Nomenclature: β2-adrenoceptor

Family: Adrenoceptors

Annotation status:  image of a green circle Annotated and expert reviewed. Please contact us if you can help with updates. 

Contents

Gene and Protein Information
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 413 5q31-q32 ADRB2 adrenoceptor beta 2, surface 37
Mouse 7 418 18 E1 Adrb2 adrenergic receptor, beta 2 3
Rat 7 418 18q12.1 Adrb2 adrenoceptor beta 2, surface 24
Previous and Unofficial Names
ADRB2R
ADRBR
BAR
B2AR
adrenergic, beta-2-, receptor, surface
Adrenergic beta 2- receptor surface
adrenergic receptor, beta 2
beta-2 adrenergic receptor
beta-2 adrenoceptor
beta-2 adrenoreceptor
beta 2-AR
Badm
Adrb-2
beta 2-adrenoceptor
Gpcr7
Database Links
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
GPCRDB
GeneCards
GenitoUrinary Development Molecular Anatomy Project
HomoloGene
Human Protein Reference Database
InterPro
KEGG Gene
OMIM
PharmGKB Gene
PhosphoSitePlus
Protein Ontology (PRO)
RefSeq Nucleotide
RefSeq Protein
TreeFam
UniGene Hs.
UniProtKB
Wikipedia
Selected 3D Structures
Image of receptor 3D structure from RCSB PDB
Description:  Irreversible Agonist-β2-Adrenoceptor Complex
PDB Id:  3PDS
Resolution:  3.5Å
Species:  Human
References:  61
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structure of the human β2-adrenergic receptor in complex with the inverse agonist ICI 118,551
PDB Id:  3NY8
Ligand:  ICI 118551
Resolution:  2.84Å
Species:  Human
References:  72
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structure of the β2 adrenergic receptor-Gs protein complex
PDB Id:  3SN6
Resolution:  3.2Å
Species:  None
References:  59
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structure of the human β2-adrenoceptor
PDB Id:  2R4R
Ligand:  carazolol
Resolution:  3.4Å
Species:  Human
References:  58
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structure of the human β2-adrenoceptor
PDB Id:  2R4S
Ligand:  carazolol
Resolution:  3.4Å
Species:  Human
References:  58
Image of receptor 3D structure from RCSB PDB
Description:  High resolution crystal structure of human β2-adrenergic G protein-coupled receptor
PDB Id:  2RH1
Ligand:  carazolol
Resolution:  2.4Å
Species:  Human
References:  20
Image of receptor 3D structure from RCSB PDB
Description:  Cholesterol bound form of human β2-adrenergic receptor
PDB Id:  3D4S
Ligand:  cholesterol
Resolution:  2.8Å
Species:  Human
References:  27
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structure of a methylated β2-Adrenergic Receptor-Fab complex
PDB Id:  3KJ6
Ligand:  carazolol
Resolution:  3.4Å
Species:  Human
References:  15
Image of receptor 3D structure from RCSB PDB
Description:  Crystal structure of the human β2-adrenergic receptor in complex with the neutral antagonist alprenolol
PDB Id:  3NYA
Ligand:  alprenolol
Resolution:  3.16Å
Species:  Human
References:  72
Associated Proteins
Interacting Proteins
Name References
β2-adrenoceptor 5,17,28,39,53
β1-adrenoceptor 42-43,53,77
β3-adrenoceptor 17
α1D-adrenoceptor 71
α2A-adrenoceptor 39
5-HT4 receptor 14
δ receptor 36,52
κ receptor 36
μ receptor 39
EP1 receptor 51
B2 receptor 25
AT1 receptor 12
CXCR4 41
CB1 receptor 31,39
mouse 71 (M71) Olfactory receptor 26
D1 receptor 39
OT receptor 74-75
epidermal growth factor receptor 49
AMPA-type glutamate receptor subunit GluR1 35
Natural/Endogenous Ligands
(-)-adrenaline
(-)-noradrenaline
Comments: Adrenaline exhibits greater potency than noradrenaline
Rank order of potency (Human)
(-)-adrenaline > (-)-noradrenaline
Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
orciprenaline Hs Agonist 5.32 pKd 64
pKd 5.32 (Kd 4.81x10-6 M) [64]
pindolol Hs Partial agonist 9.4 pKi 38
pKi 9.4 (Ki 4x10-10 M) [38]
arformoterol Hs Agonist 8.59 pKi 2
pKi 8.59 (Ki 2.6x10-9 M) [2]
indacaterol Hs Agonist 7.8 pKi 13
pKi 7.8 (Ki 1.59x10-8 M) [13]
fenoterol Hs Agonist 6.9 pKi 6
pKi 6.9 (Ki 1.26x10-7 M) [6]
sotalol Hs Agonist 6.53 pKi 8
pKi 6.53 (Ki 2.98x10-7 M) [8]
isoprenaline Hs Full agonist 6.4 pKi 62
pKi 6.4 [62]
(-)-adrenaline Hs Full agonist 6.2 pKi 34
pKi 6.2 [34]
dobutamine Hs Partial agonist 6.2 pKi 46
pKi 6.2 [46]
salbutamol Hs Partial agonist 5.8 – 6.1 pKi 9,32
pKi 5.8 – 6.1 [9,32]
terbutaline Hs Partial agonist 5.6 pKi 9
pKi 5.6 [9]
ephedrine Hs Partial agonist 5.6 pKi 34
pKi 5.6 [34]
noradrenaline Hs Full agonist 5.4 pKi 46
pKi 5.4 [46]
formoterol Hs Agonist 10.08 pEC50 10
pEC50 10.08 [10]
salmeterol Hs Full agonist 9.9 pEC50 10
pEC50 9.9 [10]
zinterol Hs Agonist 9.48 pEC50 10
pEC50 9.48 [10]
vilanterol Hs Agonist 9.4 pEC50 57
pEC50 9.4 (EC50 3.98x10-10 M) [57]
procaterol Hs Agonist 8.43 pEC50 10
pEC50 8.43 [10]
mirabegron Hs Agonist <5.0 pEC50 68
pEC50 <5.0 (EC50 >1x10-5 M) [68]
Agonist Comments
The drug ephedrine is an adrenoceptor agonist and likely has activity across several family members. We have tagged the β2-adrenoceptor as the drug's primary target, as this is the only human data discovered to date.
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
[125I]ICYP Hs Antagonist 11.1 pKd 48,62
pKd 11.1 (Kd 7.9x10-12 M) It is necessary to use an excess of a β1-AR-selective ligand such as CGP20712A to allow visualisation of β2-AR binding in native tissues. [48,62]
timolol Hs Antagonist 9.7 pKi 9
pKi 9.7 [9]
carvedilol Hs Antagonist 9.4 – 9.9 pKi 9,19
pKi 9.4 – 9.9 [9,19]
CGP 12177 Hs Antagonist 9.4 pKi 9,48
pKi 9.4 [9,48]
ICI 118551 Hs Inverse agonist 9.2 – 9.5 pKi 9,11,48
pKi 9.2 – 9.5 [9,11,48]
SR59230A Hs Antagonist 9.3 pKi 19
pKi 9.3 [19]
propranolol Hs Antagonist 9.1 – 9.5 pKi 9,11,32,48
pKi 9.1 – 9.5 [9,11,32,48]
bunolol Hs Antagonist 9.26 pKi 7
pKi 9.26 (Ki 5.5x10-10 M) [7]
alprenolol Hs Antagonist 9.0 pKi 9
pKi 9.0 [9]
bupranolol Hs Antagonist 8.3 – 9.1 pKi 19,48
pKi 8.3 – 9.1 [19,48]
labetalol Hs Antagonist 7.96 pKi 8
pKi 7.96 (Ki 1.1x10-8 M) [8]
nadolol Hs Antagonist 7.0 – 8.6 pKi 9,19
pKi 7.0 – 8.6 [9,19]
NIP Hs Antagonist 7.5 pKi 48
pKi 7.5 [48]
propafenone Hs Antagonist 7.44 pKi 7
pKi 7.44 (Ki 3.6x10-8 M) [7]
betaxolol Hs Antagonist 7.2 pKi 48
pKi 7.2 [48]
metoprolol Hs Antagonist 6.3 pKi 48
pKi 6.3 [48]
cicloprolol Hs Antagonist 6.2 pKi 48
pKi 6.2 [48]
NIHP Hs Antagonist 6.0 pKi 48
pKi 6.0 [48]
atenolol Hs Antagonist 5.6 – 6.0 pKi 9,48
pKi 5.6 – 6.0 [9,48]
LK 204-545 Hs Antagonist 5.2 pKi 48
pKi 5.2 [48]
olodaterol Hs Antagonist 10.0 pIC50 16
pIC50 10.0 (IC50 1x10-10 M) [16]
Antagonist Comments
The approved drug propanolol is a non-selective β-adrenoceptor antagonist.
Propafenone may also act to block α-subunits of sodium ion channels (see the Voltage-gated sodium channels family in the Ion Channels section of this website for further details).
Allosteric Modulators
Key to terms and symbols Click column headers to sort
Ligand Sp. Action Affinity Units Reference
Zn2+ Hs Positive 5.3 pKi 66-67
pKi 5.3 [66-67]
Zn2+ Hs Negative 3.3 pKi 66-67
pKi 3.3 [66-67]
Allosteric Modulator Comments
Zn2+ appears to have both positive and negative effects on agonist affinity. At low concentrations it appears to enhance agonist affinity and agonist-stimulated cAMP accumulation. At high concentrations Zn2+ inhibits agonist binding but slows antagonist dissociation [66-67].
Primary Transduction Mechanisms
Transducer Effector/Response
Gs family Adenylate cyclase stimulation
Comments:  Stimulation of adenylate cyclase (AC) causes the conversion of ATP into cAMP. This activates protein kinase A, which in turn phosphorylates several substrates, for example L-type Ca2+ channels.
References:  45,63,65,73
Secondary Transduction Mechanisms
Transducer Effector/Response
Gi/Go family Guanylate cyclase stimulation
Comments:  Stimulation of guanylate cyclase (GC) causes an increase in cGMP levels, and subsequent activation of protein kinase G.
References:  45
Tissue Distribution
Lung >> skeletal muscle > spleen > kidney > heart > brain > liver.
Species:  Mouse
Technique:  in situ hybridisation.
References:  4
Lung >> spleen > kidney > heart > brain > skeletal muscle > liver.
Species:  Mouse
Technique:  Radioligand binding.
References:  4
Lung > heart.
Species:  Rat
Technique:  Radioligand binding.
References:  54
Brain: Caudate, cortex, cerebellum, hippocampus, diencephalon.
Species:  Rat
Technique:  Radioligand binding.
References:  54
Internal anal sphincter (IAS) smooth muscle.
Species:  Rat
Technique:  Western blotting.
References:  45
Expression Datasets

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays
Measurement of cAMP levels in rat heart and lung tissue.
Species:  Rat
Tissue:  Heart and lung.
Response measured:  cAMP accumulation.
References:  54
Measurement of cAMP levels in CHO-K1 cells expressing the human β2 receptor.
Species:  Human
Tissue:  CHO-K1 cells.
Response measured:  cAMP accumulation.
References:  62
Measurement of cAMP levels in human lung epithelial cell lines.
Species:  Human
Tissue:  Calu-3 and 16HBE14o- cell lines.
Response measured:  cAMP accumulation.
References:  1
Measurement of cAMP levels in a human macrophage cell line.
Species:  Human
Tissue:  U937 cells.
Response measured:  cAMP accumulation.
References:  33
Measurement of LPS-induced cytokine release (TNFα and Il-10) from human U937 macrophage cells when treated with a β2-adrenoceptor agoinist.
Species:  Human
Tissue:  U937 cells.
Response measured:  Inhibition of TNFα release, stimulation of Il-10 release.
References:  33
Measurement of cAMP levels in Sf9 insect cells transfected with the human β2-adrenoceptor.
Species:  Human
Tissue:  Sf9 cells.
Response measured:  cAMP accumulation.
References:  63
The trachea of an anesthetized mouse is intubated and airway resistance is measured in response to intravenously injected agonists.
Species:  Mouse
Tissue:  Lung.
Response measured:  Decrease in airway resistance.
References:  18
Measurement of cAMP and Ca2+ levels in CHW fibroblast cells endogenously expressing Gs, AC and PKA and transfected with both the β2-adrenoceptor and the L-type Ca2+ channel.
Species:  Human
Tissue:  CHW-1102 fibroblast cells.
Response measured:  PTX-insensitive cAMP and Ca2+ accumulation.
References:  76
Physiological Functions
All the β-adrenoceptors mediate relaxation of the internal anal sphincter (IAS) smooth muscle, the β2 subtype achieving this via both the Gs/cAMP pathway and the Gi/o/cGMP pathway.
Species:  Rat
Tissue:  Internal anal sphincter (IAS) smooth muscle.
References:  45
Inhibition of apoptosis via a PTX-sensitive G-protein.
Apoptosis via Gs and adenylyl cyclase.
Species:  Rat
Tissue:  Ventricular cardiomyocytes.
References:  55
Hypotension, lowering of blood pressure.
Species:  Mouse
Tissue:  Blood vessels.
References:  21
Presynaptic facilitation of noradrenlaine release from sympathetic nerves.
Species:  Rat
Tissue:  Isolated perfused kidney.
References:  40
Bronchodilation.
Species:  Mouse
Tissue:  Lung.
References:  18
Stimulation of aqueous humor formation and outflow.
Species:  Human
Tissue:  Eye.
References:  56
Uterine relaxation.
Species:  Human
Tissue:  Myometrial muscle.
References:  47
Physiological Consequences of Altering Gene Expression
Studies involving mice overexpressing the β2-adrenoceptor show alterations in heart beat and contractile response.
Species:  Human
Tissue: 
Technique:  Transgenesis.
References:  29
Studies involving β2-adrenoceptor knockouts have only shown obvious physiological changes when under cardiovascular stress conditions. This subtype is thought not to be involved in postnatal development but does mediate peripheral vascular resistance and energy metabolism.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  21
Transgenic (TG) mice overexpressing the β2-adrenoceptor in airway smooth muscle exhibit enhanced β2 signalling and an increase in basal cAMP levels. Tracheal rings from the TG mice showed increased relaxation to a β-agonist, and in vivo studies showed resistance to methacholine-induced bronchoconstriction.
Overall, a decrease in bronchial hyperresponsiveness was seen in the TG mice: an anti-asthmatic state.
Species:  Mouse
Tissue: 
Technique:  Transgenesis.
References:  50
β1- and β2-adrenoceptor double knockout mice appear to have unaltered basal heart rate, blood pressure and metabolic rate. Stimulation of these receptors by agonists or exercise reveals they exhibit a normal exercise capacity but at a submaximal heart rate.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  60
Phenotypes, Alleles and Disease Models Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Adrb1tm1Bkk|Adrb2tm1Bkk|Adrb3tm1Lowl Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk,Adrb3tm1Lowl/Adrb3tm1Lowl
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MGI:87939  MP:0001777 abnormal body temperature regulation PMID: 12161655 
Adrb2tm1Bkk Adrb2tm1Bkk/Adrb2tm1Bkk
involves: 129S1/Sv * 129X1/SvJ
MGI:87938  MP:0004945 abnormal bone resorption PMID: 15724149 
Adrb2+|Adrb2tm1Bkk Adrb2tm1Bkk/Adrb2+
involves: 129S1/Sv * 129X1/SvJ
MGI:87938  MP:0004945 abnormal bone resorption PMID: 15724149 
Adrb1tm1Bkk|Adrb2tm1Bkk|Adrb3tm1Lowl Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk,Adrb3tm1Lowl/Adrb3tm1Lowl
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MGI:87939  MP:0002971 abnormal brown adipose tissue morphology PMID: 12161655 
Adrb1tm1Bkk|Adrb2tm1Bkk Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MP:0001544 abnormal cardiovascular system physiology PMID: 10358009 
Adrb2tm1Bkk Adrb2tm1Bkk/Adrb2tm1Bkk
FVB.129-Adrb2
MGI:87938  MP:0006319 abnormal epididymal fat pad morphology PMID: 10358008 
Adrb2tm1Bkk Adrb2tm1Bkk/Adrb2tm1Bkk
FVB.129-Adrb2
MGI:87938  MP:0002332 abnormal exercise endurance PMID: 10358008 
Adrb2tm1Bkk Adrb2tm1Bkk/Adrb2tm1Bkk
FVB.129-Adrb2
MGI:87938  MP:0001629 abnormal heart rate PMID: 10358008 
Adrb2tm1Kry|Tg(Col1a1-cre)1Kry Adrb2tm1Kry/Adrb2tm1Kry,Tg(Col1a1-cre)1Kry/0
involves: FVB
MGI:3041865  MGI:87938  MP:0003564 abnormal insulin secretion PMID: 19103808 
Adrb2tm1Bkk Adrb2tm1Bkk/Adrb2tm1Bkk
involves: 129S1/Sv * 129X1/SvJ
MGI:87938  MP:0005006 abnormal osteoblast physiology PMID: 15724149 
Adrb2tm1Bkk Adrb2tm1Bkk/Adrb2tm1Bkk
involves: 129S1/Sv * 129X1/SvJ
MGI:87938  MP:0008396 abnormal osteoclast differentiation PMID: 15724149 
Adrb2+|Adrb2tm1Bkk Adrb2tm1Bkk/Adrb2+
involves: 129S1/Sv * 129X1/SvJ
MGI:87938  MP:0008396 abnormal osteoclast differentiation PMID: 15724149 
Adrb2tm1Bkk Adrb2tm1Bkk/Adrb2tm1Bkk
involves: 129S1/Sv * 129X1/SvJ
MGI:87938  MP:0004982 abnormal osteoclast morphology PMID: 15724149 
Adrb2tm1Bkk Adrb2tm1Bkk/Adrb2tm1Bkk
involves: 129S1/Sv * 129X1/SvJ
MGI:87938  MP:0001541 abnormal osteoclast physiology PMID: 15724149 
Adrb1tm1Bkk|Adrb2tm1Bkk Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MP:0008872 abnormal physiological response to xenobiotic PMID: 10358009 
Adrb1tm1Bkk|Adrb2tm1Bkk Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MP:0003638 abnormal response/metabolism to endogenous compounds PMID: 10358009 
Adrb2tm1Bkk Adrb2tm1Bkk/Adrb2tm1Bkk
FVB.129-Adrb2
MGI:87938  MP:0001262 decreased body weight PMID: 10358008 
Adrb2tm1Bkk Adrb2tm1Bkk/Adrb2tm1Bkk
involves: 129S1/Sv * 129X1/SvJ
MGI:87938  MP:0004993 decreased bone resorption PMID: 15724149 
Adrb2+|Adrb2tm1Bkk Adrb2tm1Bkk/Adrb2+
involves: 129S1/Sv * 129X1/SvJ
MGI:87938  MP:0004993 decreased bone resorption PMID: 15724149 
Adrb1tm1Bkk|Adrb2tm1Bkk Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MP:0005140 decreased cardiac muscle contractility PMID: 10358009 
Adrb2tm1Kry|Tg(Col1a1-cre)1Kry Adrb2tm1Kry/Adrb2tm1Kry,Tg(Col1a1-cre)1Kry/0
involves: FVB
MGI:3041865  MGI:87938  MP:0005560 decreased circulating glucose level PMID: 19103808 
Adrb2+|Adrb2tm1Kry|Lep+|Lepob|Tg(Col1a1-cre)1Kry Adrb2tm1Kry/Adrb2+,Lepob/Lep+,Tg(Col1a1-cre)1Kry/0
involves: C57BL/6 * FVB * STOCK Mlph a Tgfa Cdh23 Ednrb
MGI:104663  MGI:3041865  MGI:87938  MP:0005560 decreased circulating glucose level PMID: 19103808 
Adrb1tm1Bkk|Adrb2tm1Bkk Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MP:0005333 decreased heart rate PMID: 10358009 
Adrb2tm1Bkk Adrb2tm1Bkk/Adrb2tm1Bkk
FVB.129-Adrb2
MGI:87938  MP:0004876 decreased mean systemic arterial blood pressure PMID: 10358008 
Adrb1tm1Bkk|Adrb2tm1Bkk Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MP:0005290 decreased oxygen consumption PMID: 10358009 
Adrb1tm1Bkk|Adrb2tm1Bkk|Adrb3tm1Lowl Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk,Adrb3tm1Lowl/Adrb3tm1Lowl
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MGI:87939  MP:0005290 decreased oxygen consumption PMID: 12161655 
Adrb2tm1Bkk Adrb2tm1Bkk/Adrb2tm1Bkk
FVB.129-Adrb2
MGI:87938  MP:0010379 decreased respiratory quotient PMID: 10358008 
Adrb1tm1Bkk|Adrb2tm1Bkk|Adrb3tm1Lowl Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk,Adrb3tm1Lowl/Adrb3tm1Lowl
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MGI:87939  MP:0001260 increased body weight PMID: 12161655 
Adrb2tm1Bkk Adrb2tm1Bkk/Adrb2tm1Bkk
involves: 129S1/Sv * 129X1/SvJ
MGI:87938  MP:0005605 increased bone mass PMID: 15724149 
Adrb2+|Adrb2tm1Bkk Adrb2tm1Bkk/Adrb2+
involves: 129S1/Sv * 129X1/SvJ
MGI:87938  MP:0005605 increased bone mass PMID: 15724149 
Adrb1tm1Bkk|Adrb2tm1Bkk|Adrb3tm1Lowl Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk,Adrb3tm1Lowl/Adrb3tm1Lowl
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MGI:87939  MP:0009119 increased brown fat cell size PMID: 12161655 
Adrb2tm1Kry|Tg(Col1a1-cre)1Kry Adrb2tm1Kry/Adrb2tm1Kry,Tg(Col1a1-cre)1Kry/0
involves: FVB
MGI:3041865  MGI:87938  MP:0002079 increased circulating insulin level PMID: 19103808 
Adrb2+|Adrb2tm1Kry|Lep+|Lepob|Tg(Col1a1-cre)1Kry Adrb2tm1Kry/Adrb2+,Lepob/Lep+,Tg(Col1a1-cre)1Kry/0
involves: C57BL/6 * FVB * STOCK Mlph a Tgfa Cdh23 Ednrb
MGI:104663  MGI:3041865  MGI:87938  MP:0002079 increased circulating insulin level PMID: 19103808 
Adrb1tm1Bkk|Adrb2tm1Bkk|Adrb3tm1Lowl Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk,Adrb3tm1Lowl/Adrb3tm1Lowl
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MGI:87939  MP:0005669 increased circulating leptin level PMID: 12161655 
Adrb1tm1Bkk|Adrb2tm1Bkk|Adrb3tm1Lowl Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk,Adrb3tm1Lowl/Adrb3tm1Lowl
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MGI:87939  MP:0009294 increased interscapular fat pad weight PMID: 12161655 
Adrb2tm1Bkk Adrb2tm1Bkk/Adrb2tm1Bkk
FVB.129-Adrb2
MGI:87938  MP:0002842 increased systemic arterial blood pressure PMID: 10358008 
Adrb1tm1Bkk|Adrb2tm1Bkk|Adrb3tm1Lowl Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk,Adrb3tm1Lowl/Adrb3tm1Lowl
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MGI:87939  MP:0010024 increased total body fat amount PMID: 12161655 
Adrb1tm1Bkk|Adrb2tm1Bkk|Adrb3tm1Lowl Adrb1tm1Bkk/Adrb1tm1Bkk,Adrb2tm1Bkk/Adrb2tm1Bkk,Adrb3tm1Lowl/Adrb3tm1Lowl
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J * DBA/2 * FVB/N
MGI:87937  MGI:87938  MGI:87939  MP:0001261 obese PMID: 12161655 
Clinically-Relevant Mutations and Pathophysiology
Disease:  Asthma, nocturnal, susceptibility to
OMIM:  600807
References: 
Mutations not determined
Disease:  Obesity, susceptibility to
OMIM:  601665
References: 
Mutations not determined
Biologically Significant Variants
Type:  Single nucleotide polymorphism.
Species:  Human
Description:  An Arg16 -> Gly polymorphism has been identified in humans, shown to depress receptor function due to increased receptor downregulation. Studies have suggested this variant may influence vasodilator responses through differences in nitric oxide generation.
In two populations of non-nocturnal and nocturnal asthmatic patients, the presence of the Arg16 -> Gly polymorphism was statistically significantly increased in the nocturnal asthmatic population. This patient population also appeared to be more susceptible to desensitization of the airways to β2-adrenoceptor agonists.
References:  23,30,70
Type:  Single nucleotide polymorphism.
Species:  Human
Description:  A Gln27 -> Glu polymorphism has been identified in humans and found to cause increased isoprenaline-induced vasodilation, suggesting a role in determining vascular reactivity.
References:  22
Type:  Single nucleotide polymorphism.
Species:  Mouse
Description:  A Thr164 -> Ile polymorphism has been identified in humans. To understand the physiological consequences of this variant, a study has been undertaken where the Thr164 -> Ile polymorphism is mimicked in transgenic mice. Results showed impaired receptor coupling to adenylyl cyclase in myocardial membranes in vitro and impaired receptor-mediated cardiac function in vivo.
References:  69
General Comments
For a review on the β-adrenoceptor polymorphisms see reference [44].
Available Assays
DiscoveRx PathHunter® CHO-K1 ADRB2 β-Arrestin Cell Line (Cat no. 93-0182C2)
PathHunter® eXpress ADRB2 CHO-K1 β-Arrestin GPCR Assay (Cat no. 93-0182E2CP0M)
more info

REFERENCES

1. Abraham G, Kneuer C, Ehrhardt C, Honscha W, Ungemach FR. (2004) Expression of functional beta2-adrenergic receptors in the lung epithelial cell lines 16HBE14o(-), Calu-3 and A549. Biochim Biophys Acta1691: 169-179. [PMID:15110997]

2. Alikhani V, Beer D, Bentley D, Bruce I, Cuenoud BM, Fairhurst RA, Gedeck P, Haberthuer S, Hayden C, Janus D et al.. (2004) Long-chain formoterol analogues: an investigation into the effect of increasing amino-substituent chain length on the beta2-adrenoceptor activity. Bioorg. Med. Chem. Lett.14 (18): 4705-10. [PMID:15324892]

3. Allen JM, Baetge EE, Abrass IB, Palmiter RD. (1988) Isoproterenol response following transfection of the mouse beta 2-adrenergic receptor gene into Y1 cells. EMBO J7: 133-138. [PMID:2834198]

4. Andre C, Erraji L, Gaston J, Grimber G, Briand P, Guillet JG. (1996) Transgenic mice carrying the human beta 2-adrenergic receptor gene with its own promoter overexpress beta 2-adrenergic receptors in liver. Eur J Biochem241: 417-424. [PMID:8917438]

5. Angers S, Salahpour A, Joly E, Hilairet S, Chelsky D, Dennis M, Bouvier M. (2000) Detection of beta 2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc. Natl. Acad. Sci. U.S.A.97: 3684-3689. [PMID:10725388]

6. Aristotelous T, Ahn S, Shukla AK, Gawron S, Sassano MF, Kahsai AW, Wingler LM, Zhu X, Tripathi-Shukla P, Huang XP et al.. (2013) Discovery of β2 Adrenergic Receptor Ligands Using Biosensor Fragment Screening of Tagged Wild-Type Receptor. ACS Med Chem Lett4 (10): 1005-1010. [PMID:24454993]

7. Auerbach SS, DrugMatrix® and ToxFX® Coordinator National Toxicology Program. DrugMatrix in vitro pharmacology data. , .

8. Auerbach SS, DrugMatrix® and ToxFX® Coordinator National Toxicology Program. National Toxicoligy Program: Dept of Health and Human Services. Accessed on 02/05/2014. Modified on 02/05/2014. DrugMatrix, https://ntp.niehs.nih.gov/drugmatrix/index.html

9. Baker JG. (2005) The selectivity of beta-adrenoceptor antagonists at the human beta1, beta2 and beta3 adrenoceptors. Br J Pharmacol144: 317-322. [PMID:15655528]

10. Baker JG. (2010) The selectivity of beta-adrenoceptor agonists at human beta1-, beta2- and beta3-adrenoceptors. Br. J. Pharmacol.160 (5): 1048-61. [PMID:20590599]

11. Baker JG, Hall IP, Hill SJ. (2003) Influence of agonist efficacy and receptor phosphorylation on antagonist affinity measurements: differences between second messenger and reporter gene responses. Mol Pharmacol64: 679-688. [PMID:12920204]

12. Barki-Harrington L, Luttrell LM, Rockman HA. (2003) Dual inhibition of beta-adrenergic and angiotensin II receptors by a single antagonist: a functional role for receptor-receptor interaction in vivo. Circulation108 (13): 1611-8. [PMID:12963634]

13. Beattie D, Beer D, Bradley ME, Bruce I, Charlton SJ, Cuenoud BM, Fairhurst RA, Farr D, Fozard JR, Janus D et al.. (2012) An investigation into the structure-activity relationships associated with the systematic modification of the β(2)-adrenoceptor agonist indacaterol. Bioorg. Med. Chem. Lett.22 (19): 6280-5. [PMID:22932315]

14. Berthouze M, Ayoub M, Russo O, Rivail L, Sicsic S, Fischmeister R, Berque-Bestel I, Jockers R, Lezoualc'h F. (2005) Constitutive dimerization of human serotonin 5-HT4 receptors in living cells. FEBS Lett.579 (14): 2973-80. [PMID:15896782]

15. Bokoch MP, Zou Y, Rasmussen SG, Liu CW, Nygaard R, Rosenbaum DM, Fung JJ, Choi HJ, Thian FS, Kobilka TS et al.. (2010) Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor. Nature463 (7277): 108-12. [PMID:20054398]

16. Bouyssou T, Casarosa P, Naline E, Pestel S, Konetzki I, Devillier P, Schnapp A. (2010) Pharmacological characterization of olodaterol, a novel inhaled beta2-adrenoceptor agonist exerting a 24-hour-long duration of action in preclinical models. J. Pharmacol. Exp. Ther.334 (1): 53-62. [PMID:20371707]

17. Breit A, Lagacé M, Bouvier M. (2004) Hetero-oligomerization between beta2- and beta3-adrenergic receptors generates a beta-adrenergic signaling unit with distinct functional properties. J. Biol. Chem.279 (27): 28756-65. [PMID:15123695]

18. Callaerts-Vegh Z Evans KL, Dudekula N, Cuba D, Knoll BJ, Callaerts PF, Giles H, Shardonofsky FR, Bond RA. (2004) Effects of acute and chronic administration of beta-adrenoceptor ligands on airway function in a murine model of asthma. Proc Natl Acad Sci U S A101: 4948-4953. [PMID:15069206]

19. Candelore MR, Deng L, Tota L, Guan XM, Amend A, Liu Y, Newbold R, Cascieri MA, Weber AE. (1999) Potent and selective human beta(3)-adrenergic receptor antagonists. J Pharmacol Exp Ther290: 649-655. [PMID:10411574]

20. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC. (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science318: 1258-1265. [PMID:17962520]

21. Chruscinski AJ, Rohrer DK, Schauble E, Desai KH, Bernstein D, Kobilka BK. (1999) Targeted disruption of the beta2 adrenergic receptor gene. J Biol Chem274: 16694-16700. [PMID:10358008]

22. Cockcroft JR, Gazis AG, Cross DJ, Wheatley A, Dewar J, Hall IP, Noon JP. (2000) Β2-Adrenoceptor Polymorphism Determines Vascular Reactivity in Humans. Hypertension36: 371-375. [PMID:10988267]

23. Garovic VD, Joyner MJ, Dietz NM, Boerwinkle E, Turner ST. (2003) Beta(2)-adrenergic receptor polymorphism and nitric oxide-dependent forearm blood flow responses to isoproterenol in humans. J Physiol546: 583-589. [PMID:12527744]

24. Gocayne J Robinson DA, FitzGerald MG, Chung FZ, Kerlavage AR, Lentes KU, Lai J Wang CD, Fraser CM, Venter JC. (1987) Primary structure of rat cardiac beta-adrenergic and muscarinic cholinergic receptors obtained by automated DNA sequence analysis: further evidence for a multigene family. Proc Natl Acad Sci U S A84: 8296-8300. [PMID:2825184]

25. Haack KK, Tougas MR, Jones KT, El-Dahr SS, Radhakrishna H, McCarty NA. (2010) A novel bioassay for detecting GPCR heterodimerization: transactivation of beta 2 adrenergic receptor by bradykinin receptor. J Biomol Screen15 (3): 251-60. [PMID:20150590]

26. Hague C, Uberti MA, Chen Z, Bush CF, Jones SV, Ressler KJ, Hall RA, Minneman KP. (2004) Olfactory receptor surface expression is driven by association with the beta2-adrenergic receptor. Proc. Natl. Acad. Sci. U.S.A.101 (37): 13672-6. [PMID:15347813]

27. Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola VP, Chien EY, Velasquez J, Kuhn P, Stevens RC. (2008) A specific cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor. Structure16 (6): 897-905. [PMID:18547522]

28. Hebert TE, Moffett S, Morello JP, Loisel TP, Bichet DG, Barret C, Bouvier M. (1996) A peptide derived from a β2-adrenergic receptor transmembrane domain inhibits both receptor dimerization and activation. J. Biol. Chem.271: 16384-16392. [PMID:8663163]

29. Heubach JF, Trebess I, Wettwer E, Himmel HM, Michel MC, Kaumann AJ, Koch WJ, Harding SE, Ravens U. (1999) L-type calcium current and contractility in ventricular myocytes from mice overexpressing the cardiac beta 2-adrenoceptor. Cardiovasc. Res.42: 173-182. [PMID:10435008]

30. Hoit BD, Suresh DP, Craft L, Walsh RA, Liggett SB. (2000) Beta2-adrenergic receptor polymorphisms at amino acid 16 differentially influence agonist-stimulated blood pressure and peripheral blood flow in normal individuals. Am Heart J139: 537-542. [PMID:10689270]

31. Hudson BD, Hébert TE, Kelly ME. (2010) Physical and functional interaction between CB1 cannabinoid receptors and beta2-adrenoceptors. Br. J. Pharmacol.160 (3): 627-42. [PMID:20590567]

32. Isogaya M, Sugimoto Y, Tanimura R, Tanaka R, Kikkawa H, Nagao T, Kurose H. (1999) Binding pockets of the beta(1)- and beta(2)-adrenergic receptors for subtype-selective agonists. Mol Pharmacol56: 875-885. [PMID:10531390]

33. Izeboud CA, Vermeulen RM, Zwart A, Voss HP, van Miert AS, Witkamp RF. (2000) Stereoselectivity at the beta2-adrenoceptor on macrophages is a major determinant of the anti-inflammatory effects of beta2-agonists. Naunyn Schmiedebergs Arch Pharmacol362: 184-189. [PMID:10961382]

34. January B, Siebold A, Whaley B, Hiplin RW, Lin D, Schonbrunn A, Barber R, Clark RB. (1997) beta(2)-adrenergic receptor desensitization, internalization and phosphorylation in response to full and partial agonists. J Biol Chem272: 23871-23879. [PMID:9295336]

35. Joiner ML, Lisé MF, Yuen EY, Kam AY, Zhang M, Hall DD, Malik ZA, Qian H, Chen Y, Ulrich JD et al.. (2010) Assembly of a beta2-adrenergic receptor--GluR1 signalling complex for localized cAMP signalling. EMBO J.29 (2): 482-95. [PMID:19942860]

36. Jordan BA, Trapaidze N, Gomes I, Nivarthi R, Devi LA. (2001) Oligomerization of opioid receptors with beta 2-adrenergic receptors: a role in trafficking and mitogen-activated protein kinase activation. Proc. Natl. Acad. Sci. U.S.A.98 (1): 343-8. [PMID:11134510]

37. Kobilka BK, Dixon RA, Frielle T, Dohlman HG, Bolanowski MA, Sigal IS, Yang-Feng TL, Francke U, Caron MG, Lefkowitz RJ. (1987) cDNA for the human beta 2-adrenergic receptor: a protein with multiple membrane-spanning domains and encoded by a gene whose chromosomal location is shared with that of the receptor for platelet-derived growth factor. Proc. Natl. Acad. Sci. U.S.A.84 (1): 46-50. [PMID:3025863]

38. Krushinski Jr JH, Schaus JM, Thompson DC, Calligaro DO, Nelson DL, Luecke SH, Wainscott DB, Wong DT. (2007) Indoloxypropanolamine analogues as 5-HT(1A) receptor antagonists. Bioorg. Med. Chem. Lett.17 (20): 5600-4. [PMID:17804228]

39. Kuravi S, Lan TH, Barik A, Lambert NA. (2010) Third-party bioluminescence resonance energy transfer indicates constitutive association of membrane proteins: application to class a g-protein-coupled receptors and g-proteins. Biophys. J.98 (10): 2391-9. [PMID:20483349]

40. Lakhlani PP, Amenta F, Napoleone P, Felici L, Eikenburg DC. (1994) Pharmacological characterization and anatomical localization of prejunctional beta-adrenoceptors in the rat kidney. Br J Pharmacol111: 1296-1308. [PMID:8032617]

41. LaRocca TJ, Schwarzkopf M, Altman P, Zhang S, Gupta A, Gomes I, Alvin Z, Champion HC, Haddad G, Hajjar RJ et al.. (2010) β2-Adrenergic receptor signaling in the cardiac myocyte is modulated by interactions with CXCR4. J. Cardiovasc. Pharmacol.56 (5): 548-59. [PMID:20729750]

42. Lavoie C, Hébert TE. (2003) Pharmacological characterization of putative beta1-beta2-adrenergic receptor heterodimers. Can. J. Physiol. Pharmacol.81 (2): 186-95. [PMID:12710533]

43. Lavoie C, Mercier JF, Salahpour A, Umapathy D, Breit A, Villeneuve LR, Zhu WZ, Xiao RP, Lakatta EG, Bouvier M et al.. (2002) Beta 1/beta 2-adrenergic receptor heterodimerization regulates beta 2-adrenergic receptor internalization and ERK signaling efficacy. J. Biol. Chem.277 (38): 35402-10. [PMID:12140284]

44. Leineweber K, Buscher R, Bruck H, Brodde OE. (2004) Beta-adrenoceptor polymorphisms. Naunyn Schmiedebergs Arch Pharmacol369: 1-22. [PMID:14647973]

45. Li F, De Godoy M, Rattan S. (2004) Role of adenylate and guanylate cyclases in beta1-, beta2-, and beta3-adrenoceptor-mediated relaxation of internal anal sphincter smooth muscle. J Pharmacol Exp Ther308: 1111-1120. [PMID:14711933]

46. Liapakis G, Chan WC, Papadokostaki M, Javitch JA. (2004) Synergistic contributions of the functional groups of epinephrine to its affnity and efficacy at the beta(2)-adrenergic receptor. Mol Pharmacol65: 1181-1190. [PMID:15102946]

47. Liu YL, Nwosu UC, Rice PJ. (1998) Relaxation of isolated human myometrial muscle by beta2-adrenergic receptors but not beta1-adrenergic receptors. Am J Obstet Gynecol179: 895-898. [PMID:9790366]

48. Louis SN, Nero TL, Iakovidis D, Jackman GP, Louis WJ. (1999) LK 204-545, a highly selective beta1-adrenoceptor antagonist at human beta-adrenoceptors. Eur J Pharmacol367: 431-435. [PMID:10079020]

49. Maudsley S, Pierce KL, Zamah AM, Miller WE, Ahn S, Daaka Y, Lefkowitz RJ, Luttrell LM. (2000) The beta(2)-adrenergic receptor mediates extracellular signal-regulated kinase activation via assembly of a multi-receptor complex with the epidermal growth factor receptor. J. Biol. Chem.275 (13): 9572-80. [PMID:10734107]

50. McGraw DW, Forbes SL, Kramer LA, Witte DP, Fortner CN, Paul RJ, Liggett SB. (1999) Transgenic overexpression of beta(2)-adrenergic receptors in airway smooth muscle alters myocyte function and ablates bronchial hyperreactivity. J Biol Chem274: 32241-32247. [PMID:10542262]

51. McGraw DW, Mihlbachler KA, Schwarb MR, Rahman FF, Small KM, Almoosa KF, Liggett SB. (2006) Airway smooth muscle prostaglandin-EP1 receptors directly modulate beta2-adrenergic receptors within a unique heterodimeric complex. J Clin Invest116: 1400-1409. [PMID:16670773]

52. McVey M, Ramsay D, Kellett E, Rees S, Wilson S, Pope AJ, Milligan G. (2001) Monitoring receptor oligomerization using time-resolved fluorescence resonance energy transfer and bioluminescence resonance energy transfer. The human delta -opioid receptor displays constitutive oligomerization at the cell surface, which is not regulated by receptor occupancy. J. Biol. Chem.276 (17): 14092-9. [PMID:11278447]

53. Mercier JF, Salahpour A, Angers S, Breit A, Bouvier M. (2002) Quantitative assessment of beta 1- and beta 2-adrenergic receptor homo- and heterodimerization by bioluminescence resonance energy transfer. J. Biol. Chem.277 (47): 44925-31. [PMID:12244098]

54. Minneman KP, Hegstrand LR, Molinoff PB. (1979) The pharmacological specificity of beta-1 and beta-2 adrenergic receptors in rat heart and lung in vitro. Mol Pharmacol.16: 21-33. [PMID:39243]

55. Ponicke K, Heinroth-Hoffmann I, Brodde OE. (2003) Role of beta 1- and beta 2-adrenoceptors in hypertrophic and apoptotic effects of noradrenaline and adrenaline in adult rat ventricular cardiomyocytes. Naunyn Schmiedebergs Arch Pharmacol367: 592-599. [PMID:12750877]

56. Potter DC. (1981) Adrenergic pharmacology of aqueous humor dynamics. Pharmacol Rev33: 133-153. [PMID:7323134]

57. Procopiou PA, Barrett VJ, Bevan NJ, Biggadike K, Box PC, Butchers PR, Coe DM, Conroy R, Emmons A, Ford AJ et al.. (2010) Synthesis and structure-activity relationships of long-acting beta2 adrenergic receptor agonists incorporating metabolic inactivation: an antedrug approach. J. Med. Chem.53 (11): 4522-30. [PMID:20462258]

58. Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VR, Sanishvili R, Fischetti RF, Schertler GF, Weis WI, Kobilka BK. (2007) Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature450: 383-387. [PMID:17952055]

59. Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D et al.. (2011) Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature477 (7366): 549-55. [PMID:21772288]

60. Rohrer DK, Chruscinski A, Schauble EH, Bernstein D, Kobilka BK. (1999) Cardiovascular and metabolic alterations in mice lacking both beta1- and beta2-adrenergic receptors. J Biol Chem274: 16701-16708. [PMID:10358009]

61. Rosenbaum DM, Zhang C, Lyons JA, Holl R, Aragao D, Arlow DH, Rasmussen SG, Choi HJ, Devree BT, Sunahara RK et al.. (2011) Structure and function of an irreversible agonist-β(2) adrenoceptor complex. Nature469 (7329): 236-40. [PMID:21228876]

62. Sato Y, Kurose H, Isogaya M, Nagao T. (1996) Molecular characterization of pharmacological properties of T-0509 for beta-adrenoceptors. Eur J Pharmacol.315: 363-367. [PMID:8982677]

63. Seifert R, Lee TW, Lam VT, Kobilka BK. (1998) Reconstitution of beta2-adrenoceptor-GTP-binding-protein interaction in Sf9 cells--high coupling efficiency in a beta2-adrenoceptor-G(s alpha) fusion protein. Eur J Biochem255: 369-382. [PMID:9716378]

64. Soriano-Ursúa MA, Valencia-Hernández I, Arellano-Mendoza MG, Correa-Basurto J, Trujillo-Ferrara JG. (2009) Synthesis, pharmacological and in silico evaluation of 1-(4-di-hydroxy-3,5-dioxa-4-borabicyclo[4.4.0]deca-7,9,11-trien-9-yl)-2-(tert-butylamino)ethanol, a compound designed to act as a beta2 adrenoceptor agonist. Eur J Med Chem44 (7): 2840-6. [PMID:19168263]

65. Stiles GL, Caron MG, Lefkowitz RJ. (1984) Beta-adrenergic receptors: biochemical mechanisms of physiological regulation. Physiol Rev64: 661-743. [PMID:6143332]

66. Swaminath G, Lee TW, Kobilka B. (2003) Identification of an allosteric binding site for Zn2+ on the beta2 adrenergic receptor. J Biol Chem278: 352-356. [PMID:12409304]

67. Swaminath G, Steenhuis J, Kobilka B, Lee TW. (2002) Allosteric modulation of beta2-adrenergic receptor by Zn(2+). Mol Pharmacol61: 65-72. [PMID:11752207]

68. Takasu T, Ukai M, Sato S, Matsui T, Nagase I, Maruyama T, Sasamata M, Miyata K, Uchida H, Yamaguchi O. (2007) Effect of (R)-2-(2-aminothiazol-4-yl)-4'-{2-[(2-hydroxy-2-phenylethyl)amino]ethyl} acetanilide (YM178), a novel selective beta3-adrenoceptor agonist, on bladder function. J. Pharmacol. Exp. Ther.321 (2): 642-7. [PMID:17293563]

69. Turki J, Lorenz JN, Green SA, Donnelly ET, Jacinto M, Liggett SB. (1996) Myocardial signaling defects and impaired cardiac function of a human beta 2-adrenergic receptor polymorphism expressed in transgenic mice. Proc Natl Acad Sci U S A93: 10483-10488. [PMID:8816827]

70. Turki J, Pak J, Green SA, Martin RJ, Liggett SB. (1995) Genetic polymorphisms of the beta 2-adrenergic receptor in nocturnal and nonnocturnal asthma. Evidence that Gly16 correlates with the nocturnal phenotype. J Clin Invest95: 1635-1641. [PMID:7706471]

71. Uberti MA, Hague C, Oller H, Minneman KP, Hall RA. (2005) Heterodimerization with beta2-adrenergic receptors promotes surface expression and functional activity of alpha1D-adrenergic receptors. J. Pharmacol. Exp. Ther.313 (1): 16-23. [PMID:15615865]

72. Wacker D, Fenalti G, Brown MA, Katritch V, Abagyan R, Cherezov V, Stevens RC. (2010) Conserved binding mode of human beta2 adrenergic receptor inverse agonists and antagonist revealed by X-ray crystallography. J. Am. Chem. Soc.132 (33): 11443-5. [PMID:20669948]

73. Wenzel-Seifert K, Liu HY, Seifert R. (2002) Similarities and differences in the coupling of human beta1- and beta2-adrenoceptors to Gs(alpha) splice variants. Biochem Pharmacol.64: 9-20. [PMID:12106601]

74. Wrzal PK, Devost D, Pétrin D, Goupil E, Iorio-Morin C, Laporte SA, Zingg HH, Hébert TE. (2012) Allosteric interactions between the oxytocin receptor and the β2-adrenergic receptor in the modulation of ERK1/2 activation are mediated by heterodimerization. Cell. Signal.24 (1): 342-50. [PMID:21963428]

75. Wrzal PK, Goupil E, Laporte SA, Hébert TE, Zingg HH. (2012) Functional interactions between the oxytocin receptor and the β2-adrenergic receptor: implications for ERK1/2 activation in human myometrial cells. Cell. Signal.24 (1): 333-41. [PMID:21964067]

76. Yatani A, Tajima Y, Green SA. (1999) Coupling of beta-adrenergic receptors to cardiac L-type Ca2+ channels: preferential coupling of the beta1 versus beta2 receptor subtype and evidence for PKA-independent activation of the channel. Cell Signal11: 337-342. [PMID:10376806]

77. Zhu WZ, Chakir K, Zhang S, Yang D, Lavoie C, Bouvier M, Hébert TE, Lakatta EG, Cheng H, Xiao RP. (2005) Heterodimerization of beta1- and beta2-adrenergic receptor subtypes optimizes beta-adrenergic modulation of cardiac contractility. Circ. Res.97 (3): 244-51. [PMID:16002745]

To cite this database page, please use the following:

Richard A. Bond, David B. Bylund, Douglas C. Eikenburg, J. Paul Hieble, Rebecca Hills, Kenneth P. Minneman, Sergio Parra.
Adrenoceptors: β2-adrenoceptor. Last modified on 13/06/2014. Accessed on 25/10/2014. IUPHAR database (IUPHAR-DB), http://www.iuphar-db.org/DATABASE/ObjectDisplayForward?objectId=29.

Contact us | Print | Back to top | Help
Copyright © 2014 IUPHAR