Nomenclature: μ receptor

Family: Opioid receptors

Annotation status:  image of a green circle Annotated and expert reviewed. Please contact us if you can help with updates. 

Contents

Gene and Protein Information
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 400 6q24-q25 OPRM1 opioid receptor, mu 1 134
Mouse 7 398 10 A2 Oprm1 opioid receptor, mu 1 80
Rat 7 398 1p11 Oprm1 opioid receptor, mu 1 20,35,119,133,144
Previous and Unofficial Names
MOR-1
Mu opioid receptor
OP3
MOP
MOR
MOR1
MORA
Oprm
Oprrm1
M-OR-1
MUOR1
mu opioid receptor splice variant rMOR-1S
mu opioid receptor splice variant rMOR-1Z
mu-type opioid receptor
opioid receptor B
muOR
MOP receptor
MOP-R
MOP-r
Database Links
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
GPCRDB
GeneCards
GenitoUrinary Development Molecular Anatomy Project
HomoloGene
Human Protein Reference Database
InterPro
KEGG Gene
OMIM
PhosphoSitePlus
Protein Ontology (PRO)
RefSeq Nucleotide
RefSeq Protein
TreeFam
UniGene Hs.
UniProtKB
Wikipedia
Selected 3D Structures
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structure of the mu-opioid receptor bound to a morphinan antagonist
PDB Id:  4DKL
Ligand:  β-FNA
Resolution:  2.8Å
Species:  Mouse
References:  69
Natural/Endogenous Ligands
β-endorphin {Sp: Human} , β-endorphin {Sp: Rat} , β-endorphin {Sp: Mouse}
dynorphin A {Sp: Human, Mouse, Rat}
dynorphin A-(1-13) {Sp: Human, Mouse, Rat}
dynorphin A-(1-8) {Sp: Human, Mouse, Rat}
dynorphin B {Sp: Human, Mouse, Rat}
endomorphin-1 {Sp: Human}
[Leu]enkephalin {Sp: Human, Mouse, Rat}
[Met]enkephalin {Sp: Human, Mouse, Rat}
Comments: β-endorphin is the highest potency endogenous ligand
Principal endogenous agonists (Human)
β-endorphin (POMC, P01189), [Met]enkephalin (PENK, P01210), [Leu]enkephalin (PENK, P01210), endomorphin-1, endomorphin-2
Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
[3H]DAMGO Rn Full agonist 8.7 pKd 103
pKd 8.7 [103]
(-)-cyclazocine Hs Partial agonist 10.0 pKi 123
pKi 10.0 [123]
sufentanil Hs Full agonist 9.9 pKi 129
pKi 9.9 (Ki 1.38x10-10 M) [129]
etonitazene Hs Full agonist 9.7 pKi 123
pKi 9.7 [123]
hydromorphone Hs Agonist 9.55 pKi 135
pKi 9.55 (Ki 2.8x10-10 M) [135]
(-)-EKC Hs Full agonist 9.5 pKi 123
pKi 9.5 [123]
etorphine Hs Full agonist 9.5 pKi 123
pKi 9.5 [123]
fentanyl Rn Full agonist 9.4 pKi 103
pKi 9.4 [103]
DAMGO Hs Full agonist 9.3 pKi 46,123
pKi 9.3 [46,123]
loperamide Hs Agonist 9.28 pKi 21
pKi 9.28 (Ki 5.3x10-10 M) [21]
fentanyl Hs Full agonist 9.2 pKi 123
pKi 9.2 [123]
[Met]enkephalin {Sp: Human, Mouse, Rat} Rn Full agonist 9.2 pKi 103
pKi 9.2 [103]
(-)-methadone Hs Full agonist 9.2 pKi 123
pKi 9.2 [123]
sufentanil Rn Full agonist 9.1 pKi 137
pKi 9.1 (Ki 7.7x10-10 M) [137]
β-endorphin {Sp: Human} Rn Full agonist 9.0 pKi 103
pKi 9.0 [103]
morphine Hs Full agonist 9.0 pKi 41,123
pKi 9.0 [41,123]
buprenorphine Hs Partial agonist 8.8 pKi 123
pKi 8.8 [123]
normorphine Hs Full agonist 8.8 pKi 123
pKi 8.8 [123]
dynorphin-(1-11) Hs Full agonist 8.8 pKi 123
pKi 8.8 [123]
dihydromorphine Hs Full agonist 8.8 pKi 123
pKi 8.8 [123]
nalbuphine Hs Agonist 8.8 pKi 135
pKi 8.8 (Ki 1.6x10-9 M) [135]
DADLE Hs Full agonist 8.7 pKi 123
pKi 8.7 [123]
hydrocodone Hs Agonist 8.7 pKi 93
pKi 8.7 (Ki 2x10-9 M) [93]
DAMGO Rn Full agonist 8.7 pKi 103
pKi 8.7 [103]
endomorphin-2 {Sp: Human} Rn Full agonist 8.5 pKi 142
pKi 8.5 (Ki 3.24x10-9 M) [142]
dynorphin B {Sp: Human, Mouse, Rat} Hs Full agonist 8.5 pKi 123
pKi 8.5 [123]
dynorphin A-(1-8) {Sp: Human, Mouse, Rat} Hs Full agonist 8.4 pKi 123
pKi 8.4 [123]
(-)-pentazocine Hs Partial agonist 8.4 pKi 123
pKi 8.4 [123]
endomorphin-1 {Sp: Human} Hs Full agonist 8.3 pKi 43,142
pKi 8.3 [43,142]
dynorphin A-(1-13) {Sp: Human, Mouse, Rat} Hs Full agonist 8.3 pKi 123
pKi 8.3 [123]
DSLET Hs Full agonist 8.2 pKi 123
pKi 8.2 [123]
PL017 Hs Full agonist 8.2 pKi 18,123
pKi 8.2 [18,123]
dynorphin A {Sp: Human, Mouse, Rat} Hs Full agonist 8.1 pKi 123
pKi 8.1 [123]
[Leu]enkephalin {Sp: Human, Mouse, Rat} Hs Partial agonist 8.1 pKi 123
pKi 8.1 [123]
morphine Rn Partial agonist 7.9 pKi 103
pKi 7.9 [103]
codeine Hs Full agonist 6.9 pKi 123
pKi 6.9 [123]
tapentadol Hs Agonist 6.8 pKi 125
pKi 6.8 (Ki 1.6x10-7 M) [125]
methadone Hs Agonist 8.39 pIC50 102
pIC50 8.39 (IC50 4.1x10-9 M) [102]
Description: Binding affinity against μ-opioid receptor (human) using [3H]DAMGO radioligand.
meperidine Hs Agonist 6.5 pIC50 102
pIC50 6.5 (IC50 3.15x10-7 M) [102]
[3H]DAMGO Hs Full agonist - - 143
[143]
View species-specific agonist tables
Agonist Comments
pKi values were determined in the absence of Na+ and guanine nucleotides.

Discrimination of full or partial agonism is very dependent on the level of receptor expression and on the assay used to monitor agonist effects. Many agents may behave as full agonists or potent partial agonists in cell lines expressing cloned receptors in high concentration, but in other environments they may show only weak agonist activity. The identification of agonist activity in the table is largely based on the ability to stimulate GTPγ35S binding in cell lines expressing cloned human mu receptors. Agents giving 85% or greater stimulation than that given by DAMGO have been characterized as Full Agonists [123].

It is still unclear whether endomorphins are endogenous.
Morphine occurs endogenously [101].
We have tagged the μ receptor as the primary drug target for hydrocodone based on this drug having the highest affinity at this receptor compared to the κ and δ receptors [93]. Similarly, we have tagged the μ receptor as the primary target of the drug hydromorphone[135].
Methadone is selective for the μ receptor: comparable IC50s at the κ and δ receptors are 512 and 1090nM respectively[102] .
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
[3H]diprenorphine Mm Antagonist 10.1 pKd 103
pKd 10.1 [103]
[3H]naloxone Mm Antagonist 9.0 pKd 103
pKd 9.0 [103]
naloxonazine Mm Antagonist 10.3 pKi 103
pKi 10.3 [103]
diprenorphine Mm Antagonist 10.1 pKi 103
pKi 10.1 [103]
quadazocine Hs Antagonist 10.0 pKi 123
pKi 10.0 [123]
CTOP Hs Antagonist 9.7 pKi 103
pKi 9.7 [103]
naltrexone Hs Antagonist 9.7 pKi 123
pKi 9.7 [123]
(-)-bremazocine Hs Antagonist 9.7 pKi 123
pKi 9.7 [123]
β-FNA Hs Antagonist 9.5 pKi 123
pKi 9.5 [123]
β-FNA Mm Antagonist 9.5 pKi 103
pKi 9.5 [103]
nalmefene Hs Antagonist 9.5 pKi 123
pKi 9.5 [123]
alvimopan Hs Antagonist 9.33 pKi 62
pKi 9.33 (Ki 4.7x10-10 M) [62]
diprenorphine Hs Antagonist 9.1 pKi 123
pKi 9.1 [123]
levallorphan Hs Antagonist 8.77 – 9.32 pKi 68
pKi 8.77 – 9.32 (Ki 1.69x10-9 – 4.8x10-10 M) [68]
Description: Competition binding assay- the calculated Ki varies depending on the radioligand used.
naloxone Mm Antagonist 9.0 pKi 103
pKi 9.0 [103]
naloxone Hs Antagonist 8.9 pKi 123
pKi 8.9 [123]
nalorphine Hs Antagonist 8.9 pKi 123
pKi 8.9 [123]
BNTX Hs Antagonist 8.8 pKi 123
pKi 8.8 [123]
CTAP Hs Antagonist 8.6 pKi 18,123
pKi 8.6 [18,123]
naloxone benzoylhydrazone Hs Antagonist 8.2 – 8.7 pKi 123
pKi 8.7 [123]
pKi 8.2 [123]
naltrindole Hs Antagonist 8.2 pKi 123
pKi 8.2 [123]
naltriben Hs Antagonist 7.9 pKi 123
pKi 7.9 [123]
nor-binaltorphimine Hs Antagonist 7.7 pKi 123
pKi 7.7 [123]
View species-specific antagonist tables
Antagonist Comments
β-FNA is an electrophilic affinity label. The pKi reflects both the reversible and irreversible binding components.
CTOP is a good somatostatin receptor (sst receptor) agonist in addition to having antagonist activity at μ opioid receptors; it should never be used in studies of μ receptor function in situations where sst receptors may be involved. CTAP does not activate sst receptors [25].

The μ receptor is tagged as the primary target for the drug levallorphan, since the drug is mainly used for its antagonistic actions as an antidote to opioid overdose. Note that this drug also acts as a partial agonist at the κ receptor.
Allosteric Modulator Comments
Although no small molecules are considered direct allosteric regulators of μ receptors, a number of proteins such as G protein-coupled receptor kinases, β-arrestins and G proteins clearly regulate μ opioid receptor affinities and function. Furthermore sodium and guanyl nucleotides can modify the functional μ receptor complex and G protein interaction. Also, μ receptors are reported to form heterodimers with other receptors of the OP family or with non-opioid G protein-coupled receptors. Heterodimerisation may alter μ receptor function and/or trafficking [38,42,96].
Primary Transduction Mechanisms
Transducer Effector/Response
Gi/Go family Adenylate cyclase stimulation
Adenylate cyclase inhibition
Phospholipase C stimulation
Potassium channel
Calcium channel
Phospholipase A2 stimulation
Phospholipase D stimulation
Other - See Comments
Comments:  The following systems have also been reported to be activated following Gi/Go activation via the μ receptor:
epidermal growth factor receptor transactivation and subsequent mitogen activated protein kinase ERK [10,65],
Jun N-terminal kinase (JNK) expression and activity [33,54,112],
signal transducer and activator of transcription 3 (STAT3) [141],
focal adhesion kinase [70],
nuclear Ca2+/calmodulin translocation [130],
phosphatidylinositol-3 kinase expression and activity [54,91].
References:  5,15-17,27,36,48,57,82,84,90,94,99-100,104,126,139
Secondary Transduction Mechanisms
Transducer Effector/Response
Gq/G11 family Phospholipase C stimulation
Comments:  G16 couples to the μ opioid receptor and activates PLC.
References:  49,63
Tissue Distribution
Immune cells: CEM x174 T/B lymphocytes, Raji B cells, CD4+, monocytes/macrophages, neutrophils.
Species:  Human
Technique:  RT-PCR.
References:  26
Skin: dermal and epidermal nerve fibers.
Species:  Human
Technique:  Immunohistochemistry.
References:  115
Pregnant uterus.
Species:  Mouse
Technique:  in situ hybridisation.
References:  145
CNS: caudate putamen, nucleus accumbens, endopiriform nucleus, fundus striati, habenula, amygdaloid nuclei, thalamus, hypothalamus, zona incerta, ventral tegmental area, interpeduncular nucleus, central gray, dentate gyrus, substantia nigra, the superior colliculus.
Species:  Mouse
Technique:  Radioligand binding.
References:  56
CNS: olfactory bulb.
Species:  Rat
Technique:  immunocytochemistry.
References:  109
CNS: cerebral cortex, striatum, hippocampus, locus coeruleus, superficial laminae of the dorsal horn.
Species:  Rat
Technique:  Immunohistochemistry.
References:  4
Gastrointestinal tract.
Species:  Rat
Technique:  Immunohistochemistry.
References:  6
CNS: superficial layers of the dorsal horn.
Species:  Rat
Technique:  immunocytochemistry.
References:  23-24
CNS: striatum, medial habenular nucleus, medial terminal nucleus of the accessory optic tract, interpeduncular nucleus, median raphe nucleus, parabrachial nuclei, locus coeruleus, ambiguous nucleus, nucleus of the solitary tract, and laminae I and II of the medullary and spinal dorsal horns, cerebral cortex, amygdala, thalamus, and hypothalamus.
Species:  Rat
Technique:  Immunohistochemistry.
References:  30
CNS: striatum, layers I and III of the cortex, the pyramidal cell layer of the hippocampal formation, specific nuclei of the thalamus, the pars reticulata of the substantia nigra, the interpeduncular nucleus, and the locus coeruleus.
Species:  Rat
Technique:  Radioligand binding.
References:  118
Accessory optic tract.
Species:  Rat
Technique:  Immunohistochemistry.
References:  32
CNS: superficial layers of the spinal cord dorsal horn, nucleus caudalis of the spinal tract of the trigeminal, nucleus of the solitary tract, nucleus ambiguous, locus coeruleus, interpeduncular nucleus, lateral habenular nucleus, caudate-putamen, nucleus accumbens, ventral tegmental area, thalamus, hypothalamus, amygdaloid nuclei, nucleus accumbens, cerebral cortex, septum and diagonal band, preoptic area, medial thalamic and habenular nuclei, locus coeruleus, nucleus ambiguous, trigeminal nucleus caudalis, spinal cord substantia gelatinosa zones.
Species:  Rat
Technique:  Immunohistochemistry.
References:  87
CNS: Purkinje cells and granular and molecular layers of the fetal, neonatal and adult cerebellum.
Species:  Rat
Technique:  Immunohistochemistry.
References:  88
CNS: superficial layers of the medullary and spinal dorsal horns. Colocalisation with substance P.
Species:  Rat
Technique:  immunocytochemistry.
References:  31,64
CNS: nucleus accumbens (plasma membranes: extrasynaptic neuronal > glial)
Species:  Rat
Technique:  immunocytochemistry.
References:  116
CNS: nucleus accumbens (plasma membranes of GABAergic neurons).
Species:  Rat
Technique:  immunocytochemistry.
References:  117
CNS: locus coeruleus (noradrenergic perikarya and dendrites).
Species:  Rat
Technique:  immunocytochemistry.
References:  127-128
CNS: accessory olfactory bulb, striatal patches and streaks, amygdaloid nuclei, ventral hippocampal subiculum and dentate gyrus, numerous thalamic nuclei, geniculate bodies, central grey, superior and inferior colliculi, solitary and pontine nuclei and substantia nigra.
Species:  Rat
Technique:  Radioligand binding.
References:  110
CNS: thalamus, striosomes of the caudate-putamen, globus pallidus, cerebral cortex.
Species:  Rat
Technique:  in situ hybridisation.
References:  29
CNS: thalamic, brainstem and reticular core nuclei (highest in the habenular and thalamic nuclei).
Species:  Rat
Technique:  in situ hybridisation.
References:  39
CNS: accessory olfactory bulb, anterior olfactory nuclei, striatal patches of the nucleus accumbens and caudate-putamen, endopiriform nucleus, claustrum, diagonal band of Broca, globus pallidus, ventral pallidum, bed nucleus of stria terminalis, most thalamic nuclei, medial and posteriocortical medial amygdala, lateral, dorsomedial, posterior and mammillary nuclei of the hypothalamus, presubiculum, subiculum, rostral interpeduncular nucleus, median raphe, inferior colliculus, parabrachial nucleus, locus coeruleus, central grey, nucleus ambiguus, nucleus of the solitary tract, nucleus gracilis, nucleus cuneatus, dorsal motor nucleus of vagus.
Species:  Rat
Technique:  In situ hybridisation and radioligand binding.
References:  73
CNS: thalamus, striatum, hypothalamus and pons-medulla > hippocampus and midbrain > cerebral cortex and cerebellum.
Species:  Rat
Technique:  Northern blotting.
References:  81
CNS: olfactory bulb, caudate-putamen, nucleus accumbens, lateral and medial septum, diagonal band of Broca, bed nucleus of the stria terminalis, most thalamic nuclei, hippocampus, amygdala, medial preoptic area, superior and inferior colliculi, central gray, dorsal and median raphe, raphe magnus, locus coeruleus, parabrachial nucleus, pontine and medullary reticular nuclei, nucleus ambiguus, nucleus of the solitary tract, nucleus gracilis and cuneatus, dorsal motor nucleus of vagus, spinal cord, dorsal root ganglia.
Species:  Rat
Technique:  in situ hybridisation.
References:  72
CNS: superficial layers (laminae I and II) of the dorsal horn of the spinal cord.
Species:  Rat
Technique:  Radioligand binding.
References:  12
Ear: cochleae.
Species:  Rat
Technique:  RT-PCR.
References:  53,97
CNS: caudate putamen.
Species:  Rat
Technique:  immunocytochemistry.
References:  55,131
CNS: anterior cingulate cortex, neocortex, amygdala, hippocampus, ventral dentate gyrus, presubiculum, nucleus accumbens, caudate putamen, thalamus, habenula, interpeduncular nucleus, pars compacta of the substantia nigra, superior and inferior colliculi, raphe nuclei.
Species:  Rat
Technique:  Radioligand binding.
References:  74
CNS: Olfactory bulb, striatal patches and subcallosal streak, medial septum, piriform and cingulate cortex, entorhinal cortex, bed nucleus stria terminalis, medial preoptic area, globus and ventral pallidum, thalamic nuclei, lateral hypothalamus, mammillary nuclei , hippocampus, amygdaloid nuclei, ventral and lateral periaqueductal grey, ventral tegmental area and substantia nigra pars compacta, superior and inferior colliculi, interpeduncular nuclei, locus ceruleus, parabrachial nuclei, median raphe, nucleus of the solitary tract, spinal cord (dorsal root ganglia and layers I and II).
Species:  Rat
Technique:  in situ hybridisation.
References:  119
Tissue Distribution Comments
μ opioid receptors are widely distributed with dense labelling throughout the fore, mid and hindbrain regions in the CNS. Quantitatively, the μ receptor is the most highly expressed of all the opioid receptors. Although the early studies used non-selective ligands such as [3H]dihydromorphine, characterisation of the distribution of the μ opioid receptor has been aided by the availability of [3H]DAMGO, a highly selective opioid agonist that has been the ligand of choice for labelling μ opioid receptors for over 20 years. Immunohistochemistry has largely confirmed receptor autoradiography.
For a review of μ opioid receptor expression in the rat see [71].

Expression Datasets

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays
Measurement of intracellular cAMP levels in SH-SY5Y cells endogenously expressing the μ receptor.
Species:  Human
Tissue:  SH-SY5Y cells.
Response measured:  Inhibition of cAMP accumulation.
References:  140
Measurement of [35S]GTPγS binding.
Species:  Rat
Tissue:  Brain slices.
Response measured:  [35S]GTPγS binding.
References:  111
Physiological Functions
Constriction of the pupil.
Species:  Human
Tissue:  Pupil.
References:  89
DAMGO increases the conductance of an inwardly rectifying potassium conductance and hyperpolarises locus coeruleus neurons.
Species:  Rat
Tissue:  Brain.
References:  94
μ receptor agonsts reduce bith early (GABAA receptor-mediated) and late (GABAB receptor-mediated) inhibitory postsynaptic currents in the dentate gyrus of hippocampal slices.
Species:  Rat
Tissue:  Hippocampal slices.
References:  136
Morphine inhibits N- and P/Q-type Ca2+ channels in the nucleus traxtus solitarius of the rat.
Species:  Rat
Tissue:  Brain.
References:  104
Morphine is responsible for modulating the Ca2+ currents in the mouse periaqueductal grey neurons.
Species:  Mouse
Tissue:  Periaqueductal grey neurons.
References:  27
Morphine inhibits interpheron (IFN)-γ promotor activity in activated mouse T cells, which is mediated through two distinct cAMP-dependent pathways, the NF-κB signalling pathway and the ERK1/2, p38 MAPK, AP-1/NFAT pathway.
Species:  Mouse
Tissue:  T cells.
References:  132
Body temperature regulation:
μ receptor activation induces hypothermia, blocked by selective μ receptor antagonists. The effect is centrally mediated, involving both oxidative metabolism and heat exchange.
Species:  Rat
Tissue:  In vivo.
References:  47
Physiological Consequences of Altering Gene Expression
Analgesia:
Untreated μ receptor knockout mice display shorter latencies on tail flick and hot plate tests for spinal and supraspinal nociceptive responses than wild-type mice, which support the role for endogenous opioid-peptide interactions with the μ receptor in normal nociceptive processing. Interestingly, analgesia produced by the δ opioid receptor agonist [D-Pen2,D-Pen5]enkephalin (DPDPE) in hot plate and tail flick tests is dramatically reduced in μ opioid receptor knockout mice in a gene-dose-dependent fashion, suggesting that DPDPE may require μ opioid receptor occupancies for full efficacy.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  66,75,107,113-114
Analgesia:
Loss of μ opioid receptors prevents the plasma membrane translocation of δ opioid receptors in the dorsal horn of the spinal cord caused by chronic inflammatory pain induced by intraplantar injection of Freund's adjuvant.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  85-86
Addictions; drug-induced reinforcement:
Opioid self-administration is abolished in μ receptor knockout mice. On the contrary, morphine is aversive in the μ opioid deficient mice by interaction with κ opioid receptors. In addition, μ opioid receptors may play a role in mediating various addictive agents such as ethanol, cocaine, nicotine and cannabinoid. Ethanol consumption is decreased in μ opioid knockout mice, and the animals exhibit less ethanol reward in a conditioned place preference paradigm.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  7-8,11,28,40,44-45,50
Addictions; locomotor activity:
Cocaine-induced locomotor activity but not sensitisation is abolished in μ receptor knockout mice, while wild-type and heterozygous μ receptor mice display reduced cocaine conditioned place-preference, confirming a central role of μ receptors in drug reward but opposing effects in locomotor sensitisation.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  138
Emotional responsivity:
μ opioid receptors may play a role in the modification of emotional responses to novelty, anxiety and depression. μ receptor knockout mice show less anxiety in the elevated plus maze and emergence tests, reduced response to novel stimuli in the novelty test and less depressive-like behaviour in the forced swim test.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  34
Attachment behaviour:
Pups of μ receptor knockout mice emit fewer ultrasonic vocalisations when removed from their mothers. It indicates a role for μ opioid receptors in diseases characterised by deficits in attachment behaviour, such as autism or reactive attachment disorder.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  83
Modulation of neurotransmitter systems, dopamine:
Administration of apomorphine increases the locomotor activity of μ receptor knockout mice more than wild-type mice, which may be related to the increased binding sites of the dopamine D2 receptor in the caudate putamen of receptor deficient mice. A tonically active μ opioid system modulates the basal dopamine neurotransmission in the nucleus accumbens (NAc). Microdialysis studies have revealed significant decreases in the dopamine fraction in μ opioid receptor knckout mice. μ opioid receptor knockout mice show diminished food-anticipatory activity which is dependent on μ-regulated dopaminergic activity.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  19,122
Modulation of neurotransmitter systems, acetylcholine:
Muscarinic M1 receptor mRNA and protein levels are reduced in various bran regions when compared to the wild-type. In μ opioid receptor deficient mice an up-regulation of acetylcholinesterase activity and compensatory down-regulation of M2 muscarinic receptors in the striatal caudate putamen and nucleus accumbens have been reported, which can be associated with the enhanced tremors after administration of acetylcholinesterase inhibitors.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  121
Modulation of neurotransmitter systems, glutamate, somatostatin:
An increase in glutamate and somatostatin binding was observed in μ receptor knockout mice, which may contribute to the enhanced excitability in these mice, showing an accelerated kindling development induced by the convulsant drug pentylenetetrazol.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  83
Learning and memory:
Several studies have demonstrated that the loss of μ opioid receptors decreases LTP in the dentate gyrus of the hippocampus, suggesting the possibility that the lack of μ opioid receptors may acccompany a change in learning and memory. μ opioid receptor knockout mice show a significant spatial memory impairment compared to wild-type in the Morris water maze. They also exhibit an impairment in the ultimate level of spatial learning, suggesting that the μ opioid receptor may play a positive role in learning and memory by increasing LTP in CA3 neurons. On the other hand, the learning deficit induced in pentylenetetrazol kindling id absent in μ opioid receptor knockout mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  51-52,76
Immune responses:
In μ receptor knockout mice chronic morphine administration cannot induce lymphoid organ atrophy, nor diminish the ratio of CD4+ CD8+ cells in the thymus nor reduce natural killer activity. Morphine modulation of macrophage phagocytosis and macrophage secretion of TNFα is not observed in μ receptor knockout animals. In contrast, morphine reduction of splenic and thymic cell number and mitogen-induced proliferation are unaffected, as is morphine inhibition of Il-1 and Il-6 secretion by macrophages. Morphine treatment promotes T(H2) differentiation through a μ opioid dependent mechanism. Developing T cells are responsive to the chemotactic effect of μ opioid agonists, an effect not seen in μ opioid knockout mice. Deficiency of μ receptor exacerbates experimental colitis whereas administration of the μ receptor agonist DAMGO reduces inflammation in wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  37,79,98,105-106
Other physiological functions:
Sexual function in male homozygotes is affected, as shown by reducing mating activity and a decrease in sperm count and motility. Morphine-induced inhibition of gastrointestinal transit is abolished in μ receptor knockout mice, and basal GI motility is lower as compared to heterozygous and wild-type animals. μ opioid receptor knockout mice develop insulin resistance more rapidly than wild-type mice indicating a role for μ in controlling insulin resistance.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  22,120
Phenotypes, Alleles and Disease Models Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Oprm1tm1Jlw Oprm1tm1Jlw/Oprm1tm1Jlw
involves: 129P2/OlaHsd
MGI:97441  MP:0009748 abnormal behavioral response to addictive substance PMID: 18207746 
Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1tm1Lyu
involves: Black Swiss
MGI:97441  MP:0009278 abnormal bone marrow cell physiology PMID: 9126934 
Oprm1+|Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1+
involves: Black Swiss
MGI:97441  MP:0009278 abnormal bone marrow cell physiology PMID: 9126934 
Oprm1tm1Loh Oprm1tm1Loh/Oprm1tm1Loh
involves: 129P2/OlaHsd * C57BL/6 * DBA/2
MGI:97441  MP:0000188 abnormal circulating glucose level PMID: 16505249 
Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1tm1Lyu
involves: Black Swiss
MGI:97441  MP:0006410 abnormal common myeloid progenitor cell morphology PMID: 9126934 
Oprm1tm1Loh Oprm1tm1Loh/Oprm1tm1Loh
involves: 129P2/OlaHsd * BALB/c * C57BL/6
MGI:97441  MP:0002912 abnormal excitatory postsynaptic potential PMID: 10727705 
Oprm1tm1Yxp Oprm1tm1Yxp/Oprm1tm1Yxp
involves: 129/Sv * C57BL/6
MGI:97441  MP:0006001 abnormal intestinal transit time PMID: 19273844 
Oprm1tm1Jep Oprm1tm1Jep/Oprm1tm1Jep
B6.129S-Oprm1
MGI:97441  MP:0003959 abnormal lean body mass PMID: 19221053 
Oprm1tm1Loh Oprm1tm1Loh/Oprm1tm1Loh
involves: 129P2/OlaHsd * BALB/cJ * C57BL/6J
MGI:97441  MP:0003633 abnormal nervous system physiology PMID: 15893889 
Oprm1tm1Jep Oprm1tm1Jep/Oprm1tm1Jep
B6.129S-Oprm1
MGI:97441  MP:0002803 abnormal operant conditional behavior PMID: 15355329 
Oprm1+|Oprm1tm1Jep Oprm1tm1Jep/Oprm1+
B6.129S-Oprm1
MGI:97441  MP:0002803 abnormal operant conditional behavior PMID: 15355329 
Oprm1tm1Kff Oprm1tm1Kff/Oprm1tm1Kff
129S2/SvPas
MGI:97441  MP:0001970 abnormal pain threshold PMID: 10835636  8893006 
Oprm1tm1Uhl Oprm1tm1Uhl/Oprm1tm1Uhl
involves: 129S7/SvEvBrd * C57BL/6J
MGI:97441  MP:0001970 abnormal pain threshold PMID: 9037090 
Oprd1tm1Jep|Oprm1tm1Jep Oprd1tm1Jep/Oprd1tm1Jep,Oprm1tm1Jep/Oprm1tm1Jep,Oprm1tm1Jep/Oprm1tm1Jep
involves: 129S/SvEv * 129S2/SvPas
MGI:97438  MGI:97441  MP:0008872 abnormal physiological response to xenobiotic PMID: 17544222 
Oprm1tm1Loh Oprm1tm1Loh/Oprm1tm1Loh
involves: 129P2/OlaHsd
MGI:97441  MP:0001463 abnormal spatial learning PMID: 14499482 
Oprm1tm2.1Loh Oprm1tm2.1Loh/Oprm1tm2.1Loh
Not Specified
MGI:97441  MP:0001968 abnormal touch/ nociception PMID: 12525693 
Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1tm1Lyu
involves: Black Swiss
MGI:97441  MP:0002675 asthenozoospermia PMID: 9126934 
Oprm1tm1Kff Oprm1tm1Kff/Oprm1tm1Kff
129S2/SvPas
MGI:97441  MP:0009776 decreased behavioral withdrawal response PMID: 10835636 
Oprm1tm1Loh Oprm1tm1Loh/Oprm1tm1Loh
involves: 129P2/OlaHsd
MGI:97441  MP:0001982 decreased chemically-elicited antinociception PMID: 9555078 
Oprm1+|Oprm1tm1Loh Oprm1tm1Loh/Oprm1+
involves: 129P2/OlaHsd
MGI:97441  MP:0001982 decreased chemically-elicited antinociception PMID: 9555078 
Oprm1tm1Yxp Oprm1tm1Yxp/Oprm1tm1Yxp
involves: 129/Sv * C57BL/6
MGI:97441  MP:0001982 decreased chemically-elicited antinociception PMID: 19273844 
Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1tm1Lyu
involves: Black Swiss
MGI:97441  MP:0001982 decreased chemically-elicited antinociception PMID: 9126934 
Oprm1tm1Jabl Oprm1tm1Jabl/Oprm1tm1Jabl
C57BL/6-Oprm1
MGI:97441  MP:0001982 decreased chemically-elicited antinociception PMID: 19528658 
Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1tm1Lyu
involves: Black Swiss
MGI:97441  MP:0001935 decreased litter size PMID: 9126934 
Oprm1+|Oprm1tm1Uhl Oprm1tm1Uhl/Oprm1+
either: B6.129S7-Oprm1 or (involves: 129S7/SvEvBrd)
MGI:97441  MP:0008874 decreased physiological sensitivity to xenobiotic PMID: 11377918 
Oprm1tm1Uhl Oprm1tm1Uhl/Oprm1tm1Uhl
involves: 129S7/SvEvBrd * C57BL/6J
MGI:97441  MP:0009767 decreased sensitivity to xenobiotic induced morbidity/mortality PMID: 11377918 
Oprm1+|Oprm1tm1Uhl Oprm1tm1Uhl/Oprm1+
either: B6.129S7-Oprm1 or (involves: 129S7/SvEvBrd)
MGI:97441  MP:0009767 decreased sensitivity to xenobiotic induced morbidity/mortality PMID: 11377918 
Oprm1tm1Loh Oprm1tm1Loh/Oprm1tm1Loh
involves: 129P2/OlaHsd
MGI:97441  MP:0009767 decreased sensitivity to xenobiotic induced morbidity/mortality PMID: 9555078 
Oprm1+|Oprm1tm1Loh Oprm1tm1Loh/Oprm1+
involves: 129P2/OlaHsd
MGI:97441  MP:0009767 decreased sensitivity to xenobiotic induced morbidity/mortality PMID: 9555078 
Oprm1tm1Uhl Oprm1tm1Uhl/Oprm1tm1Uhl
involves: 129S7/SvEvBrd * C57BL/6J
MGI:97441  MP:0003998 decreased thermal nociceptive threshold PMID: 9037090 
Oprm1tm1Jabl Oprm1tm1Jabl/Oprm1tm1Jabl
C57BL/6-Oprm1
MGI:97441  MP:0003998 decreased thermal nociceptive threshold PMID: 19528658 
Oprm1tm1Jep Oprm1tm1Jep/Oprm1tm1Jep
B6.129S-Oprm1
MGI:97441  MP:0009749 enhanced behavioral response to addictive substance PMID: 15355329 
Oprm1+|Oprm1tm1Jep Oprm1tm1Jep/Oprm1+
B6.129S-Oprm1
MGI:97441  MP:0009749 enhanced behavioral response to addictive substance PMID: 15355329 
Oprm1tm1Jep Oprm1tm1Jep/Oprm1tm1Jep
involves: 129S/SvEv
MGI:97441  MP:0009779 enhanced behavioral response to anesthetic PMID: 11032994 
Oprm1+|Oprm1tm1Jep Oprm1tm1Jep/Oprm1+
involves: 129S/SvEv
MGI:97441  MP:0009779 enhanced behavioral response to anesthetic PMID: 11032994 
Oprm1tm1Loh Oprm1tm1Loh/Oprm1tm1Loh
involves: 129P2/OlaHsd
MGI:97441  MP:0009754 enhanced behavioral response to cocaine PMID: 12781916 
Oprm1+|Oprm1tm1Uhl Oprm1tm1Uhl/Oprm1+
either: B6.129S7-Oprm1 or (involves: 129S7/SvEvBrd)
MGI:97441  MP:0009713 enhanced conditioned place preference behavior PMID: 11377918 
Oprm1tm1Jep Oprm1tm1Jep/Oprm1tm1Jep
B6.129S-Oprm1
MGI:97441  MP:0009171 enlarged pancreatic islets PMID: 19221053 
Oprm1tm1Kff Oprm1tm1Kff/Oprm1tm1Kff
129S2/SvPas
MGI:97441  MP:0001402 hypoactivity PMID: 8893006 
Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1tm1Lyu
involves: Black Swiss
MGI:97441  MP:0001402 hypoactivity PMID: 9126934 
Oprm1+|Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1+
involves: Black Swiss
MGI:97441  MP:0001402 hypoactivity PMID: 9126934 
Oprm1tm1Jep Oprm1tm1Jep/Oprm1tm1Jep
B6.129S-Oprm1
MGI:97441  MP:0002578 impaired ability to fire action potentials PMID: 15926936 
Oprm1tm1Jep Oprm1tm1Jep/Oprm1tm1Jep
involves: 129S/SvEv
MGI:97441  MP:0009778 impaired behavioral response to anesthetic PMID: 10195199  11032994 
Oprm1+|Oprm1tm1Jep Oprm1tm1Jep/Oprm1+
involves: 129S/SvEv
MGI:97441  MP:0009778 impaired behavioral response to anesthetic PMID: 10195199  11032994 
Oprm1tm1Kff Oprm1tm1Kff/Oprm1tm1Kff
involves: 129S2/SvPas
MGI:97441  MP:0009778 impaired behavioral response to anesthetic PMID: 10195199 
Oprd1tm1Jep|Oprm1tm1Jep Oprd1tm1Jep/Oprd1tm1Jep,Oprm1tm1Jep/Oprm1tm1Jep,Oprm1tm1Jep/Oprm1tm1Jep
involves: 129S/SvEv * 129S2/SvPas
MGI:97438  MGI:97441  MP:0009778 impaired behavioral response to anesthetic PMID: 17544222 
Oprm1tm1Kff Oprm1tm1Kff/Oprm1tm1Kff
129S2/SvPas
MGI:97441  MP:0009757 impaired behavioral response to morphine PMID: 8893006 
Oprm1tm1Uhl Oprm1tm1Uhl/Oprm1tm1Uhl
involves: 129S7/SvEvBrd * C57BL/6J
MGI:97441  MP:0009757 impaired behavioral response to morphine PMID: 11377918 
Oprm1tm1Loh Oprm1tm1Loh/Oprm1tm1Loh
involves: 129P2/OlaHsd
MGI:97441  MP:0009757 impaired behavioral response to morphine PMID: 12781916  9555078 
Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1tm1Lyu
involves: Black Swiss
MGI:97441  MP:0009757 impaired behavioral response to morphine PMID: 9126934 
Oprm1+|Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1+
involves: Black Swiss
MGI:97441  MP:0009757 impaired behavioral response to morphine PMID: 9126934 
Oprm1tm1Jabl Oprm1tm1Jabl/Oprm1tm1Jabl
C57BL/6-Oprm1
MGI:97441  MP:0009757 impaired behavioral response to morphine PMID: 19528658 
Oprm1tm1Jep Oprm1tm1Jep/Oprm1tm1Jep
involves: 129S/SvEv
MGI:97441  MP:0009757 impaired behavioral response to morphine PMID: 10195199  11032994 
Oprm1+|Oprm1tm1Jep Oprm1tm1Jep/Oprm1+
involves: 129S/SvEv
MGI:97441  MP:0009757 impaired behavioral response to morphine PMID: 10195199  11032994 
Oprm1tm1Kff Oprm1tm1Kff/Oprm1tm1Kff
involves: 129S2/SvPas
MGI:97441  MP:0009757 impaired behavioral response to morphine PMID: 10195199 
Oprd1tm1Jep|Oprm1tm1Jep Oprd1tm1Jep/Oprd1tm1Jep,Oprm1tm1Jep/Oprm1tm1Jep,Oprm1tm1Jep/Oprm1tm1Jep
involves: 129S/SvEv * 129S2/SvPas
MGI:97438  MGI:97441  MP:0009757 impaired behavioral response to morphine PMID: 17544222 
Oprm1tm1Jabl Oprm1tm1Jabl/Oprm1tm1Jabl
C57BL/6-Oprm1
MGI:97441  MP:0009712 impaired conditioned place preference behavior PMID: 19528658 
Oprm1tm1Jep Oprm1tm1Jep/Oprm1tm1Jep
B6.129S-Oprm1
MGI:97441  MP:0005292 improved glucose tolerance PMID: 19221053 
Oprm1tm1Jep Oprm1tm1Jep/Oprm1tm1Jep
B6.129S-Oprm1
MGI:97441  MP:0001260 increased body weight PMID: 19221053 
Oprm1tm1Jlw Oprm1tm1Jlw/Oprm1tm1Jlw
involves: 129P2/OlaHsd
MGI:97441  MP:0001981 increased chemically-elicited antinociception PMID: 18207746 
Oprm1tm1Jep Oprm1tm1Jep/Oprm1tm1Jep
B6.129S-Oprm1
MGI:97441  MP:0002079 increased circulating insulin level PMID: 19221053 
Oprm1tm1Kff Oprm1tm1Kff/Oprm1tm1Kff
129S2/SvPas
MGI:97441  MP:0003063 increased coping response PMID: 10835636 
Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1tm1Lyu
involves: Black Swiss
MGI:97441  MP:0003135 increased erythroid progenitor cell number PMID: 9126934 
Oprm1tm1Jep Oprm1tm1Jep/Oprm1tm1Jep
B6.129S-Oprm1
MGI:97441  MP:0003058 increased insulin secretion PMID: 19221053 
Oprm1tm1Jep Oprm1tm1Jep/Oprm1tm1Jep
B6.129S-Oprm1
MGI:97441  MP:0009108 increased pancreas weight PMID: 19221053 
Oprm1tm1Jep Oprm1tm1Jep/Oprm1tm1Jep
B6.129S-Oprm1
MGI:97441  MP:0005458 increased percent body fat PMID: 19221053 
Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1tm1Lyu
involves: Black Swiss
MGI:97441  MP:0009336 increased splenocyte proliferation PMID: 9126934 
Oprm1+|Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1+
involves: Black Swiss
MGI:97441  MP:0009336 increased splenocyte proliferation PMID: 9126934 
Oprm1tm1Jep Oprm1tm1Jep/Oprm1tm1Jep
B6.129S-Oprm1
MGI:97441  MP:0010024 increased total body fat amount PMID: 19221053 
Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1tm1Lyu
involves: Black Swiss
MGI:97441  MP:0002574 increased vertical activity PMID: 9126934 
Oprm1+|Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1+
involves: Black Swiss
MGI:97441  MP:0002574 increased vertical activity PMID: 9126934 
Oprm1tm1Jep Oprm1tm1Jep/Oprm1tm1Jep
B6.129S-Oprm1
MGI:97441  MP:0008911 induced hyperactivity PMID: 15355329 
Oprm1+|Oprm1tm1Jep Oprm1tm1Jep/Oprm1+
B6.129S-Oprm1
MGI:97441  MP:0008911 induced hyperactivity PMID: 15355329 
Oprm1tm2Loh Oprm1tm2Loh/Oprm1tm2Loh
Not Specified
MGI:97441  MP:0002169 no abnormal phenotype detected PMID: 12525693 
Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1tm1Lyu
involves: Black Swiss
MGI:97441  MP:0002687 oligozoospermia PMID: 9126934 
Oprm1tm1Loh Oprm1tm1Loh/Oprm1tm1Loh
involves: 129P2/OlaHsd * BALB/c * C57BL/6
MGI:97441  MP:0001473 reduced long term potentiation PMID: 10727705 
Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1tm1Lyu
involves: Black Swiss
MGI:97441  MP:0001922 reduced male fertility PMID: 9126934 
Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1tm1Lyu
involves: Black Swiss
MGI:97441  MP:0001380 reduced male mating frequency PMID: 9126934 
Oprm1+|Oprm1tm1Lyu Oprm1tm1Lyu/Oprm1+
involves: Black Swiss
MGI:97441  MP:0001380 reduced male mating frequency PMID: 9126934 
Biologically Significant Variants
Type:  Splice variants.
Species:  Mouse
Description:  Several splice variant forms of the μ receptor (formerly MOR-1) have been identified. These variant forms were designated MOR-1A through MOR-1X; some of the variants express truncated forms of the receptor. The B, C and D variants differ in the amino acid composition at the C-terminus. The distribution of the protein expressed from the B, C and D variant forms has been studied by immunohistochemistry in the rat brain. They show a different distribution in the brain and spinal cord. When compared to the μ receptor, MOR-1D is deferentially desensitised in response to opioid agonists.
References:  1-3,13,57,59,61,78,92,95,108-109,124,146
Type:  Single nucleotide polymorphism.
Species:  Human
Description:  An Asn40 -> Asp polymorphism has been found in high abundance in the caucasian and asian population. There are studies showing functional differences of the variant to wild-type receptor in vitro and in vivo. In addition, there are several reports showing association of this polymorphism with addiction and idiopathic epilepsy.
References:  9,14,60,67,77
Type:  Single nucleotide polymorphism.
Species:  Human
Description:  A rare Ser268 -> Pro polymorphism has been identified in the human receptor gene. The variant receptor possesses a marked reduction in coupling efficiency and is less desensitised upon agonist exposure.
References:  58
Biologically Significant Variant Comments
There are many additional polymorphisms of the μ receptor which are either without function or their functional significance is presently unknown.
Available Assays
DiscoveRx PathHunter® CHO-K1 OPRM1 β-Arrestin Cell Line (Cat no. 93-0213C2)
PathHunter® eXpress OPRM1 CHO-K1 β-Arrestin GPCR Assay (Cat no. 93-0213E2CP0M)
PathHunter® eXpress OPRM1 U2OS β-Arrestin GPCR Assay (Cat no. 93-0213E3CP0M)
PathHunter® eXpress OPRM1 U2OS β-Arrestin-1 GPCR Assay (Cat no. 93-0878E3CP5M)
PathHunter® U2OS OPRM1 β-Arrestin Cell Line (Cat no. 93-0213C3)
PathHunter® U2OS OPRM1 β-Arrestin-1 Cell Line (Cat no. 93-0878C3)
more info

REFERENCES

1. Abbadie C, Pan YX, Pasternak GW. (2000) Differential distribution in rat brain of mu opioid receptor carboxy terminal splice variants MOR-1C-like and MOR-1-like immunoreactivity: evidence for region-specific processing. J Comp Neurol419: 244-256. [PMID:10723002]

2. Abbadie C, Pan YX, Pasternak GW. (2004) Immunohistochemical study of the expression of exon11-containing mu opioid receptor variants in mouse brain. Neuroscience127: 419-430. [PMID:15262332]

3. Abbadie C, Pasternak GW. (2001) Differential in vivo internalization of MOR-1 and MOR-1C by morphine. Neuroreport12: 3069-3072. [PMID:11568638]

4. Arvidsson U, Riedl M, Chakrabarti S, Lee JH, Nakano AH, Dado RJ, Loh HH, Law PY, Wessendorf MW, Elde R. (1995) Distribution and targeting of a mu-opioid receptor (MOR1) in brain and spinal cord. J Neurosci15: 3328-3341. [PMID:7751913]

5. Avidor-Reiss T, Nevo I, Saya D, Bayewitch M, Vogel Z. (1997) Opiate-induced adenylyl cyclase superactivation is isozyme-specific. J Biol Chem272: 5040-5047. [PMID:9030567]

6. Bagnol D, Mansour A, Akil H, Watson SJ. (1997) Cellular localization and distribution of the cloned mu and kappa opioid receptors in rat gastrointestinal tract. Neuroscience81: 579-591. [PMID:9300443]

7. Becker A, Grecksch G, Brödemann R, Kraus J, Peters B, Schroeder H, Thiemann W, Loh HH, Höllt V. (2000) Morphine self-administration in mu-opioid receptor-deficient mice. Naunyn Schmiedebergs Arch Pharmacol361: 584-589. [PMID:10882032]

8. Becker A, Grecksch G, Kraus J, Loh HH, Schroeder H, Höllt V. (2002) Rewarding effects of ethanol and cocaine in mu opioid receptor-deficient mice. Naunyn Schmiedebergs Arch Pharmacol365: 296-302. [PMID:11919654]

9. Befort K, Filliol D, Decaillot FM, Gaveriaux-Ruff C, Hoehe MR, Kieffer BL. (2001) A single nucleotide polymorphic mutation in the human mu-opioid receptor severely impairs receptor signaling. J Biol Chem276: 3130-3137. [PMID:11067846]

10. Belcheva MM, Szùcs M, Wang D, Sadee W, Coscia CJ. (2001) mu-Opioid receptor-mediated ERK activation involves calmodulin-dependent epidermal growth factor receptor transactivation. J Biol Chem276: 33847-33853. [PMID:11457825]

11. Berrendero F, Kieffer BL, Maldonado R. (2002) Attenuation of nicotine-induced antinociception, rewarding effects, and dependence in mu-opioid receptor knock-out mice. J Neurosci22: 10935-10940. [PMID:12486188]

12. Besse D, Lombard MC, Besson JM. (1991) Autoradiographic distribution of mu, delta and kappa opioid binding sites in the superficial dorsal horn, over the rostrocaudal axis of the rat spinal cord. Brain Res548: 287-291. [PMID:1651143]

13. Bolan EA, Pan YX, Pasternak GW. (2004) Functional analysis of MOR-1 splice variants of the mouse mu opioid receptor gene Oprm. Synapse51: 11-18. [PMID:14579421]

14. Bond C, LaForge KS, Tian M, Melia D, Zhang S, Borg L, Gong J, Schluger J, Strong JA, Leal SM, Tischfield JA, Kreek MJ, Yu L. (1998) Single-nucleotide polymorphism in the human mu opioid receptor gene alters beta-endorphin binding and activity: possible implications for opiate addiction. Proc Natl Acad Sci U S A95: 9608-9613. [PMID:9689128]

15. Bourinet E, Soong TW, Stea A, Snutch TP. (1996) Determinants of the G protein-dependent opioid modulation of neuronal calcium channels. Proc Natl Acad Sci U S A93: 1486-1491. [PMID:8643659]

16. Carter BD, Medzihradsky F. (1993) Go mediates the coupling of the mu opioid receptor to adenylyl cyclase in cloned neural cells and brain. Proc Natl Acad Sci U S A90: 4062-4066. [PMID:8097884]

17. Chan JS, Chiu TT, Wong YH. (1995) Activation of type II adenylyl cyclase by the cloned mu-opioid receptor: coupling to multiple G proteins. J Neurochem65: 2682-2689. [PMID:7595566]

18. Chang KJ, Wei ET, Killian A, Chang JK. (1983) Potent morphiceptin analogs: structure activity relationships and morphine-like activities. J. Pharmacol. Exp. Ther.227 (2): 403-8. [PMID:6313901]

19. Chefer VI, Kieffer BL, Shippenberg TS. (2003) Basal and morphine-evoked dopaminergic neurotransmission in the nucleus accumbens of MOR- and DOR-knockout mice. Eur J Neurosci18: 1915-1922. [PMID:14622224]

20. Chen Y, Mestek A, Liu J, Hurley JA, Yu L. (1993) Molecular cloning and expression of a mu-opioid receptor from rat brain. Mol. Pharmacol.44: 8-12. [PMID:8393525]

21. Chen Z, Davies E, Miller WS, Shan S, Valenzano KJ, Kyle DJ. (2004) Design and synthesis of 4-phenyl piperidine compounds targeting the mu receptor. Bioorg. Med. Chem. Lett.14 (21): 5275-9. [PMID:15454210]

22. Cheng JT, Liu IM, Hsu CF. (2003) Rapid induction of insulin resistance in opioid mu-receptor knock-out mice. Neurosci Lett339: 139-142. [PMID:12614914]

23. Cheng PY, Liu-Chen LY, Pickel VM. (1997) Dual ultrastructural immunocytochemical labeling of mu and delta opioid receptors in the superficial layers of the rat cervical spinal cord. Brain Res778: 367-380. [PMID:9459554]

24. Cheng PY, Moriwaki A, Wang JB, Uhl GR, Pickel VM. (1996) Ultrastructural localization of mu-opioid receptors in the superficial layers of the rat cervical spinal cord: extrasynaptic localization and proximity to Leu5-enkephalin. Brain Res731: 141-154. [PMID:8883864]

25. Chieng B, Connor M, Christie MJ. (1996) The mu-opioid receptor antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-HN2 (CTOP) [but not D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-HN2 (CTAP)] produces a nonopioid receptor-mediated increase in K+conductance of rat locus coeruleus neurons. Mol. Pharmacol.50: 650-655. [PMID:8794906]

26. Chuang TK, Killam KF, Chuang LF, Kung HF, Sheng WS, Chao CC, Yu L, Chuang RY. (1995) Mu opioid receptor gene expression in immune cells. Biochem Biophys Res Commun216: 922-930. [PMID:7488213]

27. Connor M, Schuller A, Pintar JE, Christie MJ. (1999) Mu-opioid receptor modulation of calcium channel current in periaqueductal grey neurons from C57B16/J mice and mutant mice lacking MOR-1. Br J Pharmacol126: 1553-1558. [PMID:10323586]

28. Contarino A, Picetti R, Matthes HW, Koob GF, Kieffer BL, Gold LH. (2002) Lack of reward and locomotor stimulation induced by heroin in mu-opioid receptor-deficient mice. Eur J Pharmacol446: 103-109. [PMID:12098591]

29. Delfs JM, Kong H, Mestek A, Chen Y, Yu L, Reisine T, Chesselet MF. (1994) Expression of mu opioid receptor mRNA in rat brain: an in situ hybridization study at the single cell level. J Comp Neurol345: 46-68. [PMID:8089277]

30. Ding YQ, Kaneko T, Nomura S, Mizuno N. (1996) Immunohistochemical localization of mu-opioid receptors in the central nervous system of the rat. J Comp Neurol367: 375-402. [PMID:8698899]

31. Ding YQ, Nomura S, Kaneko T, Mizuno N. (1995) Co-localization of mu-opioid receptor-like and substance P-like immunoreactivities in axon terminals within the superficial layers of the medullary and spinal dorsal horns of the rat. Neurosci Lett198: 45-48. [PMID:8570093]

32. Ding YQ, Nomura S, Kaneko T, Mizuno N. (1995) Presynaptic localization of mu-opioid receptor-like immunoreactivity in retinal axon terminals within the terminal nuclei of the accessory optic tract: a light and electron microscope study in the rat. Neurosci Lett199: 139-142. [PMID:8584243]

33. Fan XL, Zhang JS, Zhang XQ, Ma L. (2003) Chronic morphine treatment and withdrawal induce up-regulation of c-Jun N-terminal kinase 3 gene expression in rat brain. Neuroscience122: 997-1002. [PMID:14643766]

34. Filliol D, Ghozland S, Chluba J, Martin M, Matthes HW, Simonin F, Befort K, Gaveriaux-Ruff C, Dierich A, LeMeur M, Valverde O, Maldonado R, Kieffer BL. (2000) Mice deficient for delta- and mu-opioid receptors exhibit opposing alterations of emotional responses. Nat Genet25: 195-200. [PMID:10835636]

35. Fukuda K, Kato S, Mori K, Nishi M, Takeshima H. (1993) Primary structures and expression from cDNAs of rat opioid receptor delta- and mu-subtypes. FEBS Lett327: 311-314. [PMID:8394245]

36. Fukuda K, Kato S, Morikawa H, Shoda T, Mori K. (1996) Functional coupling of the delta-,and kappa-opioid receptors to mitogen-activated protein kinase and arachidonate release in Chinese hamster ovary cells. J. Neurochem.67: 1309-1316. [PMID:8752140]

37. Gaveriaux-Ruff C, Matthes HW, Peluso J, Kieffer BL. (1998) Abolition of morphine-immunosuppression in mice lacking the mu-opioid receptor gene. Proc Natl Acad Sci U S A95: 6326-6330. [PMID:9600964]

38. George SR, Fan T, Xie Z, Tse R, Tam V, Varghese G, O'Dowd BF. (2000) Oligomerization of mu- and delta-opioid receptors. Generation of novel functional properties. J Biol Chem275: 26128-26135. [PMID:10842167]

39. George SR, Zastawny RL, Briones-Urbina R, Cheng R, Nguyen T, Heiber M, Kouvelas A, Chan AS, O'Dowd BF. (1994) Distinct distributions of mu, delta and kappa opioid receptor mRNA in rat brain. Biochem Biophys Res Commun205: 1438-1444. [PMID:7802680]

40. Ghozland S, Matthes HW, Simonin F, Filliol D, Kieffer BL, Maldonado R. (2002) Motivational effects of cannabinoids are mediated by mu-opioid and kappa-opioid receptors. J Neurosci.22: 1146-1154. [PMID:11826143]

41. Goldstein A, Naidu A. (1989) Multiple opioid receptors: ligand selectivity profiles and binding site signatures. Mol. Pharmacol.36 (2): 265-72. [PMID:2549383]

42. Gomes I, Jordan BA, Gupta A, Trapaidze N, Nagy V, Devi LA. (2000) Heterodimerization of mu and delta opioid receptors: A role in opiate synergy. J Neurosci20: RC110-RC110. [PMID:11069979]

43. Gong J, Strong JA, Zhang S, Yue X, Dehaven RN, Daubert JD, Cassel JA, Yu G, Mansson E, Yu L. (1998) Endomorphins fully activate a cloned human mu opioid receptor. FEBS Lett439: 152-156. [PMID:9849897]

44. Hall FS, Goeb M, Li XF, Sora I, Uhl GR. (2004) micro-Opioid receptor knockout mice display reduced cocaine conditioned place preference but enhanced sensitization of cocaine-induced locomotion. Brain Res Mol Brain Res121: 123-130. [PMID:14969743]

45. Hall FS, Sora I, Uhl GR. (2001) Ethanol consumption and reward are decreased in mu-opiate receptor knockout mice. Psychopharmacology (Berl)154: 43-49. [PMID:11292005]

46. Handa BK, Land AC, Lord JA, Morgan BA, Rance MJ, Smith CF. (1981) Analogues of beta-LPH61-64 possessing selective agonist activity at mu-opiate receptors. Eur. J. Pharmacol.70 (4): 531-40. [PMID:6263640]

47. Handler CM, Geller EB, Adler MW. (1992) Effect of mu-, kappa-, and delta-selective opioid agonists on thermoregulation in the rat. Pharmacol Biochem Behav43: 1209-1216. [PMID:1361992]

48. Herlitze S, Garcia DE, Mackie K, Hille B, Scheuer T, Catterall WA. (1996) Modulation of Ca2+ channels by G-protein beta gamma subunits. Nature380: 258-262. [PMID:8637576]

49. Ho MK, New DC, Wong YH. (2002) Co-expressions of different opioid receptor types differentially modulate their signaling via G(16). Neurosignals11: 115-122. [PMID:12077485]

50. Hutcheson DM, Matthes HW, Valjent E, Sánchez-Blázquez P, Rodríguez-Díaz M, Garzón J, Kieffer BL, Maldonado R. (2001) Lack of dependence and rewarding effects of deltorphin II in mu-opioid receptor-deficient mice. Eur J Neurosci13: 153-161. [PMID:11135013]

51. Jamot L, Matthes HW, Simonin F, Kieffer BL, Roder JC. (2003) Differential involvement of the mu and kappa opioid receptors in spatial learning. Genes Brain Behav2: 80-92. [PMID:12884965]

52. Jang CG, Lee SY, Yoo JH, Yan JJ, Song DK, Loh HH, Ho IK. (2003) Impaired water maze learning performance in mu-opioid receptor knockout mice. Brain Res Mol Brain Res117: 68-72. [PMID:14499482]

53. Jongkamonwiwat N, Phansuwan-Pujito P, Sarapoke P, Chetsawang B, Casalotti SO, Forge A, Dodson H, Govitrapong P. (2003) The presence of opioid receptors in rat inner ear. Hear Res181: 85-93. [PMID:12855366]

54. Kam AY, Chan AS, Wong YH. (2004) Phosphatidylinositol-3 kinase is distinctively required for mu-, but not kappa-opioid receptor-induced activation of c-Jun N-terminal kinase. J Neurochem89: 391-402. [PMID:15056283]

55. Kaneko T, Minami M, Satoh M, Mizuno N. (1995) Immunocytochemical localization of mu-opioid receptor in the rat caudate-putamen. Neurosci Lett184: 149-152. [PMID:7715834]

56. Kitchen I, Slowe SJ, Matthes HWD, Kieffer B. (1997) Quantitative autoradiographic mapping of mu, delta and kappa-opioid receptors in knockout mice lacking the mu-opioid receptor gene. Brain Res.778: 73-88. [PMID:9462879]

57. Koch T, Brandenburg LO, Schulz S, Liang Y, Klein J, Hollt V. (2003) ADP-ribosylation factor-dependent phospholipase D2 activation is required for agonist-induced mu-opioid receptor endocytosis. J Biol Chem278: 9979-9985. [PMID:12519790]

58. Koch T, Kroslak T, Averbeck M, Mayer P, Schröder H, Raulf E, Höllt V. (2000) Allelic variation S268P of the human mu-opioid receptor affects both desensitization and G protein coupling. Mol Pharmacol58: 328-334. [PMID:10908300]

59. Koch T, Schulz S, Pfeiffer M, Klutzny M, Schröder H, Kahl E, Höllt V. (2001) C-terminal splice variants of the mouse mu-opioid receptor differ in morphine-induced internalization and receptor resensitization. J Biol Chem276: 31408-31414. [PMID:11359768]

60. Kreek MJ, Bart G, Lilly C, LaForge KS, Nielsen DA. (2005) Pharmacogenetics and human molecular genetics of opiate and cocaine addictions and their treatments. Pharmacol Rev57: 1-26. [PMID:15734726]

61. Kvam TM, Baar C, Rakvåg TT, Kaasa S, Krokan HE, Skorpen F. (2004) Genetic analysis of the murine mu opioid receptor: increased complexity of Oprm gene splicing. J Mol Med82: 250-255. [PMID:14991152]

62. Le Bourdonnec B, Barker WM, Belanger S, Wiant DD, Conway-James NC, Cassel JA, O'Neill TJ, Little PJ, DeHaven RN, DeHaven-Hudkins DL et al.. (2008) Novel trans-3,4-dimethyl-4-(3-hydroxyphenyl)piperidines as mu opioid receptor antagonists with improved opioid receptor selectivity profiles. Bioorg. Med. Chem. Lett.18 (6): 2006-12. [PMID:18313920]

63. Lee JW, Joshi S, Chan JS, Wong YH. (1998) Differential coupling of mu-, delta-, and kappa-opioid receptors to G alpha16-mediated stimulation of phospholipase C. J Neurochem70: 2203-2211. [PMID:9572309]

64. Li JL, Ding YQ, Li YQ, Li JS, Nomura S, Kaneko T, Mizuno N. (1998) Immunocytochemical localization of mu-opioid receptor in primary afferent neurons containing substance P or calcitonin gene-related peptide. A light and electron microscope study in the rat. Brain Res794: 347-352. [PMID:9622672]

65. Li LY, Chang KJ. (1996) The stimulatory effect of opioids on mitogen-activated protein kinase in Chinese hamster ovary cells transfected to express mu-opioid receptors. Mol Pharmacol50: 599-602. [PMID:8794899]

66. Loh HH, Liu HC, Cavalli A, Yang W, Chen YF, Wei LN. (1998) mu Opioid receptor knockout in mice: effects on ligand-induced analgesia and morphine lethality. Brain Res Mol Brain Res54: 321-326. [PMID:9555078]

67. Lötsch J, Geisslinger G. (2005) Are mu-opioid receptor polymorphisms important for clinical opioid therapy?. Trends Mol Med11: 82-89. [PMID:15694871]

68. Majumdar S, Burgman M, Haselton N, Grinnell S, Ocampo J, Pasternak AR, Pasternak GW. (2011) Generation of novel radiolabeled opiates through site-selective iodination. Bioorg. Med. Chem. Lett.21 (13): 4001-4. [PMID:21621410]

69. Manglik A, Kruse AC, Kobilka TS, Thian FS, Mathiesen JM, Sunahara RK, Pardo L, Weis WI, Kobilka BK, Granier S. (2012) Crystal structure of the µ-opioid receptor bound to a morphinan antagonist. Nature,  [Epub ahead of print]. [PMID:22437502]

70. Mangoura D. (1997) mu-Opioids activate tyrosine kinase focal adhesion kinase and regulate cortical cytoskeleton proteins cortactin and vinculin in chick embryonic neurons. J Neurosci Res50: 391-401. [PMID:9364324]

71. Mansour A, Fox CA, Akil H, Watson SJ. (1995) Opioid-receptor mRNA expression in the rat CNS: anatomical and functional implications. Trends Neurosci18: 22-29. [PMID:7535487]

72. Mansour A, Fox CA, Burke S, Meng F, Thompson RC, Akil H, Watson SJ. (1994) Mu, delta, and kappa opioid receptor mRNA expression in the rat CNS: an in situ hybridization study. J Comp Neurol350: 412-438. [PMID:7884049]

73. Mansour A, Fox CA, Thompson RC, Akil H, Watson SJ. (1994) mu-Opioid receptor mRNA expression in the rat CNS: comparison to mu-receptor binding. Brain Res643: 245-265. [PMID:8032920]

74. Mansour A, Khachaturian H, Lewis ME, Akil H, Watson SJ. (1987) Autoradiographic differentiation of mu, delta and kappa receptors in the rat forebrain and midbrain. J. Neurosci.7: 2445-2464. [PMID:3039080]

75. Matthes HW, Maldonado R, Simonin F, Valverde O, Slowe S, Kitchen I, Befort K, Dierich A, Le Meur M, Dollé P, Tzavara E, Hanoune J, Roques BP, Kieffer BL. (1996) Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature383: 819-823. [PMID:8893006]

76. Matthies H, Schroeder H, Becker A, Loh H, Höllt V, Krug M. (2000) Lack of expression of long-term potentiation in the dentate gyrus but not in the CA1 region of the hippocampus of mu-opioid receptor-deficient mice. Neuropharmacology39: 952-960. [PMID:10727705]

77. Mayer P, Höllt V. (2005) Genetic disposition to addictive disorders--current knowledge and future perspectives. Curr Opin Pharmacol5: 4-8. [PMID:15661619]

78. Mayer P, Schulzeck S, Kraus J, Zimprich A, Höllt V. (1996) Promoter region and alternatively spliced exons of the rat mu-opioid receptor gene. J Neurochem66: 2272-2278. [PMID:8632148]

79. McCarthy L, Szabo I, Nitsche JF, Pintar JE, Rogers TJ. (2001) Expression of functional mu-opioid receptors during T cell development. J Neuroimmunol114: 173-180. [PMID:11240029]

80. Min BH, Augustin LB, Felsheim RF, Fuchs JA, Loh HH. (1994) Genomic structure and analysis of a mouseμopioid receptor gene. Proc. Natl. Acad. Sci. U.S.A.91: 9081-9085. [PMID:8090773]

81. Minami M, Onogi T, Toya T, Katao Y, Hosoi Y, Maekawa K, Katsumata S, Yabuuchi K, Satoh M. (1994) Molecular cloning and in situ hybridization histochemistry for rat mu-opioid receptor. Neurosci Res18: 315-322. [PMID:8190373]

82. Mitrovic I, Margeta-Mitrovic M, Bader S, Stoffel M, Jan LY, Basbaum AI. (2003) Contribution of GIRK2-mediated postsynaptic signaling to opiate and alpha 2-adrenergic analgesia and analgesic sex differences. Proc Natl Acad Sci U S A100: 271-276. [PMID:12496346]

83. Moles A, Kieffer BL, D'Amato FR. (2004) Deficit in attachment behaviour in mice lacking the μ opioid receptor gene. Science304: 1983-1986. [PMID:15218152]

84. Morikawa H, Fukuda K, Kato S, Mori K, Higashida H. (1995) Coupling of the cloned mu-opioid receptor with the omega-conotoxin-sensitive Ca2+ current in NG108-15 cells. J Neurochem65: 1403-1406. [PMID:7643119]

85. Morinville A, Cahill CM, Esdaile MJ, Aibak H, Collier B, Kieffer BL, Beaudet A. (2003) Regulation of delta-opioid receptor trafficking via mu-opioid receptor stimulation: evidence from mu-opioid receptor knock-out mice. J Neurosci23: 4888-4898. [PMID:12832511]

86. Morinville A, Cahill CM, Kieffer B, Collier B, Beaudet A. (2004) Mu-opioid receptor knockout prevents changes in delta-opioid receptor trafficking induced by chronic inflammatory pain. Pain109: 266-273. [PMID:15157687]

87. Moriwaki A, Wang JB, Svingos A, van Bockstaele E, Cheng P, Pickel V, Uhl GR. (1996) mu Opiate receptor immunoreactivity in rat central nervous system. Neurochem Res21: 1315-1331. [PMID:8947922]

88. Mrkusich EM, Kivell BM, Miller JH, Day DJ. (2004) Abundant expression of mu and delta opioid receptor mRNA and protein in the cerebellum of the fetal, neonatal, and adult rat. Brain Res Dev Brain Res148: 213-222. [PMID:14766199]

89. Murray RB, Adler MW, Korczyn AD. (1983) The pupillary effects of opioids. Life Sci33: 495-509. [PMID:6136886]

90. Murthy KS, Makhlouf GM. (1996) Opioid mu, delta, and kappa receptor-induced activation of phospholipase C-beta 3 and inhibition of adenylyl cyclase is mediated by Gi2 and G(o) in smooth muscle. Mol Pharmacol50: 870-877. [PMID:8863832]

91. Narita M, Imai S, Narita M, Kasukawa A, Yajima Y, Suzuki T. (2004) Increased level of neuronal phosphoinositide 3-kinase gamma by the activation of mu-opioid receptor in the mouse periaqueductal gray matter: further evidence for the implication in morphine-induced antinociception. Neuroscience124: 515-521. [PMID:14980723]

92. Narita M, Imai S, Ozaki S, Suzuki M, Narita M, Suzuki T. (2003) Reduced expression of a novel mu-opioid receptor (MOR) subtype MOR-1B in CXBK mice: implications of MOR-1B in the expression of MOR-mediated responses. Eur J Neurosci18: 3193-3198. [PMID:14686893]

93. Neumeyer JL, Zhang B, Zhang T, Sromek AW, Knapp BI, Cohen DJ, Bidlack JM. (2012) Synthesis, binding affinity, and functional in vitro activity of 3-benzylaminomorphinan and 3-benzylaminomorphine ligands at opioid receptors. J. Med. Chem.55 (8): 3878-90. [PMID:22439881]

94. North RA, Williams JT, Surprenant A, Christie MJ. (1987) Mu and delta receptors belong to a family of receptors that are coupled to potassium channels. Proc Natl Acad Sci U S A84: 5487-5491. [PMID:2440052]

95. Pan YX, Xu J, Mahurter L, Bolan E, Xu M, Pasternak GW. (2001) Generation of the mu opioid receptor (MOR-1) protein by three new splice variants of the Oprm gene. Proc Natl Acad Sci U S A98: 14084-14089. [PMID:11717463]

96. Pfeiffer M, Kirscht S, Stumm R, Koch T, Wu D, Laugsch M, Schröder H, Höllt V, Schulz S. (2003) Heterodimerization of substance P and mu-opioid receptors regulates receptor trafficking and resensitization. J Biol Chem278: 51630-51637. [PMID:14532289]

97. Phansuwan-Pujito P, Saleema L, Mukda S, Tongjaroenbuangam W, Jutapakdeegul N, Casalotti SO, Forge A, Dodson H, Govitrapong P. (2003) The opioid receptors in inner ear of different stages of postnatal rats. Hear Res184: 1-10. [PMID:14553898]

98. Philippe D, Dubuquoy L, Groux H, Brun V, Chuoï-Mariot MT, Gaveriaux-Ruff C, Colombel JF, Kieffer BL, Desreumaux P. (2003) Anti-inflammatory properties of the mu opioid receptor support its use in the treatment of colon inflammation. J Clin Invest111: 1329-1338. [PMID:12727924]

99. Piros ET, Prather PL, Law PY, Evans CJ, Hales TG. (1996) Voltage-dependent inhibition of Ca2+ channels in GH3 cells by cloned mu- and delta-opioid receptors. Mol Pharmacol50: 947-956. [PMID:8863841]

100. Piros ET, Prather PL, Loh HH, Law PY, Evans CJ, Hales TG. (1995) Ca2+ channel and adenylyl cyclase modulation by cloned mu-opioid receptors in GH3 cells. Mol Pharmacol47: 1041-1049. [PMID:7746271]

101. Poeaknapo C, Schmidt J, Brandsch M, Dräger B, Zenk MH. (2004) Endogenous formation of morphine in human cells. Proc Natl Acad Sci U S A101: 14091-14096. [PMID:15383669]

102. Poulain R, Horvath D, Bonnet B, Eckhoff C, Chapelain B, Bodinier MC, Déprez B. (2001) From hit to lead. Combining two complementary methods for focused library design. Application to mu opiate ligands. J. Med. Chem.44 (21): 3378-90. [PMID:11585443]

103. Raynor K, Kong H, Chen Y, Yasuda K, Yu L, Bell GI, Reisine T. (1994) Pharmacological characterization of the cloned kappa-, delta-, and mu-opioid receptors. Mol Pharmacol45: 330-334. [PMID:8114680]

104. Rhim H, Miller RJ. (1994) Opioid receptors modulate diverse types of calcium channels in the nucleus tractus solitarius of the rat. J Neurosci14: 7608-7615. [PMID:7996199]

105. Roy S, Balasubramanian S, Sumandeep S, Charboneau R, Wang J, Melnyk D, Beilman GJ, Vatassery R, Barke RA. (2001) Morphine directs T cells toward T(H2) differentiation. Surgery130: 304-309. [PMID:11490364]

106. Roy S, Barke RA, Loh HH. (1998) MU-opioid receptor-knockout mice: role of mu-opioid receptor in morphine mediated immune functions. Brain Res Mol Brain Res61: 190-194. [PMID:9795212]

107. Scherrer G, Befort K, Contet C, Becker J, Matifas A, Kieffer BL. (2004) The delta agonists DPDPE and deltorphin II recruit predominantly mu receptors to produce thermal analgesia: a parallel study of mu, delta and combinatorial opioid receptor knockout mice. Eur J Neurosci19: 2239-2248. [PMID:15090050]

108. Schnell SA, Wessendorf MW. (2004) Expression of MOR1C-like mu-opioid receptor mRNA in rats. J Comp Neurol473: 213-232. [PMID:15101090]

109. Schulz S, Schreff M, Koch T, Zimprich A, Gramsch C, Elde R, Höllt V. (1998) Immunolocalization of two mu-opioid receptor isoforms (MOR1 and MOR1B) in the rat central nervous system. Neuroscience82: 613-622. [PMID:9466465]

110. Sharif NA, Hughes J. (1989) Discrete mapping of brain Mu and delta opioid receptors using selective peptides: quantitative autoradiography, species differences and comparison with kappa receptors. Peptides10: 499-522. [PMID:2550910]

111. Sim LJ, Selley DE, Childers SR. (1995) In vitro autoradiography of receptor-activated G proteins in rat brain by agonist-stimulated guanylyl 5'-[γ[35S]thio]-triphosphate binding. Proc. Natl. Acad. Sci. U.S.A.92: 7242-7246. [PMID:7638174]

112. Singhal P, Kapasi A, Reddy K, Franki N. (2001) Opiates promote T cell apoptosis through JNK and caspase pathway. Adv Exp Med Biol493: 127-135. [PMID:11727758]

113. Sora I, Funada M, Uhl GR. (1997) The mu-opioid receptor is necessary for [D-Pen2,D-Pen5]enkephalin-induced analgesia. Eur J Pharmacol324: R1-R2. [PMID:9145787]

114. Sora I, Takahashi N, Funada M, Ujike H, Revay RS, Donovan DM, Miner LL, Uhl GR. (1997) Opiate receptor knockout mice define mu receptor roles in endogenous nociceptive responses and morphine-induced analgesia. Proc Natl Acad Sci U S A94: 1544-1549. [PMID:9037090]

115. Ständer S, Gunzer M, Metze D, Luger T, Steinhoff M. (2002) Localization of mu-opioid receptor 1A on sensory nerve fibers in human skin. Regul Pept110: 75-83. [PMID:12468112]

116. Svingos AL, Moriwaki A, Wang JB, Uhl GR, Pickel VM. (1996) Ultrastructural immunocytochemical localization of mu-opioid receptors in rat nucleus accumbens: extrasynaptic plasmalemmal distribution and association with Leu5-enkephalin. J Neurosci16: 4162-4173. [PMID:8753878]

117. Svingos AL, Moriwaki A, Wang JB, Uhl GR, Pickel VM. (1997) mu-Opioid receptors are localized to extrasynaptic plasma membranes of GABAergic neurons and their targets in the rat nucleus accumbens. J Neurosci17: 2585-2594. [PMID:9065518]

118. Tempel A, Zukin RS. (1987) Neuroanatomical patterns of the mu, delta, and kappa opioid receptors of rat brain as determined by quantitative in vitro autoradiography. Proc Natl Acad Sci U S A84: 4308-4312. [PMID:3035579]

119. Thompson RC, Mansour A, Akil H, Watson SJ. (1993) Cloning and pharmacological characterization of a rat mu opioid receptor. Neuron11: 903-913. [PMID:8240812]

120. Tian M, Broxmeyer HE, Fan Y, Lai Z, Zhang S, Aronica S, Cooper S, Bigsby RM, Steinmetz R, Engle SJ, Mestek A, Pollock JD, Lehman MN, Jansen HT, Ying M, Stambrook PJ, Tischfield JA, Yu L. (1997) Altered hematopoiesis, behavior, and sexual function in mu opioid receptor-deficient mice. J Exp Med185: 1517-1522. [PMID:9126934]

121. Tien LT, Fan LW, Sogawa C, Ma T, Loh HH, Ho IK. (2004) Changes in acetylcholinesterase activity and muscarinic receptor bindings in mu-opioid receptor knockout mice. Brain Res Mol Brain Res126: 38-44. [PMID:15207914]

122. Tien LT, Park Y, Fan LW, Ma T, Loh HH, Ho IK. (2003) Increased dopamine D2 receptor binding and enhanced apomorphine-induced locomotor activity in mu-opioid receptor knockout mice. Brain Res Bull61: 109-115. [PMID:12788214]

123. Toll L, Berzetei-Gurske IP, Polgar WE, Brandt SR, Adapa ID, Rodriguez L, Schwartz RW, Haggart D, O'Brien A, White A, Kennedy JM, Craymer K, Farrington L, Auh JS. (1998) Standard binding and functional assays related to medications development division testing for potential cocaine and opiate narcotic treatment medications.

NOTE: This paper is available through the website of the International Narcotics Research Conference, at http://www.inrcworld.org/links2.htm.
. NIDA Res Monogr178: 440-466. [PMID:9686407]

124. Trafton JA, Abbadie C, Marek K, Basbaum AI. (2000) Postsynaptic signaling via the [mu]-opioid receptor: responses of dorsal horn neurons to exogenous opioids and noxious stimulation. J Neurosci20: 8578-8584. [PMID:11102461]

125. Tzschentke TM, Christoph T, Kögel B, Schiene K, Hennies HH, Englberger W, Haurand M, Jahnel U, Cremers TI, Friderichs E et al.. (2007) (-)-(1R,2R)-3-(3-dimethylamino-1-ethyl-2-methyl-propyl)-phenol hydrochloride (tapentadol HCl): a novel mu-opioid receptor agonist/norepinephrine reuptake inhibitor with broad-spectrum analgesic properties. J. Pharmacol. Exp. Ther.323 (1): 265-76. [PMID:17656655]

126. Ueda H, Miyamae T, Fukushima N, Takeshima H, Fukuda K, Sasaki Y, Misu Y. (1995) Opioid mu- and kappa-receptor mediate phospholipase C activation through Gi1 in Xenopus oocytes. Brain Res Mol Brain Res32: 166-170. [PMID:7494457]

127. Van Bockstaele EJ, Colago EE, Cheng P, Moriwaki A, Uhl GR, Pickel VM. (1996) Ultrastructural evidence for prominent distribution of the mu-opioid receptor at extrasynaptic sites on noradrenergic dendrites in the rat nucleus locus coeruleus. J Neurosci16: 5037-5048. [PMID:8756434]

128. Van Bockstaele EJ, Colago EE, Moriwaki A, Uhl GR. (1996) Mu-opioid receptor is located on the plasma membrane of dendrites that receive asymmetric synapses from axon terminals containing leucine-enkephalin in the rat nucleus locus coeruleus. J Comp Neurol376: 65-74. [PMID:8946284]

129. Volpe DA, McMahon Tobin GA, Mellon RD, Katki AG, Parker RJ, Colatsky T, Kropp TJ, Verbois SL. (2011) Uniform assessment and ranking of opioid μ receptor binding constants for selected opioid drugs. Regul. Toxicol. Pharmacol.59 (3): 385-90. [PMID:21215785]

130. Wang D, Tolbert LM, Carlson KW, Sadee W. (2000) Nuclear Ca2+/calmodulin translocation activated by mu-opioid (OP3) receptor. J Neurochem74: 1418-1425. [PMID:10737597]

131. Wang H, Moriwaki A, Wang JB, Uhl GR, Pickel VM. (1997) Ultrastructural immunocytochemical localization of mu-opioid receptors in dendritic targets of dopaminergic terminals in the rat caudate-putamen nucleus. Neuroscience81: 757-771. [PMID:9316027]

132. Wang J, Barke RA, Charboneau R, Loh HH, Roy S. (2003) Morphine negatively regulates interferon-gamma promoter activity in activated murine T cells through two distinct cyclic AMP-dependent pathways. J Biol Chem278: 37622-37631. [PMID:12842891]

133. Wang JB, Imai Y, Eppler CM, Gregor P, Spivak CE, Uhl GR. (1993) mu opiate receptor: cDNA cloning and expression. Proc Natl Acad Sci U S A90: 10230-10234. [PMID:8234282]

134. Wang JB, Johnson PS, Persico AM, Hawkins AL, Griffin CA, Uhl GR. (1994) Human μ opiate receptor cDNA and genomic clones, pharmacologic characterization and chromosomal assignment. FEBS Lett.338: 217-222. [PMID:7905839]

135. Wentland MP, Lou R, Lu Q, Bu Y, Denhardt C, Jin J, Ganorkar R, VanAlstine MA, Guo C, Cohen DJ et al.. (2009) Syntheses of novel high affinity ligands for opioid receptors. Bioorg. Med. Chem. Lett.19 (8): 2289-94. [PMID:19282177]

136. Xie CW, Morrisett RA, Lewis DV. (1992) Mu opioid receptor-mediated modulation of synaptic currents in dentate granule cells of rat hippocampus. J Neurophysiol68: 1113-1120. [PMID:1359026]

137. Yeadon M, Kitchen I. (1988) Comparative binding of mu and delta selective ligands in whole brain and pons/medulla homogenates from rat: affinity profiles of fentanyl derivatives. Neuropharmacology27 (4): 345-8. [PMID:2843777]

138. Yoo JH, Yang EM, Lee SY, Loh HH, Ho IK, Jang CG. (2003) Differential effects of morphine and cocaine on locomotor activity and sensitization in mu-opioid receptor knockout mice. Neurosci Lett344: 37-40. [PMID:12781916]

139. Yoshimura M, Ikeda H, Tabakoff B. (1996) mu-Opioid receptors inhibit dopamine-stimulated activity of type V adenylyl cyclase but enhance dopamine-stimulated activity of type VII adenylyl cyclase. Mol Pharmacol50: 43-51. [PMID:8700117]

140. Yu VC, Eiger S, Duan DS, Lameh J, Sadee W. (1990) Regulation of cyclic AMP by the mu-opioid receptor in human neuroblastoma SH-SY5Y cells. J Neurochem55: 1390-1396. [PMID:1697894]

141. Yuen JW, So IY, Kam AY, Wong YH. (2004) Regulation of STAT3 by mu-opioid receptors in human neuroblastoma SH-SY5Y cells. Neuroreport15: 1431-1435. [PMID:15194868]

142. Zadina JE, Hackler L, Ge LJ, Kastin AB. (1997) A potent and selective endogenous agonist for the μ-opiate receptor. Nature386: 499-502. [PMID:9087409]

143. Zajac JM, Roques BP. (1983) Differential properties of mu and delta opiate binding sites studied with highly selective ligands. Life Sci.33 Suppl 1: 155-8. [PMID:6319853]

144. Zastawny RL, George SR, Nguyen T, Cheng R, Tsatsos J, Briones-Urbina R, O'Dowd BF. (1994) Cloning, characterization, and distribution of a mu-opioid receptor in rat brain. J Neurochem62: 2099-2105. [PMID:8189219]

145. Zhu Y, Pintar JE. (1998) Expression of opioid receptors and ligands in pregnant mouse uterus and placenta. Biol Reprod59: 925-932. [PMID:9746745]

146. Zimprich A, Simon T, Höllt V. (1995) Cloning and expression of an isoform of the rat mu opioid receptor (rMOR1B) which differs in agonist induced desensitization from rMOR1. FEBS Lett359: 142-146. [PMID:7532594]

To cite this database page, please use the following:

Anna Borsodi, Girolamo Caló, Charles Chavkin, MacDonald J. Christie, Olivier Civelli, Brian M. Cox, Lakshmi A. Devi, Christopher Evans, Graeme Henderson, Volker Höllt, Brigitte Kieffer, Ian Kitchen, Mary-Jeanne Kreek, Lee-Yuan Liu-Chen, Jean-Claude Meunier, Philip S. Portoghese, Toni S. Shippenberg, Eric J. Simon, Lawrence Toll, John R. Traynor, Hiroshi Ueda, Yung H. Wong.
Opioid receptors: μ receptor. Last modified on 11/06/2014. Accessed on 16/09/2014. IUPHAR database (IUPHAR-DB), http://www.iuphar-db.org/DATABASE/ObjectDisplayForward?objectId=319.

Contact us | Print | Back to top | Help
Copyright © 2014 IUPHAR