.0 pKi 24
pKi 9.0 [24]
SB-649868 Hs Antagonist 8.9 pKi 12
pKi 8.9 [12]
JNJ 10397049 Hs Antagonist 7.9 – 8.6 pKi 26
pKi 7.9 – 8.6 [26]
TCS-OX2-29 Hs Antagonist 7.4 pKi 15
pKi 7.4 [15]
1-(2-bromo-phenyl)-3-((4S,5S)-2,2-dimethyl-4-phenyl-[1,3]dioxan-5-yl)-urea Hs Antagonist 6.8 – 7.1 pKi 26
pKi 6.8 – 7.1 [26]
SB-408124 Hs Antagonist 5.7 – 6.0 pKi 22,25
pKi 5.7 – 6.0 [22,25]
SB-334867 Hs Antagonist 5.2 – 6.3 pKi 25,30
pKi 5.2 – 6.3 [25,30]
almorexant Hs Antagonist 8.1 pIC50 6
pIC50 8.1 [6]
Primary Transduction Mechanisms
Transducer Effector/Response
Gs family
Gi/Go family
Gq/G11 family
G protein (identity unknown)
Adenylate cyclase stimulation
Adenylate cyclase inhibition
Phospholipase C stimulation
Other - See Comments
Comments:  Transduction via the Gs family leads to adenylyl cyclase stimulation; via the Gi family to adenylyl cyclase inhibition and via the Gq family to phospholipase C stimulation. Tranduction by an unknown mechanism leads to Ca2+ influx/stimulation of non-selective cation channels
References:  2,17,19,33,38,44
Tissue Distribution
Pituitary: corticotroph cells.
Species:  Human
Technique:  Immunohistochemistry.
References:  5
Lymph node > bone marrow, spleen > thymus > lung > liver > kidney > spinal cord.
Species:  Mouse
Technique:  RT-PCR.
References:  20
OX: brain, lung, spleen, testis.
OX: skeletal muscle, testis, spleen > brain, lung > liver, kidney.
Species:  Mouse
Technique:  PCR.
References:  9
Adrenal medulla.
Species:  Rat
Technique:  RT-PCR and immunohistrochemistry.
References:  23
Olfactory system: olfactory mucosa (olfactory epithelium and lamina propria) > olfactory bulb, anterior olfactory nuclei and piriform cortex, hypothalamic and amygdala nuclei.
Species:  Rat
Technique:  immunocytochemistry.
References:  8
Brainstem: lateral reticular field (LRt) and the nucleus of the solitary tract (NTS).
Species:  Rat
Technique:  in situ hybridisation.
References:  37
CNS: highest levels found in the cerebral cortex, nucleus accumbens, subthalamic and paraventricular thalamic nuclei, anterior pretectal nucleus.
Species:  Rat
Technique:  in situ hybridisation.
References:  39
Tuberomammillary (TM) neurons in the hypothalamus.
Species:  Rat
Technique:  RT-PCR.
References:  14
Pancreatic islets.
Species:  Rat
Technique:  RT-PCR.
References:  28
Pineal gland.
Species:  Rat
Technique:  RT-PCR.
References:  27
CNS: highest levels found in the brainstem, hypothalamus, thalamus > dorsal root ganglia.
Species:  Rat
Technique:  RT-PCR.
References:  10
CNS: highest levels found in the cerebral neocortex, basal ganglia, hippocampal formation, hypothalamus, thalamus, midbrain, reticular formation.
Species:  Rat
Technique:  Immunohistochemistry.
References:  10
Tissue Distribution Comments
NB: due to issues surrounding antibody selectivity, mRNA expression patterns provide important confirmatory results.
Expression Datasets

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays
Measurement of adenylyl cyclase and phospholipase C activation and Ca2+ elevation in HEK293 cell line transfected with OX2.
Species:  Human
Tissue:  HEK293 cells
Response measured:  cAMP and inositol phosphate accumulation, Ca2+ elevation
References:  31,38
Measurement of cAMP levels in a nerve-like BIM cell line transfected with the OX2 receptor.
Species:  Rat
Tissue:  BIM cell line.
Response measured:  PTX-sensitive inhibition of cAMP accumulation.
References:  44
Measurement of Ca2+ levels in CHO cells transfected with the OX2 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  (PLC-mediated) release of Ca2+ from intracellular stores followed by Ca2+ influx.. Possibly also receptor-operated Ca2+ influx
References:  2,18,33,36
Measurement of Ca2+ levels in a nerve-like BIM cell line transfected with the OX2 receptor.
Species:  Rat
Tissue:  BIM cell line.
Response measured:  PTX-insensitive increase in [Ca2+].
References:  44
Measurement of membrane conductance in tuberomammillary (TM) neurons endogenously expressing the OX2 receptor.
Species:  Rat
Tissue:  TM neurons.
Response measured:  Supression of GIRK current.
References:  17
Measurement of membrane conductance in HEK 293 cells transfected with the OX2 receptor and GIRK channels.
Species:  Human
Tissue:  HEK 293 cells.
Response measured:  Biphasic response: Initial phase of GIRK activation (both PTX-sensitive and insensitive) followed by long-lasting GIRK inhibition (PTX-insensitive only).
References:  17
Orexin-induced cell death in CHO cells transfected with the OX2 receptor.
Species:  Human
Tissue:  CHO
Response measured:  Cell death
References:  40
Activation of ERK and p38 MAPK pathways in HEK cells transfected with the OX2 receptor.
Species:  Human
Tissue:  HEK
Response measured:  Stimulation of ERK and p38 phosphorylation (Western blotting)
References:  40
Physiological Functions
Stimulation of food intake.
Species:  Rat
Tissue:  In vivo.
References:  33
Inhibition of β-adrenoceptor-induced melatonin secretion and N-acetlytransferase (NAT) activity.
Species:  Rat
Tissue:  Dissociated pinealocytes.
References:  27
Excitation of neurons known to contribute to wakefulness.
Species:  Rat
Tissue:  Tuberomammillary (TM) nuclei from histaminergic neurons..
References:  4,14
Stimulation of noradrenaline release (unknown as to whether this via OX1 or OX2).
Species:  Rat
Tissue:  Cerebrocortical slices.
References:  16
Excitation of GABAergic neurons.
Species:  Rat
Tissue:  Septohippocampal GABAergic neurons.
References:  43
Neuronal excitation of GABAergic neurones via the Na-Ca exchanger.
Species:  Mouse
Tissue:  Arcuate nucleus (ARC) neurons.
References:  7
Supression of GH secretion (it is unclear as to whether this is mediated via the OX1 or OX2 receptor).
Species:  Rat
Tissue:  In vivo.
References:  34
Excitation of neurons known to be involved in the control of motivated behaviors.
Species:  Rat
Tissue:  Paraventricular nuclei of the thalamus (PVT).
References:  21
Increase in wake duration and decrease in REM and non-REM sleep.
Species:  Rat
Tissue:  In vivo.
References:  1
Excitation of neurons known to contribute to wakefulness.
Species:  Rat
Tissue:  Basal forebrain (BF) cholinergic neurons.
References:  13
Ethanol induced self-administration, place preference and behavioral reinstatement blocked by selective OX2 receptor antagonist, JNJ-10397049
Species:  Rat
Tissue:  Systemic (subcutaneous administration)
References:  35
Physiological Consequences of Altering Gene Expression
OX2 receptor knockout mice exhibit disrupted wakefulness, abnormal attacks of non-REM sleep and elimination of orexin-evoked excitation of histaminergic neurons in the hypothalamus.
Species:  Mouse
Technique:  Gene targeting in embryonic stem cells.
References:  41
Physiological Consequences of Altering Gene Expression Comments
OX1 Gene disruption does not appear ro result in physiological problems
Phenotypes, Alleles and Disease Models Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Hcrtr2tm1Ywa Hcrtr2tm1Ywa/Hcrtr2tm1Ywa
involves: 129S6/SvEvTac * C57BL/6J
MGI:2680765  MP:0001501 abnormal sleep pattern PMID: 12797957 
Hcrtr2tm1Ywa Hcrtr2tm1Ywa/Hcrtr2tm1Ywa
involves: 129S6/SvEvTac * C57BL/6J
MGI:2680765  MP:0005279 narcolepsy PMID: 12797957 
Biologically Significant Variants
Type:  Single nucleotide polymorphism.
Species:  Human
Description:  The single nucleotide polymorphism of 1246 G -> A is associated with a 5 fold higher risk of developing cluster headaches (CHs).
References:  32
Type:  Splice variants.
Species:  Mouse
Description:  Two C-terminal splice variants of the mouse OX2 receptor have been found, OX (443 amino acids) and OX (460 amino acids), with similar orexin A and orexin B binding properties.
Orexin B produced a higher IP3 formation in OX than OX, whereas orexin A produced equal amounts of IP3 formation in both variants.
The OX variant is not found in skeletal muscle or the kidney and is upregulated in response to food deprivation.
References:  9
Available Assays
DiscoveRx PathHunter® CHO-K1 HCRTR2 β-Arrestin Cell Line (Cat no. 93-0427C2)
PathHunter® eXpress HCRTR2 CHO-K1 β-Arrestin GPCR Assay (Cat no. 93-0427E2CP0M)
more info


1. Akanmu MA, Honda K. (2005) Selective stimulation of orexin receptor type 2 promotes wakefulness in freely behaving rats. Brain Res1048: 138-145. [PMID:15919057]

2. Ammoun S, Holmqvist T, Shariatmadari R, Oonk HB, Detheux M, Parmentier M, Akerman KE, Kukkonen JP. (2003) Distinct recognition of OX1 and OX2 receptors by orexin peptides. J Pharmacol Exp Ther305: 507-514. [PMID:12606634]

3. Asahi S, Egashira S, Matsuda M, Iwaasa H, Kanatani A, Ohkubo M, Ihara M, Morishima H. (2003) Development of an orexin-2 receptor selective agonist, [Ala(11), D-Leu(15)]orexin-B. Bioorg Med Chem Lett13: 111-113. [PMID:12467628]

4. Bayer L, Eggermann E, Serafin M, Saint-Mleux B, Machard D, Jones B, Muhlethaler M. (2001) Orexins (hypocretins) directly excite tuberomammillary neurons. Eur J Neurosci14: 1571-1575. [PMID:11722619]

5. Blanco M, Lopez M, Garcia-Caballero T, Gallego R, Vazquez-Boquete A, Morel G, SenarIs R, Casanueva F, Dieguez C, Beiras A. (2001) Cellular localization of orexin receptors in human pituitary. J Clin Endocrinol Metab86: 1616-1619. [PMID:11443222]

6. Brisbare-Roch C, Dingemanse J, Koberstein R, Hoever P, Aissaoui H, Flores S, Mueller C, Nayler O, van Gerven J, de Haas SL, Hess P, Qiu C, Buchmann S, Scherz M, Weller T, Fischli W, Clozel M, Jenck F. (2007) Promotion of sleep by targeting the orexin system in rats, dogs and humans. Nat. Med.13 (2): 150-5. [PMID:17259994]

7. Burdakov D, Liss B, Ashcroft FM. (2003) Orexin excites GABAergic neurons of the arcuate nucleus by activating the sodium--calcium exchanger. J Neurosci23: 4951-4957. [PMID:12832517]

8. Caillol M, Aioun J, Baly C, Persuy MA, Salesse R. (2003) Localization of orexins and their receptors in the rat olfactory system: possible modulation of olfactory perception by a neuropeptide synthetized centrally or locally. Brain Res960: 48-61. [PMID:12505657]

9. Chen J, Randeva HS. (2004) Genomic organization of mouse orexin receptors: characterization of two novel tissue-specific splice variants. Mol Endocrinol18: 2790-2804. [PMID:15256537]

10. Cluderay JE, Harrison DC, Hervieu GJ. (2002) Protein distribution of the orexin-2 receptor in the rat central nervous system. Regul Pept104: 131-144. [PMID:11830288]

11. Cox CD, Breslin MJ, Whitman DB, Schreier JD, McGaughey GB, Bogusky MJ, Roecker AJ, Mercer SP, Bednar RA, Lemaire W, Bruno JG, Reiss DR, Harrell CM, Murphy KL, Garson SL, Doran SM, Prueksaritanont T, Anderson WB, Tang C, Roller S, Cabalu TD, Cui D, Hartman GD, Young SD, Koblan KS, Winrow CJ, Renger JJ, Coleman PJ. (2010) Discovery of the dual orexin receptor antagonist [(7R)-4-(5-chloro-1,3-benzoxazol-2-yl)-7-methyl-1,4-diazepan-1-yl][5-methyl-2-(2H-1,2,3-triazol-2-yl)phenyl]methanone (MK-4305) for the treatment of insomnia. J. Med. Chem.53 (14): 5320-32. [PMID:20565075]

12. Di Fabio R, Pellacani A, Faedo S, Roth A, Piccoli L, Gerrard P, Porter RA, Johnson CN, Thewlis K, Donati D et al.. (2011) Discovery process and pharmacological characterization of a novel dual orexin 1 and orexin 2 receptor antagonist useful for treatment of sleep disorders. Bioorg. Med. Chem. Lett.21 (18): 5562-7. [PMID:21831639]

13. Eggermann E, Serafin M, Bayer L, Machard D, Saint-Mleux B, Jones BE, Muhlethaler M. (2001) Orexins/hypocretins excite basal forebrain cholinergic neurones. Neuroscience108: 177-181. [PMID:11734353]

14. Eriksson KS, Sergeeva O, Brown RE, Haas HL. (2001) Orexin/hypocretin excites the histaminergic neurons of the tuberomammillary nucleus. J Neurosci21: 9273-9279. [PMID:11717361]

15. Hirose M, Egashira S, Goto Y, Hashihayata T, Ohtake N, Iwaasa H, Hata M, Fukami T, Kanatani A, Yamada K. (2003) N-acyl 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline: the first orexin-2 receptor selective non-peptidic antagonist. Bioorg. Med. Chem. Lett.13 (24): 4497-9. [PMID:14643355]

16. Hirota K, Kushikata T, Kudo M, Kudo T, Lambert DG, Matsuki A. (2001) Orexin A and B evoke noradrenaline release from rat cerebrocortical slices. Br J Pharmacol134: 1461-1466. [PMID:11724752]

17. Hoang QV, Bajic D, Yanagisawa M, Nakajima S, Nakajima Y. (2003) Effects of orexin (hypocretin) on GIRK channels. J Neurophysiol90: 693-702. [PMID:12702704]

18. Holmqvist T, Akerman KE, Kukkonen JP. (2001) High specificity of human orexin receptors for orexins over neuropeptide Y and other neuropeptides. Neurosci Lett305: 177-180. [PMID:11403934]

19. Holmqvist T, Akerman KE, Kukkonen JP. (2002) Orexin signaling in recombinant neuron-like cells. FEBS Lett.526 (1-3): 11-4. [PMID:12208495]

20. Holmqvist T, Johansson L, Ostman M, Ammoun S, Akerman KE, Kukkonen JP. (2005) OX1 orexin receptors couple to adenylyl cyclase regulation via multiple mechanisms. J Biol Chem280: 6570-6579. [PMID:15611118]

21. Ishibashi M, Takano S, Yanagida H, Takatsuna M, Nakajima K, Oomura Y, Wayner MJ, Sasaki K. (2005) Effects of orexins/hypocretins on neuronal activity in the paraventricular nucleus of the thalamus in rats in vitro. Peptides26: 471-481. [PMID:15652654]

22. Langmead CJ, Jerman JC, Brough SJ, Scott C, Porter RA, Herdon HJ. (2004) Characterisation of the binding of [3H]-SB-674042, a novel nonpeptide antagonist, to the human orexin-1 receptor. Br J Pharmacol141: 340-346. [PMID:14691055]

23. Lopez M, SenarIs R, Gallego R, Garcia-Caballero T, Lago F, Seoane L, Casanueva F, Dieguez C. (1999) Orexin receptors are expressed in the adrenal medulla of the rat. Endocrinology140: 5991-5994. [PMID:10579367]

24. Malherbe P, Borroni E, Gobbi L, Knust H, Nettekoven M, Pinard E, Roche O, Rogers-Evans M, Wettstein JG, Moreau JL. (2009) Biochemical and behavioural characterization of EMPA, a novel high-affinity, selective antagonist for the OX(2) receptor. Br. J. Pharmacol.156 (8): 1326-41. [PMID:19751316]

25. Malherbe P, Borroni E, Pinard E, Wettstein JG, Knoflach F. (2009) Biochemical and electrophysiological characterization of almorexant, a dual orexin 1 receptor (OX1)/orexin 2 receptor (OX2) antagonist: comparison with selective OX1 and OX2 antagonists. Mol. Pharmacol.76 (3): 618-31. [PMID:19542319]

26. McAtee LC, Sutton SW, Rudolph DA, Li X, Aluisio LE, Phuong VK, Dvorak CA, Lovenberg TW, Carruthers NI, Jones TK. (2004) Novel substituted 4-phenyl-[1,3]dioxanes: potent and selective orexin receptor 2 (OX(2)R) antagonists. Bioorg Med Chem Lett14: 4225-4229. [PMID:15261275]

27. Mikkelsen JD, Hauser F, deLecea L, Sutcliffe JG, Kilduff TS, Calgari C, Pevet P, Simonneaux V. (2001) Hypocretin (orexin) in the rat pineal gland: a central transmitter with effects on noradrenaline-induced release of melatonin. Eur J Neurosci14: 419-425. [PMID:11553292]

28. Nowak KW, Strowski MZ, Switonska MM, Kaczmarek P, Singh V, Fabis M, Mackowiak P, Nowak M, Malendowicz LK. (2005) Evidence that orexins A and B stimulate insulin secretion from rat pancreatic islets via both receptor subtypes. Int J Mol Med15: 969-972. [PMID:15870901]

29. Okumura T, Takeuchi S, Motomura W, Yamada H, Egashira Si S, Asahi S, Kanatani A, Ihara M, Kohgo Y. (2001) Requirement of intact disulfide bonds in orexin-A-induced stimulation of gastric acid secretion that is mediated by OX1 receptor activation. Biochem. Biophys. Res. Commun.280 (4): 976-81. [PMID:11162621]

30. Porter RA, Chan WN, Coulton S, Johns A, Hadley MS, Widdowson K, Jerman JC, Brough SJ, Coldwell M, Smart D, Jewitt F, Jeffrey P, Austin N. (2001) 1,3-Biarylureas as selective non-peptide antagonists of the orexin-1 receptor. Bioorg Med Chem Lett11: 1907-1910. [PMID:11459658]

31. Putula J, Turunen PM, Jäntti MH, Ekholm ME, Kukkonen JP. (2011) Agonist ligand discrimination by the two orexin receptors depends on the expression system. Neurosci. Lett.494 (1): 57-60. [PMID:21362456]

32. Rainero I, Gallone S, Valfre W, Ferrero M, Angilella G, Rivoiro C, Rubino E, De Martino P, Savi L, Ferrone M, Pinessi L. (2004) A polymorphism of the hypocretin receptor 2 gene is associated with cluster headache. Neurology63: 1286-1288. [PMID:15477554]

33. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richardson JA, Kozlowski GP, Wilson S, Arch JR, Buckingham RE, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu WS, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M. (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell92: 573-585. [PMID:9491897]

34. Seoane LM, Tovar SA, Perez D, Mallo F, Lopez M, SenarIs R, Casanueva FF, Dieguez C. (2004) Orexin A suppresses in vivo GH secretion. Eur J Endocrinol150: 731-736. [PMID:15132732]

35. Shoblock JR, Welty N, Aluisio L, Fraser I, Motley ST, Morton K, Palmer J, Bonaventure P, Carruthers NI, Lovenberg TW et al.. (2011) Selective blockade of the orexin-2 receptor attenuates ethanol self-administration, place preference, and reinstatement. Psychopharmacology (Berl.)215 (1): 191-203. [PMID:21181123]

36. Smart D, Jerman JC, Brough SJ, Rushton SL, Murdock PR, Jewitt F, Elshourbagy NA, Ellis CE, Middlemiss DN, Brown F. (1999) Characterization of recombinant human orexin receptor pharmacology in a Chinese hamster ovary cell-line using FLIPR. Br J Pharmacol128: 1-3. [PMID:10498827]

37. Sunter D, Morgan I, Edwards CM, Dakin CL, Murphy KG, Gardiner J, Taheri S, Rayes E, Bloom SR. (2001) Orexins: effects on behavior and localisation of orexin receptor 2 messenger ribonucleic acid in the rat brainstem. Brain Res907: 27-34. [PMID:11430882]

38. Tang J, Chen J, Ramanjaneya M, Punn A, Conner AC, Randeva HS. (2008) The signalling profile of recombinant human orexin-2 receptor. Cell. Signal.20 (9): 1651-61. [PMID:18599270]

39. Trivedi P, Yu H, MacNeil DJ, Van der Ploeg LH, Guan XM. (1998) Distribution of orexin receptor mRNA in the rat brain. FEBS Lett438: 71-75. [PMID:9821961]

40. Voisin T, Firar AE, Avondo V, Laburthe M. (2006) Orexin-induced apoptosis: the key role of the seven-transmembrane domain orexin type 2 receptor. Endocrinology147 (10): 4977-84. [PMID:16857748]

41. Willie JT, Chemelli RM, Sinton CM, Tokita S, Williams SC, Kisanuki YY, Marcus JN, Lee C, Elmquist JK, Kohlmeier KA, Leonard CS, Richardson JA, Hammer RE, Yanagisawa M. (2003) Distinct narcolepsy syndromes in Orexin receptor-2 and Orexin null mice: molecular genetic dissection of Non-REM and REM sleep regulatory processes. Neuron38: 715-730. [PMID:12797957]

42. Winrow CJ, Gotter AL, Cox CD, Tannenbaum PL, Garson SL, Doran SM, Breslin MJ, Schreier JD, Fox SV, Harrell CM et al.. (2012) Pharmacological characterization of MK-6096 - A dual orexin receptor antagonist for insomnia. Neuropharmacology62 (2): 978-87. [PMID:22019562]

43. Wu M, Zhang Z, Leranth C, Xu C, Van den Pol AN, Alreja M. (2002) Hypocretin increases impulse flow in the septohippocampal GABAergic pathway: implications for arousal via a mechanism of hippocampal disinhibition. J Neurosci22: 7754-7765. [PMID:12196599]

44. Zhu Y, Miwa Y, Yamanaka A, Yada T, Shibahara M, Abe Y, Sakurai T, Goto K. (2003) Orexin receptor type-1 couples exclusively to pertussis toxin-insensitive G-proteins, while orexin receptor type-2 couples to both pertussis toxin-sensitive and -insensitive G-proteins. J Pharmacol Sci92: 259-266. [PMID:12890892]

To cite this database page, please use the following:

Christopher J. Winrow, Paul Coleman, Luis de Lecea, Thomas Kilduff, Jyrki P. Kukkonen, Rod Porter, John Renger, Jerome M Siegel, Gregor Sutcliffe, Neil Upton.
Orexin receptors: OX2 receptor. Last modified on 15/02/2013. Accessed on 23/10/2014. IUPHAR database (IUPHAR-DB),

Contact us | Print | Back to top | Help
Copyright © 2014 IUPHAR