Nomenclature: C5a1 receptor

Family: Complement peptide receptors

Annotation status:  image of a green circle Annotated and expert reviewed. Please contact us if you can help with updates. 

Contents

Gene and Protein Information
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 350 19q13.3-q13.4 C5AR1 complement component 5a receptor 1 32
Mouse 7 351 7 A1 C5ar1 complement component 5a receptor 1
Rat 7 352 1q12 C5ar1 complement component 5a receptor 1
Previous and Unofficial Names
C5aR1
CD88
C5R1
C5A
C5AR
complement component 5 receptor 1 (C5a ligand)
C5a anaphylatoxin chemotactic receptor
C5a-R
complement C5a receptor
complement component 5, receptor 1
complement component 5a receptor 1
D7Msu1
Database Links
ChEMBL Target
Ensembl Gene
Entrez Gene
GPCRDB
GeneCards
GenitoUrinary Development Molecular Anatomy Project
HomoloGene
Human Protein Reference Database
InterPro
KEGG Gene
OMIM
PharmGKB Gene
PhosphoSitePlus
Protein Ontology (PRO)
RefSeq Nucleotide
RefSeq Protein
TreeFam
UniGene Hs.
UniProtKB
Wikipedia
Natural/Endogenous Ligands
C3a {Sp: Human} , C3a {Sp: Mouse} , C3a {Sp: Rat}
C5a {Sp: Human} , C5a {Sp: Mouse} , C5a {Sp: Rat}
Comments: C5a anaphylatoxin has a higher potency than C3a anaphylatoxin
Rank order of potency (Human)
C5a (C5, P01031), C5a des-Arg (C5) > C3a (C3, P01024)  [2]
Agonists
Key to terms and symbols Click column headers to sort
Ligand Sp. Action Affinity Units Reference
[125I]C5a (human) Hs Full agonist 8.7 pKd 44
pKd 8.7 (Kd 2x10-9 M) [44]
C5a {Sp: Human} Hs Full agonist 8.0 – 9.0 pEC50 65,71
pEC50 8.0 – 9.0 (EC50 1x10-8 – 1x10-9 M) [65,71]
YSFKPMPLaR Hs Agonist 5.5 pEC50 104
pEC50 5.5 (EC50 3.24x10-6 M) [104]
C5a {Sp: Human} Hs Full agonist 9.1 – 9.2 pIC50 37,71
pIC50 9.1 – 9.2 [37,71]
N-methyl-Phe-Lys-Pro-D-Cha-Cha-D-Arg-CO2H Hs Full agonist 7.6 pIC50 49,51
pIC50 7.6 [49,51]
C5a des-Arg {Sp: Human} Hs Partial agonist 6.2 – 6.4 pIC50 11,37
pIC50 6.2 – 6.4 [11,37]
YSFKPMPLaR Hs Full agonist 5.4 – 6.7 pIC50 25
pIC50 5.4 – 6.7 (IC50 4.2x10-6 – 2x10-7 M) [25]
Agonist Comments
YSFKPMPLaR is an agonist of both C5aR and C3aR. In addition to human cells it has been shown to have agonist actions in mice and rats [83,104]. RP S19 is an endogenous ribosomal protein, in the dimerised form it acts as an agonist of C5aR, however the referenced study [65] used recombinant protein. RP S19 gave a maximal reponse in a leukocyte chemotaxis assay at a concentration of 1nM [65]. Skp is a bacterial chaperone protein. IC50 values for agonists are derived from radioligand displacement assays.
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
CHIPS Hs Antagonist 9.0 pKd 73
pKd 9.0 [73]
W54011 Hs Antagonist 8.7 pKi 86
pKi 8.7 [86]
NDT9520492 Hs Antagonist 7.5 pKi 95
pKi 7.5 [95]
AcPhe-Orn-Pro-D-Cha-Trp-Arg Hs Antagonist 7.9 pIC50 98
pIC50 7.9 [98]
A8Δ71-73 Mm Antagonist 7.57 pIC50 70
pIC50 7.57 (IC50 2.7x10-8 M) [70]
PMX205 Hs Antagonist 7.51 pIC50 58
pIC50 7.51 (IC50 3.1x10-8 M) [58]
PMX53 Hs Antagonist 7.1 – 7.7 pIC50 58,104
pIC50 7.1 – 7.7 (IC50 9x10-8 – 2.1x10-8 M) [58,104]
N-methyl-Phe-Lys-Pro-D-Cha-Trp-D-Arg-CO2H Hs Antagonist 7.2 pIC50 51
pIC50 7.2 [51]
JPE1375 Hs Antagonist 7.0 pIC50 78
pIC50 7.0 (IC50 1.11x10-7 M) [78]
C089 Hs Antagonist 6.7 pIC50 51
pIC50 6.7 (IC50 2.01x10-7 M) [51]
RPR121154 Hs Antagonist 6.1 pIC50 6
pIC50 6.1 [6]
L-156,602 Hs Antagonist 5.7 pIC50 91
pIC50 5.7 [91]
View species-specific antagonist tables
Antagonist Comments
PMX53 is widely used as an parenterally- and orally-active antagonist of C5aR in mice and rats [74]. Although it has been demonstrated to block C5a binding in rat neutrophils (IC50 - 40nM), it does not inhibit C5a binding in murine cells [104]. However, it has specific C5aR antagonistic activity in vivo as demonstrated through comparisons with C5aR knockout mice [13]. PMX205 is also parenterally- and orally-active [74], but with greater lipophicity, and blood brain barrier penetrance than PMX53 [101-102]. PMX205 was also shown to be ineffective in C5aR knockout mice [47]. JPE1375 inhibits the chemotaxis of murine J774A.1 cells, but exhibits a reduced potency when compared to human neutrophils (IC50 - 420nM) [78]. A8 binds both C5aR and C5L2 with similar affinity, although the antagonistic properties of A8 at C5L2 remain untested [70]. In addition, other biologically relevant inhibitors of C5aR have been described. Chemotaxis inhibitory protein of S. aureus (CHIPS) is a 14.1 kDa antagonist of C5aR encoded on a bacteriophage. It has been demonstrated to have selective antagonistic properties against human C5aR in the micromolar concentration range [17].
Primary Transduction Mechanisms
Transducer Effector/Response
Gi/Go family
G protein (identity unknown)
Phospholipase C stimulation
Other - See Comments
Comments:  Studies of C5aR signalling have determined cell-specific activation of downstream pathways. For instance, in macrophages C5aR signals via protein kinase C (PKC) δ to induce NFκB activation and translocation to the nucleus, whereas in neutrophils C5aR induces activation of IκB, the NFκB inhibitor [34]. Additionally, activated C5aR has also been shown to associate with Wiskott-Aldrich Syndrom Protein (WASP), a regulator of Rho-GTPases and therefore, cytoskeletal turnover [89]. In mesenchymal stem cells C5a induces a chemotaxis that is pertussis toxin sensitive, indicating a Gi mediated response, and signalling via MAPK and Akt pathways [79]. C5aR has also been demonstrated to cause transactivation of the epidermal growth factor (EGF) receptor in human umbilical vein endothelial cells [80].
References:  84
Secondary Transduction Mechanisms
Transducer Effector/Response
Gq/G11 family Phospholipase C stimulation
References:  55
Tissue Distribution
Mast cell subsets.
Species:  Human
Technique:  Immunocytochemistry.
References:  69
Cardiomyocytes
Species:  Human
Technique:  Northern blot
References:  35,97
Connective Tissue (synoviocytes, articular chondrocytes)
Species:  Human
Technique:  RT-PCR, immunocytochemistry
References:  68,106
Central Nervous System (astrocytes, microglia, neuron, neural stem cells, oligodendrocytes)
Species:  Human
Technique:  Immunohistochemistry
References:  31
Lung
Species:  Human
Technique:  Immunohistochemistry
References:  35
Vascular endothelial cells
Species:  Human
Technique:  Immunohistochemistry
References:  35
Liver
Species:  Human
Technique:  Northern blot
References:  35
Myeloid Leukocytes (neutrophil, eosinophil, basophil, monocytes)
Species:  Human
Technique:  Immunohistochemistry
References:  39,85
Vascular smooth muscle
Species:  Human
Technique:  Immunohistochemistry
References:  35,71
Eye (retinal pigment epithelial cells)
Species:  Human
Technique:  Flow cytometry
References:  29
Kidney
Species:  Human
Technique:  Immunohistochemistry
References:  31,64,67,75
Microvascular endothelial cells.
Species:  Mouse
Technique:  Radioligand binding.
References:  54
Central Nervous System (astrocytes, microglia, neuron, neural stem cells, oligodendrocytes)
Species:  Mouse
Technique:  Immunohistochemistry
References:  64,67,75
Oligodendrocytes.
Species:  Rat
Technique:  RT-PCR.
References:  64
Central Nervous System (astrocytes, microglia, neuron, neural stem cells, oligodendrocytes)
Species:  Rat
Technique:  Immunohistochemistry
References:  64,67,75
Tissue Distribution Comments
C5a1 was not found in pulmonary, hepatic, and intestinal epithelial cells, or lymphocytes in humans when examined with immunohistochemistry [22-23]. Although it has been previously reported that lymphocytes do not express C5aR, Lalli and colleagues (2008)[53] demonstrated a role for C5aR in T-cell survival. The techniques employed involved the use of a C5aR knockout mouse and a C5aR antagonist, to infer a function for C5aR on T-cells. No direct expression of either C5aR transcript or protein was demonstrated in this study. In addition, a recent study describing a GFP knock-in mouse, under the control of the C5aR promotor, failed to show GFP expression in either naïve or activated T-lymphocytes [20].
Expression Datasets

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays
ERK1/2 phosphorylation
Species:  Human
Tissue:  Mesenchymal stem cell, C5aR-transfected CHO cells, neutrophils
Response measured:  Increase in Phospho-ERK1/2 by Western blot
References:  76,79,88
Chemotaxis
Species:  Human
Tissue:  Granulocytes, monocytes, RBL-2H3 C5aR transfected cells
Response measured:  Migration of cells up concentration gradient
References:  15,19,71,79
Enzyme Release/Degranulation
Species:  Human
Tissue:  Neutrophils, RBL-2H3 C5aR transfected cells
Response measured:  Increase in myeloperoxidase, hydrogen peroxide (?peroxidase) and b-hexosaminidase release
References:  42,60,71
Smooth muscle contraction
Species:  Human
Tissue:  Human umbilical artery
Response measured:  Contraction of smooth muscle
References:  12,71
Intracellular calcium release
Species:  Human
Tissue:  Neutrophils, monocytes, HMC-1 cells, U937 cells, Rat hippocampal neurons
Response measured:  Transient increase in intracellular calcium concentrations upon receptor activation.
References:  66-67
Measurement of degranulation in rat basophilic leukaemia cells transfected with the human C5a receptor.
Species:  Human
Tissue:  Rat basophilic leukaemia cells.
Response measured:  Degranulation.
References:  38
Physiological Functions
Chemotaxis.
Species:  Human
Tissue:  Granulocyte.
References:  61
Hepatocyte growth factor.
Species:  Rat
Tissue:  Liver.
References:  16
MAP kinase activation.
Species:  Mouse
Tissue:  Pituitary.
References:  28
Chemotaxis.
Species:  Human
Tissue:  Lymphocyte subsets.
References:  52
NF-κB activation.
Species:  Human
Tissue:  Neurons.
References:  67
Chemotaxis
Species:  Human
Tissue:  T cells, mesenchymal stem cells, dermal microvascular endothelial cells
References:  63,79
Apoptosis under oxygen/glucose deprivation
Species:  Mouse
Tissue:  Cortical neurons
References:  72
Chemokine (CCL2, CXCL2) release
Species:  Mouse
Tissue:  Microvascular endothelial cells
References:  54
Chemokine (IL-8) release
Species:  Human
Tissue:  Epithelial cells (lung, eye)
References:  29,35
Neutrophil extravasation
Species:  Mouse
Tissue:  Brain
References:  81
Neutropaenia
Species:  Rat
Tissue:  Blood
References:  82
Cell survival
Species:  Human
Tissue:  T-Lymphocytes
References:  53
Proliferation
Species:  Rat
Tissue:  Cerebellar granular neurons
References:  10
Histamine release
Species:  Human
Tissue:  Mast cells, basophils
References:  30
Degranulation
Species:  Human
Tissue:  Neutrophils, mast cells
References:  36,42,71
Physiological Consequences of Altering Gene Expression
Mice with receptor knockout exhibit increased susceptibility and lethality to Pseudomonas aeruginosa infection.
Species:  Mouse
Tissue:  Lung
Technique:  Gene knockouts
References:  46
Adenovirus-mediated in vivo silencing of the C5a receptor.
Species:  Mouse
Tissue: 
Technique:  RNA interference
References:  87
Human C5a receptor knock-in mice facilitate the production and assessment of anti-inflammatory monoclonal antibodies.
Species:  Mouse
Tissue: 
Technique:  Transgenesis
References:  56
In rat models of induced sepsis using cecal ligation and puncture (CLP), those rats treated with antibodies against C5aR showed reduced levels of bacteraemia and improved survival rates.
Species:  Rat
Tissue:  Neutrophils
Technique:  Antibody targeting of the receptor
References:  14,41,43
C5aR blocking antibody-treated or C5aR-/- mice, increased survival and decreased serum proinflammatory cytokines in the caecal ligation and puncture model of sepsis. C5aR blocking antibody also reduces bacteraemia, as measure by bacterial colony forming units in blood, this is likely due to an impairment of neutrophil phagocytic activity in the presence of high C5a concentrations
Species:  Mouse
Tissue:  Neutrophils
Technique:  Antibody treatment and gene knockout
References:  77
In a dextran sulphate-induced colitis mouse model, C5AR1 knockout mice showed reduced severity of symptoms and lower expression of inflammatory mediators compared to wildtype controls. However, in chronic colitis, the pathology of C5aR-deficient mice worsens.
Species:  Mouse
Tissue:  Cecum and colon
Technique:  Gene knockouts
References:  48
In a rat model of TNBS induced colitis, treatment with the C5aR antagonist, PMX53, reduced pathology and mortality.
Species:  Rat
Tissue:  Cecum and colon
Technique:  Treatment with receptor antagonist
References:  99
Phenotypes, Alleles and Disease Models Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
C5ar1tm1Cge C5ar1tm1Cge/C5ar1tm1Cge
involves: 129S4/SvJae
MGI:88232  MP:0001800 abnormal humoral immune response PMID: 8781237 
C5ar1tm1Cge C5ar1tm1Cge/C5ar1tm1Cge
involves: 129S4/SvJae
MGI:88232  MP:0008719 impaired neutrophil recruitment PMID: 8779720 
C5ar1tm1Cge C5ar1tm1Cge/C5ar1tm1Cge
involves: 129S4/SvJae
MGI:88232  MP:0009763 increased sensitivity to induced morbidity/mortality PMID: 8779720 
C5ar1tm1Raw C5ar1tm1Raw/C5ar1tm1Raw
B6.Cg-C5ar1
MGI:88232  MP:0008481 increased spleen germinal center number PMID: 18455242 
C5ar1tm1Cge C5ar1tm1Cge/C5ar1tm1Cge
involves: 129S4/SvJae
MGI:88232  MP:0002412 increased susceptibility to bacterial infection PMID: 8779720 
Clinically-Relevant Mutations and Pathophysiology
Disease:  Psoriasis
Role: 
References:  9,62
Mutations not determined
Disease:  Rheumatoid arthritis
Role: 
References:  94,103
Mutations not determined
Disease:  Ischaemic Reperfusion injury
Role: 
References:  3-5,18,26,57,93,105,107
Mutations not determined
Disease:  Henoch-Schonlein Purpura
Comments: 
References:  21
Click column headers to sort
Type Species Molecular location Description Reference
Other Human nucleotide position 450 21
Disease:  Injury aggravation in neurotrauma
Role: 
References:  8,81
Mutations not determined
Disease:  Antiphospholipid syndrome
OMIM:  107320
Orphanet:  80
Role: 
References:  33,96
Mutations not determined
Disease:  Alzheimer's disease
Comments: 
References:  1,27
Mutations not determined
Disease:  Amylotrophic Lateral Sclerosis
Comments: 
References:  24,45,100
Mutations not determined
Disease:  Huntington's disease
Comments: 
References:  101
Mutations not determined
Clinically-Relevant Mutations and Pathophysiology Comments
The reported association of a C5aR polymorphism with Henoch-Schonlein purpura occurred in a population of patients with familial mediterranean fever. The C/T polymorphism is at base 450 in the coding sequence of C5aR. The association was noted, but the population size was insufficient to draw definitive conclusions [21]. Two other C5aR polymorphisms have been described but have no observable phenotype [7,90].
Gene Expression and Pathophysiology
A reduction in the expression of C5AR1 on neutrophils, with increased levels in serum was seen in patients with progressive sepsis.
Tissue or cell type:  Neutrophils and serum
Pathophysiology:  Sepsis
Species:  Human
Technique:  Immunoblotting and flowcytometic analysis
References:  40,92
General Comments
Although C5aR is typically associated with the innate immune system, recently research on the receptor has elucidated novel roles. C5aR has been demonstrated on adult neural progenitor cells [75], mesenchymal stem cells [79] and perhaps has roles regulating the cell cycle in types of cancer [50,59].
Available Assays
DiscoveRx PathHunter® CHO-K1 C5AR1 β-Arrestin Cell Line (Cat no. 93-0557C2)
PathHunter® eXpress C5AR1 CHO-K1 β-Arrestin GPCR Assay (Cat no. 93-0557E2CP0M)
more info

REFERENCES

1. Ager RR, Fonseca MI, Chu SH, Sanderson SD, Taylor SM, Woodruff TM, Tenner AJ. (2010) Microglial C5aR (CD88) expression correlates with amyloid-beta deposition in murine models of Alzheimer's disease. J. Neurochem.113 (2): 389-401. [PMID:20132482]

2. Ames RS, Nuthulaganti P, Kumar C. (1996) In Xenopus oocytes the human C3a and C5a receptors elicit a promiscuous response to the anaphylatoxins. FEBS Lett.395 (2-3): 157-9. [PMID:8898085]

3. Arumugam TV, Shiels IA, Strachan AJ, Abbenante G, Fairlie DP, Taylor SM. (2003) A small molecule C5a receptor antagonist protects kidneys from ischemia/reperfusion injury in rats. Kidney Int.63 (1): 134-42. [PMID:12472776]

4. Arumugam TV, Woodruff TM, Lathia JD, Selvaraj PK, Mattson MP, Taylor SM. (2009) Neuroprotection in stroke by complement inhibition and immunoglobulin therapy. Neuroscience158 (3): 1074-89. [PMID:18691639]

5. Arumugam TV, Woodruff TM, Stocks SZ, Proctor LM, Pollitt S, Shiels IA, Reid RC, Fairlie DP, Taylor SM. (2004) Protective effect of a human C5a receptor antagonist against hepatic ischaemia-reperfusion injury in rats. J. Hepatol.40 (6): 934-41. [PMID:15158333]

6. Astles PC, Brown TJ, Cox P, Halley F, LockeyPM, McCarthy C, McLayIM, Majid TN, Morley AD, Porter B et al.. (1997) New non-peptide C5a receptor antagonists. Bioorg Med Chem Lett.7 (77): 907-912.

7. Barnes KC, Caraballo L, Muñoz M, Zambelli-Weiner A, Ehrlich E, Burki M, Jimenez S, Mathias RA, Stockton ML, Deindl P et al.. (2004) A novel promoter polymorphism in the gene encoding complement component 5 receptor 1 on chromosome 19q13.3 is not associated with asthma and atopy in three independent populations. Clin. Exp. Allergy34 (5): 736-44. [PMID:15144465]

8. Beck KD, Nguyen HX, Galvan MD, Salazar DL, Woodruff TM, Anderson AJ. (2010) Quantitative analysis of cellular inflammation after traumatic spinal cord injury: evidence for a multiphasic inflammatory response in the acute to chronic environment. Brain133 (Pt 2): 433-47. [PMID:20085927]

9. Bergh K, Iversen OJ, Lysvand H. (1993) Surprisingly high levels of anaphylatoxin C5a des Arg are extractable from psoriatic scales. Arch. Dermatol. Res.285 (3): 131-4. [PMID:8503693]

10. Bénard M, Raoult E, Vaudry D, Leprince J, Falluel-Morel A, Gonzalez BJ, Galas L, Vaudry H, Fontaine M. (2008) Role of complement anaphylatoxin receptors (C3aR, C5aR) in the development of the rat cerebellum. Mol. Immunol.45 (14): 3767-74. [PMID:18635264]

11. Cain SA, Monk PN. (2002) The orphan receptor C5L2 has high affinity binding sites for complement fragments C5a and C5a des-Arg(74). J. Biol. Chem.277 (9): 7165-9. [PMID:11773063]

12. Cochrane CG, Müller-Eberhard HJ. (1968) The derivation of two distinct anaphylatoxin activities from the third and fifth components of human complement. J. Exp. Med.127 (2): 371-86. [PMID:4383923]

13. Costantini KJ, Coulthard LGJ, Lor M, Woodruff TM, Callaway LK, Finnell RH, Taylor SM. (2010) C5aR protects against folate-deficiency induced neural tube defects in mice. Molecular Immunology47 (13): 2254.

14. Czermak BJ, Sarma V, Pierson CL, Warner RL, Huber-Lang M, Bless NM, Schmal H, Friedl HP, Ward PA. (1999) Protective effects of C5a blockade in sepsis. Nat. Med.5 (7): 788-92. [PMID:10395324]

15. Daffern PJ, Pfeifer PH, Ember JA, Hugli TE. (1995) C3a is a chemotaxin for human eosinophils but not for neutrophils. I. C3a stimulation of neutrophils is secondary to eosinophil activation. J. Exp. Med.181 (6): 2119-27. [PMID:7760001]

16. Daveau M, Benard M, Scotte M, Schouft MT, Hiron M, Francois A, Salier JP, Fontaine M. (2004) Expression of a functional C5a receptor in regenerating hepatocytes and its involvement in a proliferative signaling pathway in rat. J. Immunol.173 (5): 3418-24. [PMID:15322206]

17. de Haas CJ, Veldkamp KE, Peschel A, Weerkamp F, Van Wamel WJ, Heezius EC, Poppelier MJ, Van Kessel KP, van Strijp JA. (2004) Chemotaxis inhibitory protein of Staphylococcus aureus, a bacterial antiinflammatory agent. J. Exp. Med.199 (5): 687-95. [PMID:14993252]

18. de Vries B, Köhl J, Leclercq WK, Wolfs TG, van Bijnen AA, Heeringa P, Buurman WA. (2003) Complement factor C5a mediates renal ischemia-reperfusion injury independent from neutrophils. J. Immunol.170 (7): 3883-9. [PMID:12646657]

19. Deuel TF, Senior RM, Huang JS, Griffin GL. (1982) Chemotaxis of monocytes and neutrophils to platelet-derived growth factor. J. Clin. Invest.69 (4): 1046-9. [PMID:7076844]

20. Dunkelberger J, Zhou L, Miwa T, Song WC. (2012) C5aR expression in a novel GFP reporter gene knockin mouse: implications for the mechanism of action of C5aR signaling in T cell immunity. J. Immunol.188 (8): 4032-42. [PMID:22430734]

21. Erken E, Gunesacar R, Ozer HT. (2010) Investigation of C5a receptor gene 450 C/T polymorphism in Turkish patients with familial Mediterranean fever. Mol. Biol. Rep.37 (1): 273-6. [PMID:19657723]

22. Fayyazi A, Sandau R, Duong LQ, Götze O, Radzun HJ, Schweyer S, Soruri A, Zwirner J. (1999) C5a receptor and interleukin-6 are expressed in tissue macrophages and stimulated keratinocytes but not in pulmonary and intestinal epithelial cells. Am. J. Pathol.154 (2): 495-501. [PMID:10027407]

23. Fayyazi A, Scheel O, Werfel T, Schweyer S, Oppermann M, Götze O, Radzun HJ, Zwirner J. (2000) The C5a receptor is expressed in normal renal proximal tubular but not in normal pulmonary or hepatic epithelial cells. Immunology99 (1): 38-45. [PMID:10651939]

24. Ferraiuolo L, Heath PR, Holden H, Kasher P, Kirby J, Shaw PJ. (2007) Microarray analysis of the cellular pathways involved in the adaptation to and progression of motor neuron injury in the SOD1 G93A mouse model of familial ALS. J. Neurosci.27 (34): 9201-19. [PMID:17715356]

25. Finch AM, Vogen SM, Sherman SA, Kirnarsky L, Taylor SM, Sanderson SD. (1997) Biologically active conformer of the effector region of human C5a and modulatory effects of N-terminal receptor binding determinants on activity. J. Med. Chem.40 (6): 877-84. [PMID:9083476]

26. Fleming SD, Mastellos D, Karpel-Massler G, Shea-Donohue T, Lambris JD, Tsokos GC. (2003) C5a causes limited, polymorphonuclear cell-independent, mesenteric ischemia/reperfusion-induced injury. Clin. Immunol.108 (3): 263-73. [PMID:14499250]

27. Fonseca MI, Ager RR, Chu SH, Yazan O, Sanderson SD, LaFerla FM, Taylor SM, Woodruff TM, Tenner AJ. (2009) Treatment with a C5aR antagonist decreases pathology and enhances behavioral performance in murine models of Alzheimer's disease. J. Immunol.183 (2): 1375-83. [PMID:19561098]

28. Francis K, Lewis BM, Monk PN, Ham J. (2008) Complement C5a receptors in the pituitary gland: expression and function. J. Endocrinol.199 (3): 417-24. [PMID:19020281]

29. Fukuoka Y, Medof EM. (2001) C5a receptor-mediated production of IL-8 by the human retinal pigment epithelial cell line, ARPE-19. Curr. Eye Res.23 (5): 320-5. [PMID:11910520]

30. Füreder W, Agis H, Willheim M, Bankl HC, Maier U, Kishi K, Müller MR, Czerwenka K, Radaszkiewicz T, Butterfield JH et al.. (1995) Differential expression of complement receptors on human basophils and mast cells. Evidence for mast cell heterogeneity and CD88/C5aR expression on skin mast cells. J. Immunol.155 (6): 3152-60. [PMID:7673728]

31. Gasque P, Singhrao SK, Neal JW, Götze O, Morgan BP. (1997) Expression of the receptor for complement C5a (CD88) is up-regulated on reactive astrocytes, microglia, and endothelial cells in the inflamed human central nervous system. Am. J. Pathol.150 (1): 31-41. [PMID:9006319]

32. Gerard NP, Bao L, Xiao-Ping H, Eddy RL, Shows TB, Gerard C. (1993) Human chemotaxis receptor genes cluster at 19q13.3-13.4. Characterization of the human C5a receptor gene. Biochemistry32 (5): 1243-50. [PMID:8383526]

33. Girardi G, Berman J, Redecha P, Spruce L, Thurman JM, Kraus D, Hollmann TJ, Casali P, Caroll MC, Wetsel RA et al.. (2003) Complement C5a receptors and neutrophils mediate fetal injury in the antiphospholipid syndrome. J. Clin. Invest.112 (11): 1644-54. [PMID:14660741]

34. Guo RF, Ward PA. (2005) Role of C5a in inflammatory responses. Annu. Rev. Immunol.23: 821-52. [PMID:15771587]

35. Haviland DL, McCoy RL, Whitehead WT, Akama H, Molmenti EP, Brown A, Haviland JC, Parks WC, Perlmutter DH, Wetsel RA. (1995) Cellular expression of the C5a anaphylatoxin receptor (C5aR): demonstration of C5aR on nonmyeloid cells of the liver and lung. J. Immunol.154 (4): 1861-9. [PMID:7836770]

36. Heimbach L, Li Z, Berkowitz P, Zhao M, Li N, Rubenstein DS, Diaz LA, Liu Z. (2011) The C5a receptor on mast cells is critical for the autoimmune skin-blistering disease bullous pemphigoid. J. Biol. Chem.286 (17): 15003-9. [PMID:21393236]

37. Higginbottom A, Cain SA, Woodruff TM, Proctor LM, Madala PK, Tyndall JD, Taylor SM, Fairlie DP, Monk PN. (2005) Comparative agonist/antagonist responses in mutant human C5a receptors define the ligand binding site. J Biol Chem280: 17831-17840. [PMID:15661745]

38. Higginbottom A, Wilkinson I, McCullough B, Lanza F, Azorsa DO, Partridge LJ, Monk PN. (2000) Antibody cross-linking of human CD9 and the high-affinity immunoglobulin E receptor stimulates secretion from transfected rat basophilic leukaemia cells. Immunology99 (4): 546-52. [PMID:10792502]

39. Hook WA, Siraganian RP, Wahl SM. (1975) Complement-induced histamine release from human basophils. I. Generation of activity in human serum. J. Immunol.114 (4): 1185-90. [PMID:46892]

40. Huber-Lang M, Sarma JV, Rittirsch D, Schreiber H, Weiss M, Flierl M, Younkin E, Schneider M, Suger-Wiedeck H, Gebhard F et al.. (2005) Changes in the novel orphan, C5a receptor (C5L2), during experimental sepsis and sepsis in humans. J. Immunol.174 (2): 1104-10. [PMID:15634936]

41. Huber-Lang MS, Sarma JV, McGuire SR, Lu KT, Guo RF, Padgaonkar VA, Younkin EM, Laudes IJ, Riedemann NC, Younger JG et al.. (2001) Protective effects of anti-C5a peptide antibodies in experimental sepsis. FASEB J.15 (3): 568-70. [PMID:11259369]

42. Huber-Lang MS, Sarma JV, McGuire SR, Lu KT, Padgaonkar VA, Younkin EM, Guo RF, Weber CH, Zuiderweg ER, Zetoune FS et al.. (2003) Structure-function relationships of human C5a and C5aR. J. Immunol.170 (12): 6115-24. [PMID:12794141]

43. Huber-Lang MS, Younkin EM, Sarma JV, McGuire SR, Lu KT, Guo RF, Padgaonkar VA, Curnutte JT, Erickson R, Ward PA. (2002) Complement-induced impairment of innate immunity during sepsis. J. Immunol.169 (6): 3223-31. [PMID:12218141]

44. Huey R, Hugli TE. (1985) Characterization of a C5a receptor on human polymorphonuclear leukocytes (PMN). J. Immunol.135 (3): 2063-8. [PMID:4020139]

45. Humayun S, Gohar M, Volkening K, Moisse K, Leystra-Lantz C, Mepham J, McLean J, Strong MJ. (2009) The complement factor C5a receptor is upregulated in NFL-/- mouse motor neurons. J. Neuroimmunol.210 (1-2): 52-62. [PMID:19286267]

46. Höpken UE, Lu B, Gerard NP, Gerard C. (1996) The C5a chemoattractant receptor mediates mucosal defence to infection. Nature383 (6595): 86-9. [PMID:8779720]

47. Jain U, Woodruff T, Stadnyk A. (2013) The C5a receptor antagonist PMX205 ameliorates experimentally induced colitis associated with increased IL-4 and IL-10. Br. J. Pharmacol.168 (2): 488-501. [PMID:22924972]

48. Johswich K, Martin M, Bleich A, Kracht M, Dittrich-Breiholz O, Gessner JE, Suerbaum S, Wende E, Rheinheimer C, Klos A. (2009) Role of the C5a receptor (C5aR) in acute and chronic dextran sulfate-induced models of inflammatory bowel disease. Inflamm. Bowel Dis.15 (12): 1812-23. [PMID:19714742]

49. Kawai M, Quincy DA, Lane B, Mollison KW, Or YS, Luly JR, Carter GW. (1992) Structure-function studies in a series of carboxyl-terminal octapeptide analogues of anaphylatoxin C5a. J Med Chem35: 220-223. [PMID:1732540]

50. Kim DY, Martin CB, Lee SN, Martin BK. (2005) Expression of complement protein C5a in a murine mammary cancer model: tumor regression by interference with the cell cycle. Cancer Immunol. Immunother.54 (10): 1026-37. [PMID:15868168]

51. Konteatis ZD, Siciliano SJ, Van Riper G, Molineaux CJ, Pandya S, Fischer P, Rosen H, Mumford RA, Springer MS. (1994) Development of C5a receptor antagonists. Differential loss of functional responses. J Immunol153: 4200-4205. [PMID:7930622]

52. Kupp LI, Kosco MH, Schenkein HA, Tew JG. (1991) Chemotaxis of germinal center B cells in response to C5a. Eur. J. Immunol.21 (11): 2697-701. [PMID:1936118]

53. Lalli PN, Strainic MG, Yang M, Lin F, Medof ME, Heeger PS. (2008) Locally produced C5a binds to T cell-expressed C5aR to enhance effector T-cell expansion by limiting antigen-induced apoptosis. Blood112 (5): 1759-66. [PMID:18567839]

54. Laudes IJ, Chu JC, Huber-Lang M, Guo RF, Riedemann NC, Sarma JV, Mahdi F, Murphy HS, Speyer C, Lu KT et al.. (2002) Expression and function of C5a receptor in mouse microvascular endothelial cells. J. Immunol.169 (10): 5962-70. [PMID:12421982]

55. Lee CH, Katz A, Simon MI. (1995) Multiple regions of G alpha 16 contribute to the specificity of activation by the C5a receptor. Mol Pharmacol47: 218-223. [PMID:7870028]

56. Lee H, Zahra D, Vogelzang A, Newton R, Thatcher J, Quan A, So T, Zwirner J, Koentgen F, Padkjaer SB et al.. (2006) Human C5aR knock-in mice facilitate the production and assessment of anti-inflammatory monoclonal antibodies. Nat. Biotechnol.24 (10): 1279-84. [PMID:16980974]

57. Lewis AG, Köhl G, Ma Q, Devarajan P, Köhl J. (2008) Pharmacological targeting of C5a receptors during organ preservation improves kidney graft survival. Clin. Exp. Immunol.153 (1): 117-26. [PMID:18505432]

58. March DR, Proctor LM, Stoermer MJ, Sbaglia R, Abbenante G, Reid RC, Woodruff TM, Wadi K, Paczkowski N, Tyndall JD et al.. (2004) Potent cyclic antagonists of the complement C5a receptor on human polymorphonuclear leukocytes. Relationships between structures and activity. Mol. Pharmacol.65 (4): 868-79. [PMID:15044616]

59. Martin BK. (2007) Transcriptional control of complement receptor gene expression. Immunol. Res.39 (1-3): 146-59. [PMID:17917062]

60. Monk PN, Pease JE, Barker MD. (1994) C5a stimulus-secretion coupling in rat basophilic leukaemia (RBL-2H3) cells transfected with the human C5a receptor is mediated by pertussis and cholera toxin-sensitive G proteins. Biochem. Mol. Biol. Int.32 (1): 13-20. [PMID:8012277]

61. Monk PN, Scola AM, Madala P, Fairlie DP. (2007) Function, structure and therapeutic potential of complement C5a receptors. Br. J. Pharmacol.152 (4): 429-48. [PMID:17603557]

62. Mrowietz U, Koch WA, Zhu K, Wiedow O, Bartels J, Christophers E, Schröder JM. (2001) Psoriasis scales contain C5a as the predominant chemotaxin for monocyte-derived dendritic cells. Exp. Dermatol.10 (4): 238-45. [PMID:11493312]

63. Nataf S, Davoust N, Ames RS, Barnum SR. (1999) Human T cells express the C5a receptor and are chemoattracted to C5a. J. Immunol.162 (7): 4018-23. [PMID:10201923]

64. Nataf S, Levison SW, Barnum SR. (2001) Expression of the anaphylatoxin C5a receptor in the oligodendrocyte lineage. Brain Res.894 (2): 321-6. [PMID:11251209]

65. Nishiura H, Shibuya Y, Yamamoto T. (1998) S19 ribosomal protein cross-linked dimer causes monocyte-predominant infiltration by means of molecular mimicry to complement C5a. Lab. Invest.78 (12): 1615-23. [PMID:9881961]

66. Nishiura H, Zhao R, Yamamoto T. (2011) The role of the ribosomal protein S19 C-terminus in altering the chemotaxis of leucocytes by causing functional differences in the C5a receptor response. J. Biochem.150 (3): 271-7. [PMID:21613290]

67. O'Barr SA, Caguioa J, Gruol D, Perkins G, Ember JA, Hugli T, Cooper NR. (2001) Neuronal expression of a functional receptor for the C5a complement activation fragment. J. Immunol.166 (6): 4154-62. [PMID:11238666]

68. Onuma H, Masuko-Hongo K, Yuan G, Sakata M, Nakamura H, Kato T, Aoki H, Nishioka K. (2002) Expression of the anaphylatoxin receptor C5aR (CD88) by human articular chondrocytes. Rheumatol. Int.22 (2): 52-5. [PMID:12070675]

69. Oskeritzian CA, Zhao W, Min HK, Xia HZ, Pozez A, Kiev J, Schwartz LB. (2005) Surface CD88 functionally distinguishes the MCTC from the MCT type of human lung mast cell. J. Allergy Clin. Immunol.115 (6): 1162-8. [PMID:15940129]

70. Otto M, Hawlisch H, Monk PN, Müller M, Klos A, Karp CL, Köhl J. (2004) C5a mutants are potent antagonists of the C5a receptor (CD88) and of C5L2: position 69 is the locus that determines agonism or antagonism. J. Biol. Chem.279 (1): 142-51. [PMID:14570896]

71. Paczkowski NJ, Finch AM, Whitmore JB, Short AJ, Wong AK, Monk PN, Cain SA, Fairlie DP, Taylor SM. (1999) Pharmacological characterization of antagonists of the C5a receptor. Br. J. Pharmacol.128 (7): 1461-6. [PMID:10602324]

72. Pavlovski D, Thundyil J, Monk PN, Wetsel RA, Taylor SM, Woodruff TM. (2012) Generation of complement component C5a by ischemic neurons promotes neuronal apoptosis. FASEB J.26 (9): 3680-90. [PMID:22651932]

73. Postma B, Poppelier MJ, van Galen JC, Prossnitz ER, van Strijp JA, de Haas CJ, van Kessel KP. (2004) Chemotaxis inhibitory protein of Staphylococcus aureus binds specifically to the C5a and formylated peptide receptor. J. Immunol.172 (11): 6994-7001. [PMID:15153520]

74. Proctor LM, Woodruff TM, Sharma P, Shiels IA, Taylor SM. (2006) Transdermal pharmacology of small molecule cyclic C5a antagonists. Adv. Exp. Med. Biol.586: 329-45. [PMID:16893082]

75. Rahpeymai Y, Hietala MA, Wilhelmsson U, Fotheringham A, Davies I, Nilsson AK, Zwirner J, Wetsel RA, Gerard C, Pekny M et al.. (2006) Complement: a novel factor in basal and ischemia-induced neurogenesis. EMBO J.25 (6): 1364-74. [PMID:16498410]

76. Riedemann NC, Guo RF, Hollmann TJ, Gao H, Neff TA, Reuben JS, Speyer CL, Sarma JV, Wetsel RA, Zetoune FS et al.. (2004) Regulatory role of C5a in LPS-induced IL-6 production by neutrophils during sepsis. FASEB J.18 (2): 370-2. [PMID:14688199]

77. Rittirsch D, Flierl MA, Nadeau BA, Day DE, Huber-Lang M, Mackay CR, Zetoune FS, Gerard NP, Cianflone K, Köhl J et al.. (2008) Functional roles for C5a receptors in sepsis. Nat. Med.14 (5): 551-7. [PMID:18454156]

78. Schnatbaum K, Locardi E, Scharn D, Richter U, Hawlisch H, Knolle J, Polakowski T. (2006) Peptidomimetic C5a receptor antagonists with hydrophobic substitutions at the C-terminus: increased receptor specificity and in vivo activity. Bioorg. Med. Chem. Lett.16 (19): 5088-92. [PMID:16876401]

79. Schraufstatter IU, Discipio RG, Zhao M, Khaldoyanidi SK. (2009) C3a and C5a are chemotactic factors for human mesenchymal stem cells, which cause prolonged ERK1/2 phosphorylation. J. Immunol.182 (6): 3827-36. [PMID:19265162]

80. Schraufstatter IU, Trieu K, Sikora L, Sriramarao P, DiScipio R. (2002) Complement c3a and c5a induce different signal transduction cascades in endothelial cells. J. Immunol.169 (4): 2102-10. [PMID:12165538]

81. Sewell DL, Nacewicz B, Liu F, Macvilay S, Erdei A, Lambris JD, Sandor M, Fabry Z. (2004) Complement C3 and C5 play critical roles in traumatic brain cryoinjury: blocking effects on neutrophil extravasation by C5a receptor antagonist. J. Neuroimmunol.155 (1-2): 55-63. [PMID:15342196]

82. Short A, Wong AK, Finch AM, Haaima G, Shiels IA, Fairlie DP, Taylor SM. (1999) Effects of a new C5a receptor antagonist on C5a- and endotoxin-induced neutropenia in the rat. Br. J. Pharmacol.126 (3): 551-4. [PMID:10188960]

83. Short AJ, Paczkowski NJ, Vogen SM, Sanderson SD, Taylor SM. (1999) Response-selective C5a agonists: differential effects on neutropenia and hypotension in the rat. Br. J. Pharmacol.128 (3): 511-4. [PMID:10516626]

84. Siciliano SJ, Rollins TE, Springer MS. (1990) Interaction between the C5a receptor and Gi in both the membrane-bound and detergent-solubilized states. J Biol Chem265: 19568-19574. [PMID:2123189]

85. Soruri A, Kim S, Kiafard Z, Zwirner J. (2003) Characterization of C5aR expression on murine myeloid and lymphoid cells by the use of a novel monoclonal antibody. Immunol. Lett.88 (1): 47-52. [PMID:12853161]

86. Sumichika H, Sakata K, Sato N, Takeshita S, Ishibuchi S, Nakamura M, Kamahori T, Ehara S, Itoh K, Ohtsuka T et al.. (2002) Identification of a potent and orally active non-peptide C5a receptor antagonist. J. Biol. Chem.277 (51): 49403-7. [PMID:12384495]

87. Sun L, Gao H, Sarma VJ, Guo RF, Ward PA. (2006) Adenovirus-mediated in vivo silencing of anaphylatoxin receptor C5aR. J. Biomed. Biotechnol.2006 (4): 28945. [PMID:17057363]

88. Suvorova ES, Gripentrog JM, Oppermann M, Miettinen HM. (2008) Role of the carboxyl terminal di-leucine in phosphorylation and internalization of C5a receptor. Biochim. Biophys. Acta1783 (6): 1261-70. [PMID:18346468]

89. Tardif M, Brouchon L, Rabiet MJ, Boulay F. (2003) Direct binding of a fragment of the Wiskott-Aldrich syndrome protein to the C-terminal end of the anaphylatoxin C5a receptor. Biochem. J.372 (Pt 2): 453-63. [PMID:12600272]

90. Ten RM, Carmona EM, Babovic-Vuksanovic D, Katzmann JA. (1999) Mannose-binding lectin deficiency associated with neutrophil chemotactic unresponsiveness to C5a. J. Allergy Clin. Immunol.104 (2 Pt 1): 419-24. [PMID:10452765]

91. Tsuji RF, Yamakoshi J, Uramoto M, Koshino H, Saito M, Kikuchi M, Masuda T. (1995) Anti-inflammatory effects and specificity of L-156,602: comparison of effects on concanavalin A and zymosan-induced footpad edema, and contact sensitivity response. Immunopharmacology29: 79-87. [PMID:7768675]

92. Unnewehr H, Rittirsch D, Sarma JV, Zetoune F, Flierl MA, Perl M, Denk S, Weiss M, Schneider ME, Monk PN et al.. (2013) Changes and regulation of the C5a receptor on neutrophils during septic shock in humans. J. Immunol.190 (8): 4215-25. [PMID:23479227]

93. Van Beek J, Bernaudin M, Petit E, Gasque P, Nouvelot A, MacKenzie ET, Fontaine M. (2000) Expression of receptors for complement anaphylatoxins C3a and C5a following permanent focal cerebral ischemia in the mouse. Exp. Neurol.161 (1): 373-82. [PMID:10683302]

94. Vergunst CE, Gerlag DM, Dinant H, Schulz L, Vinkenoog M, Smeets TJ, Sanders ME, Reedquist KA, Tak PP. (2007) Blocking the receptor for C5a in patients with rheumatoid arthritis does not reduce synovial inflammation. Rheumatology (Oxford)46 (12): 1773-8. [PMID:17965442]

95. Waters SM, Brodbeck RM, Steflik J, Yu J, Baltazar C, Peck AE, Severance D, Zhang LY, Currie K, Chenard BL et al.. (2005) Molecular characterization of the gerbil C5a receptor and identification of a transmembrane domain V amino acid that is crucial for small molecule antagonist interaction. J. Biol. Chem.280 (49): 40617-23. [PMID:16230349]

96. Weiler H. (2008) Tracing the molecular pathogenesis of antiphospholipid syndrome. J. Clin. Invest.118 (10): 3276-8. [PMID:18802489]

97. Wetsel RA. (1995) Expression of the complement C5a anaphylatoxin receptor (C5aR) on non-myeloid cells. Immunol. Lett.44 (2-3): 183-7. [PMID:7797249]

98. Wong AK, Finch AM, Pierens GK, Craik DJ, Taylor SM, Fairlie DP. (1998) Small molecular probes for G-protein-coupled C5a receptors: conformationally constrained antagonists derived from the C terminus of the human plasma protein C5a. J. Med. Chem.41 (18): 3417-25. [PMID:9719594]

99. Woodruff TM, Arumugam TV, Shiels IA, Reid RC, Fairlie DP, Taylor SM. (2003) A potent human C5a receptor antagonist protects against disease pathology in a rat model of inflammatory bowel disease. J. Immunol.171 (10): 5514-20. [PMID:14607958]

100. Woodruff TM, Costantini KJ, Crane JW, Atkin JD, Monk PN, Taylor SM, Noakes PG. (2008) The complement factor C5a contributes to pathology in a rat model of amyotrophic lateral sclerosis. J. Immunol.181 (12): 8727-34. [PMID:19050293]

101. Woodruff TM, Crane JW, Proctor LM, Buller KM, Shek AB, de Vos K, Pollitt S, Williams HM, Shiels IA, Monk PN et al.. (2006) Therapeutic activity of C5a receptor antagonists in a rat model of neurodegeneration. FASEB J.20 (9): 1407-17. [PMID:16816116]

102. Woodruff TM, Pollitt S, Proctor LM, Stocks SZ, Manthey HD, Williams HM, Mahadevan IB, Shiels IA, Taylor SM. (2005) Increased potency of a novel complement factor 5a receptor antagonist in a rat model of inflammatory bowel disease. J. Pharmacol. Exp. Ther.314 (2): 811-7. [PMID:15879003]

103. Woodruff TM, Strachan AJ, Dryburgh N, Shiels IA, Reid RC, Fairlie DP, Taylor SM. (2002) Antiarthritic activity of an orally active C5a receptor antagonist against antigen-induced monarticular arthritis in the rat. Arthritis Rheum.46 (9): 2476-85. [PMID:12355496]

104. Woodruff TM, Strachan AJ, Sanderson SD, Monk PN, Wong AK, Fairlie DP, Taylor SM. (2001) Species dependence for binding of small molecule agonist and antagonists to the C5a receptor on polymorphonuclear leukocytes. Inflammation25 (3): 171-7. [PMID:11403208]

105. Xu DZ, Zaets SB, Chen R, Lu Q, Rajan H, Yang X, Zhang J, Feketova E, Bogdan N, Deitch EA et al.. (2009) Elimination of C5aR prevents intestinal mucosal damage and attenuates neutrophil infiltration in local and remote organs. Shock31 (5): 493-9. [PMID:18791492]

106. Yuan G, Wei J, Zhou J, Hu H, Tang Z, Zhang G. (2003) Expression of C5aR (CD88) of synoviocytes isolated from patients with rheumatoid arthritis and osteoarthritis. Chin. Med. J.116 (9): 1408-12. [PMID:14527377]

107. Zhang H, Qin G, Liang G, Li J, Barrington RA, Liu DX. (2007) C5aR-mediated myocardial ischemia/reperfusion injury. Biochem. Biophys. Res. Commun.357 (2): 446-52. [PMID:17416341]

To cite this database page, please use the following:

Liam Coulthard, Owen Hawksworth, Trent Woodruff.
Complement peptide receptors: C5a1 receptor. Last modified on 29/11/2013. Accessed on 30/10/2014. IUPHAR database (IUPHAR-DB), http://www.iuphar-db.org/DATABASE/ObjectDisplayForward?objectId=32.

Contact us | Print | Back to top | Help
Copyright © 2014 IUPHAR