Nomenclature: mGlu3 receptor

Family: Metabotropic glutamate receptors

Annotation status:  image of an orange circle Annotated and awaiting review. Please contact us if you can help with reviewing. 

Contents

Gene and Protein Information
class C G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 877 7q21.1-q21.2 GRM3 glutamate receptor, metabotropic 3 6,16,23
Mouse 7 879 5 A1-h Grm3 glutamate receptor, metabotropic 3 11
Rat 7 879 4q32 Grm3 glutamate receptor, metabotropic 3 27
Previous and Unofficial Names
mGluR3
GPRC1C
mGlu3
glutamate receptor, metabotropic 3
metabotropic glutamate receptor 3
0710001G23Rik
Database Links
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
GPCRDB
GeneCards
GenitoUrinary Development Molecular Anatomy Project
HomoloGene
Human Protein Reference Database
InterPro
KEGG Gene
OMIM
PharmGKB Gene
PhosphoSitePlus
Protein Ontology (PRO)
RefSeq Nucleotide
RefSeq Protein
TreeFam
UniGene Hs.
UniProtKB
Wikipedia
Natural/Endogenous Ligands
L-glutamic acid
Comments: Other endogenous ligands include L-aspartic acid, L-SOP, NAAG and L-cysteine sulphinic acid
Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
[3H]LY341495 Rn Full agonist 7.3 pKd 24
pKd 7.3 [24]
eglumegad Hs Full agonist 8.9 pKi 8
pKi 8.9 [8]
L-glutamic acid Hs Full agonist 7.4 pKi 8
pKi 7.4 [8]
L-CCG-I Hs Full agonist 7.4 pKi 8
pKi 7.4 [8]
eglumegad Rn Full agonist 7.3 pKi 24
pKi 7.3 [24]
DCG-IV Hs Full agonist 7.2 pKi 8
pKi 7.2 [8]
DCG-IV Rn Full agonist 6.8 pKi 24
pKi 6.8 [24]
L-CCG-I Rn Full agonist 6.5 pKi 24
pKi 6.5 [24]
L-glutamic acid Rn Full agonist 6.4 pKi 24
pKi 6.4 [24]
(2R,3R)-APDC Hs Full agonist 5.3 pKi 8
pKi 5.3 [8]
LY379268 Hs Full agonist 4.8 pKi 15
pKi 4.8 [15]
(1S,3R)-ACPD Rn Full agonist 4.8 pKi 24
pKi 4.8 [24]
(1S,3R)-ACPD Hs Full agonist 4.7 pKi 8
pKi 4.7 [8]
NAAG Hs Full agonist 4.7 pKi 24
pKi 4.7 [24]
View species-specific agonist tables
Agonist Comments
Affinities listed are from displacement of antagonist ([3H]LY341495) or agonist ([3H]LY354740) for the low and high values listed, respectively, in homogenates from mGlu3-expressing recombinant cell lines. Potency in functional assays can be found in the review article [23]. To date, no ligands have shown a difference in their affinity for rat or human mGlu3 receptors. Several of the above agonists are Group II mGlu (mGlu2/3) receptor selective verses the Group I and III receptors, with the exceptions of glutamate, and (1S,3R)-ACPD. The agonist binding site for mGlu3 has been studied by homology modeling and mutagenesis [14,30].
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
[3H]LY341495 Hs Antagonist 9.1 pKd 8
pKd 9.1 [8]
LY341495 Hs Antagonist 8.9 pKi 8
pKi 8.9 [8]
MGS0039 Rn Antagonist 8.3 – 8.4 pKi 4,17
pKi 8.3 – 8.4 [4,17]
LY341495 Rn Antagonist 8.0 pKi 24
pKi 8.0 [24]
eGlu Rn Antagonist 5.4 pKi 24
pKi 5.4 [24]
(+)-MCPG Hs Antagonist 3.8 pKi 8
pKi 3.8 [8]
View species-specific antagonist tables
Antagonist Comments
Affinities listed are from displacement of antagonist ([3H]LY341495) and/or agonist ([3H]LY354740) in homogenates of mGlu3-expressing recombinant cell lines. Potency in functional assays can be found in the review article 7. To date, no ligands have shown a difference in their affinity for rat or human mGlu3 receptors.
Allosteric Modulators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
MNI-135 Rn Negative 7.5 pEC50 7
pEC50 7.5 (EC50 3.02x10-8 M) [7]
compound 3 [PMID: 21105727] Hs Positive 5.1 pEC50 22
pEC50 5.1 (EC50 8.9x10-6 M) [22]
compound 4 [PMID: 21105727] Hs Positive 4.98 pEC50 22
pEC50 4.98 (EC50 1.04x10-5 M) [22]
compound 2 [PMID: 21105727] Hs Positive 4.9 pEC50 22
pEC50 4.9 (EC50 1.34x10-5 M) [22]
Ro4491533 Rn Negative >8.0 pIC50 29
pIC50 >8.0 (IC50 <1x10-8 M) [29]
MNI-136 Rn Negative 7.7 pIC50 7
pIC50 7.7 (IC50 2.13x10-8 M) [7]
MNI-137 Rn Negative 7.7 pIC50 7
pIC50 7.7 (IC50 2.03x10-8 M) [7]
Ro4491533 Hs Negative 6.6 pIC50 3
pIC50 6.6 (IC50 2.7x10-7 M) [3]
VU0463597 Rn Negative 5.8 – 6.2 pIC50 25
pIC50 5.8 – 6.2 (IC50 6.6x10-7 – 1.5x10-6 M) [25]
View species-specific allosteric modulator tables
Allosteric Modulator Comments
MNI-135, MNI-136, and MNI-137 are also mGlu2 NAMs [7]. Compounds 2, 3 and 4 are also mGlu2 NAMs [22]. ML289/VU0463597 is >10 µM potency on rat mGlu2.
Primary Transduction Mechanisms
Transducer Effector/Response
Gi/Go family Adenylate cyclase inhibition
Potassium channel
Calcium channel
Comments:  Protein Kinase A, and L-type calcium channels
References:  31
Tissue Distribution
In the human brain mGlu3 receptors are mainly localised in neurones.
Cerebellum (on the edge of the Purkinje cell layer, probably stellate cells, Golgi cells in the granule cell layer), cerebral cortex (particularly the deep layers IV-VI), hippocampus (granule cells of the dentate gyrus, caudate-putamen, reticular area of the thalamus).
Species:  Human
Technique:  Northern blotting.
References:  13
Within the brain, the mGlu3 receptor is localized both pre- and postsynaptically. It is also often found in glia and astrocytes.
Cerebral cortex, hippocampus (dentate gyrus > strata radiatum > stratum lucidum), olfactory system (anterior olfactory nucleus, olfactory tubercle, piriform cortex, nucleus of the lateral olfactory tract), basal ganglia and other subcortical regions in the forebrain (striatum and nucleus accumbens, globus pallidus > substantia nigra pars reticulata > ventral pallidum), thalamus and epithalamus, brainstem and spinal cord, cerebellum.
Species:  Mouse
Technique:  immunocytochemistry.
References:  26
Islets of Langerhans and pancreatic alpha-cell and beta-cell lines.
Species:  Rat
Technique:  RT-PCR and immunoblot.
References:  2
Cerebral cortex and caudate putamen, granule cells of hippocampal dentate gyrus.
Species:  Rat
Technique:  in situ hybridization.
References:  28
Reticular nucleus of the thalamus, rostral olfactory structures, hippocampus.
Species:  Rat
Technique:  immunocytochemistry.
References:  19
Reticular thalamic nucleus >> mediodorsal thalamic nucleus, centromedial/centrolateral thalamic nuclei, ventromedial thalamic nucleus > other thalamic nuclei.
Species:  Rat
Technique:  in situ hybridisation.
References:  12
Dorsal cochlear nucleus.
Species:  Rat
Technique:  immunocytochemistry.
References:  20
Aanterior olfactory nucleus, cerebral neo- and mesocortical regions, lateral amygdaloid nucleus, ventral part of the basolateral amygdaloid nucleus, dorsal endopiriform nucleus, supraoptic nucleus, superficial layers of the superior colliculus, inferior colliculus, interpeduncular nucleus, superior olivary nuclei, and Golgi cells in the cerebellar cortex > striatum, nucleus accumbens, ventral pallidum, globus pallidus, entopeduncular nucleus, lateral hypothalamic area, hypothalamic paraventricular nucleus, medial habenular nucleus, anterior pretectal nucleus, Barrington's nucleus, Nucleus O, paragenual nucleus, trigeminal sensory complex, cochlear nuclei, dorsal motor nucleus of the trigeminal nerve, dorsal cap of the inferior olive, spinal dorsal horn, and lamina X of the spinal cord, stellate cells in the cerebellar cortex, neurons in the deep cerebellar nuclei.
Species:  Rat
Technique:  in situ hybridization.
References:  18
Expression Datasets

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays
Native mGlu3 receptor function has been linked to the regulation of GABA release from the rat cortical neurons in primary culture.
Species:  Rat
Tissue:  Primary culture of cortical neurons.
Response measured:  [3H]-GABA release.
References:  31
mGlu3 receptor-mediated release of Nerve Growth factor from cultured astrocytes.
Species:  Rat
Tissue:  Secondary Glial cultures from primary rat cortical astrocytes.
Response measured:  Nerve Growth Factor release.
References:  5
Measurement of cAMP levels in CHO cells transfected with the rat mGlu3 receptor.
Species:  Rat
Tissue:  CHO cells.
Response measured:  Inhibition of cAMP production.
References:  28
Measurement of cAMP levels in rat glutamate transporter (RGT) cells transfected with the mGlu3 receptor.
Species:  Human
Tissue:  RGT cells.
Response measured:  Inhibition of cAMP accumulation.
References:  10
Measurement of IP levels in HEK 293 cells transfected with the rat mGlu3 receptor and Gqi9.
Species:  Rat
Tissue:  HEK 293 cells.
Response measured:  IP accumulation.
References:  1
Physiological Functions
MGlu3 activation is thought to inhibit synaptic transmission.
Species:  Rat
Tissue:  Hippocampal slices.
References:  9
mGlu3 receptor activation modulates GABA release.
Species:  Rat
Tissue:  Primary cortical neuron culture.
References:  31
It is suggested that mGlu3 receptor activation may result in the release of nerve growth factor (NGF) from rat cultured cortical astrocytes.
Species:  Rat
Tissue:  Cortical astrocytes in culture.
References:  5
Phenotypes, Alleles and Disease Models Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Grm3tm1Ddsc Grm3tm1Ddsc/Grm3tm1Ddsc
involves: 129S1/Sv * 129X1/SvJ * CD-1
MGI:1351340  MP:0001362 abnormal anxiety-related response PMID: 15619115 
Grm3tm1Dgen Grm3tm1Dgen/Grm3tm1Dgen
involves: 129P2/OlaHsd * C57BL/6
MGI:1351340  MP:0002169 no abnormal phenotype detected
Biologically Significant Variants
Type:  Splice variants.
Species:  Human
Description:  The existence of alternatively spliced isoforms of mGlu3 has recently been reported. These are truncated forms and unequivocal expression in tissue (human brain) has been demonstrated only for GRM3Δ4, which lacks the entire transmembrane domain. Although this splice form could result in a secreted protein, immunohistochemical and fractional data showed association with the plasma membrane.
References:  21
General Comments
To date, the relative lack of mGlu3 vs. mGlu2 receptor agonists/antagonists and limited results/availability of with selective antibodies has hampered efforts to differentiate the relative roles of these two highly related receptors in the Group II mGlu receptor family.

REFERENCES

1. Brabet I, Parmentier ML, de Colle C, Bockaert J, Acher F, Pin JP. (1998) Comparative effect of L-CCG-I, DCG-IV and gamma-carboxy-L-glutamate on all cloned metabotropic glutamate receptor subtypes. Neuropharmacology.37: 1043-1051. [PMID:9833633]

2. Brice NL, Varadi A, Ashcroft SJ, Molnar E. (2002) Metabotropic glutamate and GABA(B) receptors contribute to the modulation of glucose-stimulated insulin secretion in pancreatic beta cells. Diabetologia.45: 242-252. [PMID:11935156]

3. Campo B, Kalinichev M, Lambeng N, El Yacoubi M, Royer-Urios I, Schneider M, Legrand C, Parron D, Girard F, Bessif A et al.. (2011) Characterization of an mGluR2/3 negative allosteric modulator in rodent models of depression. J. Neurogenet.25 (4): 152-66. [PMID:22091727]

4. Chaki S, Yoshikawa R, Hirota S, Shimazaki T, Maeda M, Kawashima N, Yoshimizu T, Yasuhara A, Sakagami K, Okuyama S, Nakanishi S, Nakazato A. (2004) MGS0039: a potent and selective group II metabotropic glutamate receptor antagonist with antidepressant-like activity. Neuropharmacology46: 457-467. [PMID:14975669]

5. Ciccarelli R, Di Iorio P, Bruno V, Battaglia G, D'Alimonte I, D'Onofrio M, Nicoletti F, Caciagli F. (1999) Activation of A(1) adenosine or mGlu3 metabotropic glutamate receptors enhances the release of nerve growth factor and S-100beta protein from cultured astrocytes. Glia.27: 275-281. [PMID:10457374]

6. Emile L, Mercken L, Apiou F, Pradier L, Bock M-D, Menager J, Clot J, Doble A, Blanchard J-C. (1996) Molecular cloning, functional expression, pharmacological characterization and chromosomal localization of the human metabotropic glutamate receptor type 3. Neuropharmacology35: 523-530. [PMID:8887960]

7. Hemstapat K, Da Costa H, Nong Y, Brady AE, Luo Q, Niswender CM, Tamagnan GD, Conn PJ. (2007) A novel family of potent negative allosteric modulators of group II metabotropic glutamate receptors. J. Pharmacol. Exp. Ther.322 (1): 254-64. [PMID:17416742]

8. Johnson BG, Wright RA, Arnold MB, Wheeler WJ, Ornstein PL, Schoepp DD. (1999) [3H]-LY341495 as a novel antagonist radioligand for group II metabotropic glutamate (mGlu) receptors: characterization of binding to membranes of mGlu receptor subtype expressing cells. Neuropharmacology.38: 1519- 1529. [PMID:10530814]

9. Kew JN, Pflimlin MC, Kemp JA, Mutel V. (2002) Differential regulation of synaptic transmission by mGlu2 and mGlu3 at the perforant path inputs to the dentate gyrus and CA1 revealed in mGlu2 -/- mice. Neuropharmacology43: 215-221. [PMID:12213275]

10. Kingston AE, Ornstein PL, Wright RA, Johnson BG, Mayne NG, Burnett JP, Belagaje R, Wu S, Schoepp DD. (1998) LY341495 is a nanomolar potent and selective antagonist of group II metabotropic glutamate receptors. Neuropharmacology.37: 1-12. [PMID:9680254]

11. Kuramoto T, Maihara T, Masu M, Nakanishi S, Serikawa T. (1994) Gene mapping of NMDA receptors and metabotropic glutamate receptors in the rat (Rattus norvegicus). Genomics.19: 358-361. [PMID:8188265]

12. Lourenco Neto F, Schadrack J, Berthele A, Zieglgansberger W, Tolle TR, Castro-Lopes JM. (2000) Differential distribution of metabotropic glutamate receptor subtype mRNAs in the thalamus of the rat. Brain Res854: 93-105. [PMID:10784111]

13. Makoff A, Volpe F, Lelchuk R, Harrington K, Emson P. (1996) Molecular characterization and localization of human metabotropic glutamate receptor type 3. Brain Res. Mol. Brain Res.40: 55-63. [PMID:8840013]

14. Malherbe P, Knoflach F, Broger C, Ohresser S, Kratzeisen C, Adam G, Stadler H, Kemp JA, Mutel V. (2001) Identification of essential residues involved in the glutamate binding pocket of the group II metabotropic glutamate receptor. Mol Pharmacol.60: 944- 954. [PMID:11641422]

15. Monn JA, Valli MJ, Massey SM, Hansen MM, Kress TJ, Wepsiec JP, Harkness AR, Grutsch JL, Wright RA, Johnson BG, Andis SL, Kingston A, Tomlinson R, Lewis R, Griffey KR, Tizzano JP, Schoepp DD. (1999) Synthesis, pharmacological characterization, and molecular modeling of heterobicyclic amino acids related to (+)-2-aminobicyclo[3.1.0] hexane-2,6-dicarboxylic acid (LY354740): identification of two new potent, selective, and systemically active agonists for group II metabotropic glutamate receptors. J Med Chem.42: 1027- 1040. [PMID:10090786]

16. Muto T, Tsuchiya D, Morikawa K, Jingami H. (2007) Structures of the extracellular regions of the group II/III metabotropic glutamate receptors. Proc Natl Acad Sci U S A104: 3759-3764. [PMID:17360426]

17. Nakazato A, Sakagami K, Yasuhara A, Ohta H, Yoshikawa R, Itoh M, Nakamura M, Chaki S. (2004) Synthesis, in vitro pharmacology, structure-activity relationships, and pharmacokinetics of 3-alkoxy-2-amino-6-fluorobicyclo[3.1.0]hexane-2,6-dicarboxylic acid derivatives as potent and selective group II metabotropic glutamate receptor antagonists. J Med Chem47: 4570-4587. [PMID:15317467]

18. Ohishi H, Shigemoto R, Nakanishi S, Mizuno N. (1993) Distribution of the mRNA for a metabotropic glutamate receptor (mGluR3) in the rat brain: an in situ hybridization study. J Comp Neurol335: 252-266. [PMID:8227517]

19. Petralia RS, Wang YX, Niedzielski AS, Wenthold RJ. (1996) The metabotropic glutamate receptors, mGluR2 and mGluR3, show unique postsynaptic, presynaptic and glial localizations. Neuroscience71: 949-976. [PMID:8684625]

20. Petralia RS, Wang YX, Zhao HM, Wenthold RJ. (1996) Ionotropic and metabotropic glutamate receptors show unique postsynaptic, presynaptic, and glial localizations in the dorsal cochlear nucleus. J Comp Neurol372: 356-383. [PMID:8873866]

21. Sartorius LJ, Nagappan G, Lipska BK, Lu B, Sei Y, Ren-Patterson R, Li Z, Weinberger DR, Harrison PJ. (2006) Alternative splicing of human metabotropic glutamate receptor 3. J Neurochem96: 1139-1148. [PMID:16417579]

22. Schann S, Mayer S, Franchet C, Frauli M, Steinberg E, Thomas M, Baron L, Neuville P. (2010) Chemical switch of a metabotropic glutamate receptor 2 silent allosteric modulator into dual metabotropic glutamate receptor 2/3 negative/positive allosteric modulators. J. Med. Chem.53 (24): 8775-9. [PMID:21105727]

23. Schoepp DD, Jane DE, Monn JA. (1999) Pharmacological agents acting at subtypes of metabotropic glutamate receptors. Neuropharmacology38: 1431-1476. [PMID:10530808]

24. Schweitzer C, Kratzeisen C, Adam G, Lundstrom K, Malherbe P, Ohresser S, Stadler H, Wichmann J, Woltering T, Mutel V. (2000) Characterization of [(3)H]-LY354740 binding to rat mGlu2 and mGlu3 receptors expressed in CHO cells using semliki forest virus vectors. Neuropharmacology.39: 1700- 1706. [PMID:10884552]

25. Sheffler DJ, Wenthur CJ, Bruner JA, Carrington SJ, Vinson PN, Gogi KK, Blobaum AL, Morrison RD, Vamos M, Cosford ND et al.. (2012) Development of a novel, CNS-penetrant, metabotropic glutamate receptor 3 (mGlu3) NAM probe (ML289) derived from a closely related mGlu5 PAM. Bioorg. Med. Chem. Lett.22 (12): 3921-5. [PMID:22607673]

26. Tamaru Y, Nomura S, Mizuno N, Shigemoto R. (2001) Distribution of metabotropic glutamate receptor mGluR3 in the mouse CNS: differential location relative to pre- and postsynaptic sites. Neuroscience.106: 481-503. [PMID:11591452]

27. Tanabe Y, Masu M, Ishii T, Shigemoto R, Nakanishi S. (1992) A family of metabotropic glutamate receptors. Neuron8: 169-179. [PMID:1309649]

28. Tanabe Y, Nomura A, Masu M, Shigemoto R, Mizuno N, Nakanishi S. (1993) Signal transduction, pharmacological properties, and expression patterns of two rat metabotropic glutamate receptors, mGluR3 and mGluR4. J Neurosci. 1993 Apr;13(4):1372-8. J Neurosci.13: 1372-1378. [PMID:8463825]

29. Woltering TJ, Wichmann J, Goetschi E, Knoflach F, Ballard TM, Huwyler J, Gatti S. (2010) Synthesis and characterization of 1,3-dihydro-benzo[b][1,4]diazepin-2-one derivatives: Part 4. In vivo active potent and selective non-competitive metabotropic glutamate receptor 2/3 antagonists. Bioorg. Med. Chem. Lett.20 (23): 6969-74. [PMID:20971004]

30. Yao Y, Pattabiraman N, Michne WF, Huang XP, Hampson DR. (2003) Molecular modeling and mutagenesis of the ligand-binding pocket of the mGlu3 subtype of metabotropic glutamate receptor. J Neurochem.86: 947-957. [PMID:12887692]

31. Zhao J, Ramadan E, Cappiello M, Wroblewska B, Bzdega T, Neale JH. (2001) NAAG inhibits KCl-induced [(3)H]-GABA release via mGluR3, cAMP, PKA and L-type calcium conductance. Eur J Neurosci.13: 340-346. [PMID:11168538]

To cite this database page, please use the following:

Francine Acher, P. Jeffrey Conn, Robert Duvoisin, Francesco Ferraguti, Peter J. Flor, David Hampson, Michael P. Johnson, James Monn, Shigetada Nakanishi, Ferdinando Nicoletti, Jean-Philippe Pin, Darryle D. Schoepp, Ryuichi Shigemoto.
Metabotropic glutamate receptors: mGlu3 receptor. Last modified on 16/07/2013. Accessed on 20/10/2014. IUPHAR database (IUPHAR-DB), http://www.iuphar-db.org/DATABASE/ObjectDisplayForward?objectId=291.

Contact us | Print | Back to top | Help
Copyright © 2014 IUPHAR