Nomenclature: MCH1 receptor

Family: Melanin-concentrating hormone receptors

Annotation status:  image of a green circle Annotated and expert reviewed. Please contact us if you can help with updates. 

Contents

Gene and Protein Information
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 422 22q13.2 MCHR1 melanin-concentrating hormone receptor 1 4,20
Mouse 7 423 15 E1 Mchr1 melanin-concentrating hormone receptor 1 19
Rat 7 360 7q34 Mchr1 melanin-concentrating hormone receptor 1 22
Previous and Unofficial Names
SLC1
MCHR1
MCH-1R
gpr 24
SLC-1
GPR24
MCH1R
G protein-coupled receptor 24
G-protein coupled receptor 24
MCH receptor 1
MCH-R1
MCHR
MCHR-1
melanin-concentrating hormone receptor 1
somatostatin receptor-like protein
Gpr24-9
AW049955
Database Links
ChEMBL Target
Ensembl Gene
Entrez Gene
GPCRDB
GeneCards
GenitoUrinary Development Molecular Anatomy Project
HomoloGene
Human Protein Reference Database
InterPro
KEGG Gene
OMIM
PharmGKB Gene
PhosphoSitePlus
Protein Ontology (PRO)
RefSeq Nucleotide
RefSeq Protein
TreeFam
UniGene Hs.
UniProtKB
Wikipedia
Natural/Endogenous Ligands
melanin-concentrating hormone {Sp: Human, Mouse, Rat}
Rank order of potency (Human)
melanin-concentrating hormone (PMCH, P20382) > MCH (salmon)
Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
[125I]MCH (human, mouse, rat) Hs Full agonist 9.7 – 10.8 pKd 8
pKd 9.7 – 10.8 (Kd 1.6x10-11 – 2x10-10 M) [8]
[125I][Phe13,Tyr19]MCH Hs Full agonist 9.2 pKd 5
pKd 9.2 (Kd 7x10-10 M) [5]
S36057 Hs Full agonist 10.1 – 10.4 pKi 1
pKi 10.1 – 10.4 [1]
S36057 Rn Full agonist 10.1 – 10.3 pKi 40
pKi 10.1 – 10.3 [40]
melanin-concentrating hormone {Sp: Human, Mouse, Rat} Hs Full agonist 9.7 – 10.5 pKi 1,8
pKi 9.7 – 10.5 [1,8]
melanin-concentrating hormone {Sp: Human, Mouse, Rat} Rn Full agonist 9.8 – 10.0 pKi 40
pKi 9.8 – 10.0 [40]
MCH6-17 Rn Full agonist 9.4 – 9.7 pKi 40
pKi 9.4 – 9.7 [40]
MCH6-17 Hs Full agonist 9.2 – 9.8 pKi 1
pKi 9.2 – 9.8 [1]
MCH (salmon) Hs Full agonist 9.4 – 9.6 pKi 1,8
pKi 9.4 – 9.6 [1,8]
MCH (salmon) Rn Full agonist 9.3 – 9.5 pKi 40
pKi 9.3 – 9.5 [40]
[Phe13,Tyr19]MCH Rn Full agonist 9.2 – 9.5 pKi 40
pKi 9.2 – 9.5 [40]
C3 Hs Full agonist 8.7 – 8.9 pKi 40
pKi 8.7 – 8.9 [40]
S36077 Hs Full agonist 6.7 – 7.4 pKi 1
pKi 6.7 – 7.4 [1]
S36077 Rn Full agonist 6.6 – 7.2 pKi 40
pKi 6.6 – 7.2 [40]
variant MCH Hs Full agonist 6.5 – 6.6 pKi 8
pKi 6.5 – 6.6 [8]
Ac-hMCH-(6-16)-NH2 Hs Full agonist 9.7 – 9.9 pIC50 3
pIC50 9.7 – 9.9 [3]
compound 2 [PMID:11375253] Hs Full agonist 9.7 pIC50 1
pIC50 9.7 [1]
[Phe13,Tyr19]MCH Hs Full agonist 8.2 – 10.0 pIC50 8,19,33
pIC50 8.2 – 10.0 [8,19,33]
p-guanidinobenzoyl-MCH-(7-17) Hs Full agonist 8.4 pIC50 2
pIC50 8.4 [2]
View species-specific agonist tables
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
SNAP-7941 Hs Antagonist 9.2 pA2 4
pA2 9.2 [4]
SNAP-7941 Hs Antagonist 9.7 pKd 4
pKd 9.7 [4]
S38151 Hs Antagonist 9.3 – 10.0 pKd 2
pKd 9.3 – 10.0 [2]
[125I]S36057 Hs Antagonist 9.2 – 9.5 pKd 1
pKd 9.2 – 9.5 (Kd 3.2x10-10 – 6.3x10-10 M) [1]
[125I](3-iodo-Tyr13)-MCH Hs Antagonist 9.2 – 9.4 pKd 1
pKd 9.2 – 9.4 [1]
tetralin_urea analogue (7o) Hs Antagonist 9.1 pKi 14
pKi 9.1 [14]
S36541 Hs Antagonist 7.9 – 8.3 pKi 1
pKi 7.9 – 8.3 [1]
ATC0065 Hs Antagonist 7.8 – 7.9 pKi 7
pKi 7.8 – 7.9 [7]
[3H]SNAP-7941 Hs Antagonist 7.8 pKi 4
pKi 7.8 [4]
SB-568849 Hs Antagonist 7.7 pKi 45
pKi 7.7 [45]
S36539 Hs Antagonist 7.3 – 8.0 pKi 1
pKi 7.3 – 8.0 [1]
S36540 Hs Antagonist 7.2 – 7.8 pKi 1
pKi 7.2 – 7.8 [1]
compound 17 [PMID:17125263] Hs Antagonist 9.4 pIC50 42
pIC50 9.4 [42]
GW803430 Hs Antagonist 9.3 pIC50 16
pIC50 9.3 [16]
7-fluorochromone-2-carboxamide Hs Antagonist 8.5 pIC50 25
pIC50 8.5 [25]
T-226296 Hs Antagonist 8.3 pIC50 41
pIC50 8.3 [41]
TPI 1361-17 Hs Antagonist 8.2 pIC50 28
pIC50 8.2 [28]
ATC0175 Hs Antagonist 7.9 – 8.1 pIC50 7
pIC50 7.9 – 8.1 (IC50 7.23x10-9 – 1.35x10-8 M) [7]
[Ava9,10,Ava14,15]-Ac-hMCH6-16-NH2 Hs Antagonist 7.0 – 7.5 pIC50 3
pIC50 7.0 – 7.5 [3]
Primary Transduction Mechanisms
Transducer Effector/Response
Gs family
Gi/Go family
Gq/G11 family
Adenylate cyclase inhibition
Phospholipase C stimulation
References:  15,30,35-36
Tissue Distribution
Olfactory system, hippocampal formation (ventromedial nucleus, arcuate nucleus, and zona incerta), subiculum, basolateral amygdala, shell of the nucleus accumbens. Brainstem; locus coeruleus, facial, hypoglossal, motor trigeminal, and dorsal motor vagus nuclei.
Species:  Human
Technique:  in situ hybridization.
References:  34
Ovary > brain (substantia nigra > temporal lobe > occipital lobe, parietal lobe, hippocampus, amygdala, hypothalamus > frontal lobe, cerebral cortex, corpus callosum, cerebral peduncles, caudate nucleus > spinal cord, thalamus, medulla oblongata, pons, cerebellum) > liver > testis.
Species:  Human
Technique:  Quantitative RT-PCR.
References:  27
Pituitary > brain.

Cingulate gyrus > superior frontal gyrus > parahippocampal gyrus > medial frontal gyrus > hippocampus > nucleus accumbens > hypothalamus.
Species:  Human
Technique:  Quantitative RT-PCR.
References:  18
Hippocampal formation > olefactory system > cerebral cortex > thalamus, basal and limbic forebrain, hyothalamus, pons and medulla, midbrain, spinal cord.
Species:  Rat
Technique:  in situ hybridization.
References:  24
Cerebral cortex, caudate putamen, hippocampal formation, amygdala, hypothalamus, thalamus, mesencephalon, rhombencephalon.
Species:  Rat
Technique:  In situ hybridization and immunohistochemistry.
References:  17
Brain; accumbens nucleus, shell; field CA1 of Ammon's horn; central amygdaloid nucleus; cingulate cortex; claustrum; central medial thalamic nucleus; audate-putamen; dorsal raphe; entorhinal cortex;locuscoeruleus; subiculum; superior colliculus; olfactory tubercle; ventromedial hypothalamus.
Species:  Rat
Technique:  Autoradiography.
References:  4
Ventromedial and dorsomedial nuclei of the hypothalamus.
Species:  Rat
Technique:  in situ hybridization.
References:  8,35
Expression Datasets

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays
Measurement of cAMP levels in HEK 293 cells transfected with the human MCH1 receptor.
Species:  Human
Tissue:  HEK 293 cells
Response measured:  Inhibition of forskolin-induced cAMP accumulation.
References:  8,30
Measurement of IP3 production in CHO cells transfected with the human MCH1 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Stimulation of IP3 production.
References:  15,44
Measurement of intracellular Ca2+ in HEK 293 cells transfected with the human MCH1 receptor.
Species:  Human
Tissue:  HEK 293 cells.
Response measured:  Increase in intracellular Ca2+.
References:  8
Measurement of MAP kinase activity via PKC-dependent and PKC-independent mechanisms in CHO cells transfected with the human MCH1 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Activation of MAP kinase activity.
References:  15
Measurement of intracellular Ca2+ in cells transfected with the rat MCH1 receptor.
Species:  Rat
Tissue:  HEK 293 cells.
Response measured:  Increase in intracellular Ca2+.
References:  24
Measurement of cAMP levels in HEK 293 cells transfected with the rat MCH1 receptor.
Species:  Rat
Tissue:  HEK 293 cells.
Response measured:  Inhibition of forskolin-stimulated cAMP accumulation.
References:  24,44
Measurement of cAMP levels in CHO cells transfected with the human MCH1 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Inhibition of forskolin-stimulated cAMP accumulation.
References:  15,35,38
Measurement of GIRK-mediated currents in Xenopus oocytes transfected with the human MCH1 receptor.
Species:  Rat
Tissue:  Xenopus oocytes.
Response measured:  Strong inward current.
References:  6
Measurement of GIRK-mediated currents in Xenopus oocytes transfected with the human MCH1 receptor.
Species:  Rat
Tissue:  Xenopus oocytes.
Response measured:  Strong inward current.
References:  6
Measurement of intracellular Ca2+ in CHO cells transfected with the human MCH1 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Increase in intracellular Ca2+.
References:  15,44
Measurement of cAMP levels in HEK 293 cells transfected with the human MCH1 receptor.
Species:  Human
Tissue:  HEK 293 cells.
Response measured:  Inhibition of β-adreninic receptor-induced cAMP accumulation.
References:  30
Measurement of ERK phosphorylation in HEK 293 cells transfected with the human MCH1 receptor.
Species:  Human
Tissue:  HEK 293 cells.
Response measured:  Induction of ERK phosphyrlation.
References:  30
Measurement of forskolin-stimulated cAMP accumulation in SK-MEL37 cells endogneously expressing the MCH1 receptor.
Species:  Human
Tissue:  SK-MEL37 cells.
Response measured:  Inhibition of forskolin-stimulated cAMP accumulation.
References:  36
Measurement of MAPK activity in SK-MEL37 cells endogenously expressing the MCH1 receptor.
Species:  Human
Tissue:  SK-MEL37 cells.
Response measured:  Activation of MAPK phosphorylation of ERK1/ERK2.
References:  36
Measurement of cAMP accumulation, Ca2+ mobilisation and CD3-stimulated in vitro proliferation in peripheral blood mononuclear (PBM) cells.
Species:  Human
Tissue:  PBM cells.
Response measured:  Induction of cAMP production and Ca2+ mobilisation, decrease in cell proliferation.
References:  43
Measurement of cAMP accumulation, Ca2+ mobilisation and CD3-stimulated in vitro proliferation in peripheral blood mononuclear (PBM) cells.
Species:  Mouse
Tissue:  PBM cells.
Response measured:  Induction of cAMP production and Ca2+ mobilisation, decrease in cell proliferation.
References:  43
Measurement of dopamine-induced dopamine-induced phosphorylation of the AMPA glutamate receptor subunit GluR1 at Ser845 in nucleus accumbens shell exaplants.
Species:  Rat
Tissue:  Nucleus accumbens shell exaplants.
Response measured:  Activation of MCH1 blocks phosphorylation.
References:  13
Physiological Functions
Administration of MCH to the nucleus accumbens increases depressive behaviour.
Species:  Rat
Tissue:  In vivo.
References:  13
Regulation of alcohol intake.
Species:  Rat
Tissue:  In vivo.
References:  11
Modulation of food intake.
Species:  Rat
Tissue:  In vivo.
References:  4,13,32,41
Blockades of the MCH1 receptor produces effects similar to clinically used antidepressants and anxiolytics in models of depression/anxiety.
Species:  Rat
Tissue:  In vivo.
References:  4,7,10,13,39
Regulation of feeding behaviour.
Species:  Mouse
Tissue:  In vivo.
References:  31
Modulation of food intake and body weight.
Species:  Rat
Tissue:  In vivo.
References:  12,21
Modulation of appetite and caloric efficiency.
Species:  Rat
Tissue:  In vivo.
References:  37
Stressor-induced acetylcholine release within the prefrontal cortex is blocked by MCH1 antagonism.
Species:  Mouse
Tissue:  In vivo.
References:  39
Autocrine regulation of pancreatic islet function and growth
Species:  Human
Tissue:  pancreatic cells
References:  29
Physiological Consequences of Altering Gene Expression
Mice lacking the MCH1 receptor are hyperphagic and resistant to diet-induced obesity, compared to the wild type.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  9
MCH1 receptor knockout mice are lean and have reduced fat mass compared to the wild type.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  26
Stressor-evoked acetylcholine release within the prefrontal cortex blocking by MCH1 receptor antagonism is not observed in MCH1 receptor knockout mice, compared to the wild type.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  39
MCH1 receptor knockout mice are more active, less anxious and less emotionally reactive when compared to the wild type.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  23
Phenotypes, Alleles and Disease Models Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Mchr1tm1Dgam Mchr1tm1Dgam/Mchr1tm1Dgam
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:2180756  MP:0005450 abnormal energy expenditure PMID: 15130877 
Mchr1tm1Yush Mchr1tm1Yush/Mchr1tm1Yush
involves: 129 * C57BL/6
MGI:2180756  MP:0005450 abnormal energy expenditure PMID: 12072376 
Mchr1tm1.1Blak Mchr1tm1.1Blak/Mchr1tm1.1Blak
involves: 129S1/Sv * 129S2/SvPas * 129X1/SvJ * FVB/N
MGI:2180756  MP:0003194 abnormal frequency of paradoxical sleep PMID: 18380672 
Mchr1tm1Sqn Mchr1tm1Sqn/Mchr1tm1Sqn
involves: 129S7/SvEvBrd * C57BL/6
MGI:2180756  MP:0003953 abnormal hormone level PMID: 11867747 
Mchr1tm1Sqn Mchr1tm1Sqn/Mchr1tm1Sqn
involves: 129S7/SvEvBrd * C57BL/6
MGI:2180756  MP:0005266 abnormal metabolism PMID: 11867747 
Mchr1tm1Blak Mchr1tm1Blak/Mchr1tm1Blak
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J
MGI:2180756  MP:0002272 abnormal nervous system electrophysiology PMID: 15926931 
Mchr1tm1Blak Mchr1tm1Blak/Mchr1tm1Blak
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J
MGI:2180756  MP:0002799 abnormal passive avoidance behavior PMID: 15926931 
Mchr1tm1Lex Mchr1tm1Lex/Mchr1tm1Lex
involves: 129S/SvEvBrd * C57BL/6J
MGI:2180756  MP:0005322 abnormal serotonin concentration PMID: 15988472 
Mchr1tm1.1Blak Mchr1tm1.1Blak/Mchr1tm1.1Blak
involves: 129S1/Sv * 129S2/SvPas * 129X1/SvJ * FVB/N
MGI:2180756  MP:0001501 abnormal sleep pattern PMID: 18380672 
Mchr1tm1Lex Mchr1tm1Lex/Mchr1tm1Lex
involves: 129S/SvEvBrd * C57BL/6J
MGI:2180756  MP:0001360 abnormal social investigation PMID: 15988472 
Mchr1tm1Lex Mchr1tm1Lex/Mchr1tm1Lex
involves: 129S/SvEvBrd * C57BL/6J
MGI:2180756  MP:0001364 decreased anxiety-related response PMID: 15988472 
Mchr1tm1Dgam Mchr1tm1Dgam/Mchr1tm1Dgam
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:2180756  MP:0001262 decreased body weight PMID: 15130877 
Mchr1+|Mchr1tm1Dgam Mchr1tm1Dgam/Mchr1+
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:2180756  MP:0001262 decreased body weight PMID: 15130877 
Mchr1tm1Yush Mchr1tm1Yush/Mchr1tm1Yush
involves: 129 * C57BL/6
MGI:2180756  MP:0002727 decreased circulating insulin level PMID: 12072376 
Mchr1tm1Yush Mchr1tm1Yush/Mchr1tm1Yush
involves: 129 * C57BL/6
MGI:2180756  MP:0005668 decreased circulating leptin level PMID: 12072376 
Mchr1tm1Sqn Mchr1tm1Sqn/Mchr1tm1Sqn
involves: 129S7/SvEvBrd * C57BL/6
MGI:2180756  MP:0005668 decreased circulating leptin level PMID: 11867747 
Mchr1tm1Sqn Mchr1tm1Sqn/Mchr1tm1Sqn
involves: 129S7/SvEvBrd * C57BL/6
MGI:2180756  MP:0005459 decreased percent body fat PMID: 11867747 
Mchr1tm1Sqn Mchr1tm1Sqn/Mchr1tm1Sqn
involves: 129S7/SvEvBrd * C57BL/6
MGI:2180756  MP:0010379 decreased respiratory quotient PMID: 11867747 
Mchr1tm1Lex Mchr1tm1Lex/Mchr1tm1Lex
involves: 129S/SvEvBrd * C57BL/6J
MGI:2180756  MP:0010167 decreased response to stress-induced hyperthermia PMID: 15988472 
Mchr1tm1Sqn Mchr1tm1Sqn/Mchr1tm1Sqn
involves: 129S7/SvEvBrd * C57BL/6
MGI:2180756  MP:0005471 decreased thyroxine level PMID: 11867747 
Mchr1tm1Dgam Mchr1tm1Dgam/Mchr1tm1Dgam
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:2180756  MP:0010025 decreased total body fat amount PMID: 15130877 
Mchr1tm1Yush Mchr1tm1Yush/Mchr1tm1Yush
involves: 129 * C57BL/6
MGI:2180756  MP:0010025 decreased total body fat amount PMID: 12072376 
Mchr1tm1Dgam Mchr1tm1Dgam/Mchr1tm1Dgam
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:2180756  MP:0001399 hyperactivity PMID: 15130877 
Mchr1tm1Sqn Mchr1tm1Sqn/Mchr1tm1Sqn
involves: 129S7/SvEvBrd * C57BL/6
MGI:2180756  MP:0001399 hyperactivity PMID: 11867747 
Mchr1tm1.1Blak Mchr1tm1.1Blak/Mchr1tm1.1Blak
involves: 129S1/Sv * 129S2/SvPas * 129X1/SvJ * FVB/N
MGI:2180756  MP:0009747 impaired behavioral response to xenobiotic PMID: 18380672 
Mchr1tm1Dgam Mchr1tm1Dgam/Mchr1tm1Dgam
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:2180756  MP:0005533 increased body temperature PMID: 15130877 
Mchr1tm1Lex Mchr1tm1Lex/Mchr1tm1Lex
involves: 129S/SvEvBrd * C57BL/6J
MGI:2180756  MP:0005533 increased body temperature PMID: 15988472 
Mchr1tm1Sqn Mchr1tm1Sqn/Mchr1tm1Sqn
involves: 129S7/SvEvBrd * C57BL/6
MGI:2180756  MP:0001745 increased circulating corticosterone level PMID: 11867747 
Mchr1tm1Sqn Mchr1tm1Sqn/Mchr1tm1Sqn
involves: 129S7/SvEvBrd * C57BL/6
MGI:2180756  MP:0003911 increased drinking behavior PMID: 11867747 
Mchr1tm1Yush Mchr1tm1Yush/Mchr1tm1Yush
involves: 129 * C57BL/6
MGI:2180756  MP:0003909 increased eating behavior PMID: 12072376 
Mchr1tm1Sqn Mchr1tm1Sqn/Mchr1tm1Sqn
involves: 129S7/SvEvBrd * C57BL/6
MGI:2180756  MP:0003909 increased eating behavior PMID: 11867747 
Mchr1tm1Dgam Mchr1tm1Dgam/Mchr1tm1Dgam
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:2180756  MP:0002626 increased heart rate PMID: 15130877 
Mchr1tm1Sqn Mchr1tm1Sqn/Mchr1tm1Sqn
involves: 129S7/SvEvBrd * C57BL/6
MGI:2180756  MP:0003960 increased lean body mass PMID: 11867747 
Mchr1tm1Dgam Mchr1tm1Dgam/Mchr1tm1Dgam
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:2180756  MP:0005659 increased resistance to diet-induced obesity PMID: 15130877 
Mchr1tm1Blak Mchr1tm1Blak/Mchr1tm1Blak
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J
MGI:2180756  MP:0005659 increased resistance to diet-induced obesity PMID: 15926931 
Mchr1tm1Yush Mchr1tm1Yush/Mchr1tm1Yush
involves: 129 * C57BL/6
MGI:2180756  MP:0005659 increased resistance to diet-induced obesity PMID: 12072376 
Mchr1tm1Sqn Mchr1tm1Sqn/Mchr1tm1Sqn
involves: 129S7/SvEvBrd * C57BL/6
MGI:2180756  MP:0005659 increased resistance to diet-induced obesity PMID: 11867747 
Mchr1tm1Ohl Mchr1tm1Ohl/Mchr1tm1Ohl
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:2180756  MP:0000066 osteoporosis PMID: 15147966 
Mchr1tm1Dgam Mchr1tm1Dgam/Mchr1tm1Dgam
involves: 129S1/Sv * 129X1/SvJ * C57BL/6
MGI:2180756  MP:0001433 polyphagia PMID: 15130877 
Mchr1tm1Yush Mchr1tm1Yush/Mchr1tm1Yush
involves: 129 * C57BL/6
MGI:2180756  MP:0008489 postnatal slow weight gain PMID: 12072376 
Mchr1tm1Yush Mchr1tm1Yush/Mchr1tm1Yush
involves: 129 * C57BL/6
MGI:2180756  MP:0001263 weight loss PMID: 12072376 
General Comments
In humans, MCH2 shares a similar distribution pattern as MCH1. However no role is ascribed yet to MCH2 due both to the lack of expression in rodents and the lack of selective antagonists.
Available Assays
DiscoveRx PathHunter® U2OS MCHR1 β-Arrestin Cell Line (Cat no. 93-0940C3)
PathHunter® U2OS MCHR1 β-Arrestin-1 Cell Line (Cat no. 93-0243C3)
more info

REFERENCES

1. Audinot V, Lahaye C, Suply T, Beauverger P, Rodriguez M, Galizzi JP, Fauchere JL, Boutin JA. (2001) [125I]-S36057: a new and highly potent radioligand for the melanin-concentrating hormone receptor. Br J Pharmacol133: 371-378. [PMID:11375253]

2. Audinot V, Zuana OD, Fabry N, Ouvry C, Nosjean O, Henlin JM, Fauchère JL, Boutin JA. (2009) S38151 [p-guanidinobenzoyl-[Des-Gly(10)]-MCH(7-17)] is a potent and selective antagonist at the MCH(1) receptor and has anti-feeding properties in vivo. Peptides30 (11): 1997-2007. [PMID:19619599]

3. Bednarek MA, Hreniuk DL, Tan C, Palyha OC, MacNeil DJ, Van der Ploeg LH, Howard AD, Feighner SD. (2002) Synthesis and biological evaluation in vitro of selective, high affinity peptide antagonists of human melanin-concentrating hormone action at human melanin-concentrating hormone receptor 1. Biochemistry41: 6383-6390. [PMID:12009900]

4. Borowsky B, Durkin MM, Ogozalek K, Marzabadi MR, DeLeon J, Lagu B, Heurich R, Lichtblau H, Shaposhnik Z, Daniewska I, Blackburn TP, Branchek TA, Gerald C, Vaysse PJ, Forray C. (2002) Antidepressant, anxiolytic and anorectic effects of a melanin-concentrating hormone-1 receptor antagonist. Nat Med8: 825-830. [PMID:12118247]

5. Burgaud JL, Poosti R, Fehrentz JA, Martinez J, Nahon JL. (1997) Melanin-concentrating hormone binding sites in human SVK14 keratinocytes. Biochem. Biophys. Res. Commun.241 (3): 622-9. [PMID:9434758]

6. Bächner D, Kreienkamp H, Weise C, Buck F, Richter D. (1999) Identification of melanin concentrating hormone (MCH) as the natural ligand for the orphan somatostatin-like receptor 1 (SLC-1). FEBS Lett457: 522-524. [PMID:10471841]

7. Chaki S, Funakoshi T, Hirota-Okuno S, Nishiguchi M, Shimazaki T, Iijima M, Grottick AJ, Kanuma K, Omodera K, Sekiguchi Y, Okuyama S, Tran TA, Semple G, Thomsen W. (2005) Anxiolytic- and antidepressant-like profile of ATC0065 and ATC0175: nonpeptidic and orally active melanin-concentrating hormone receptor 1 antagonists. J Pharmacol Exp Ther313: 831-839. [PMID:15677346]

8. Chambers J, Ames RS, Bergsma D, Muir A, Fitzgerald LR, Hervieu G, Dytko GM, Foley JJ, Martin J, Liu WS, Park J, Ellis C, Ganguly S, Konchar S, Cluderay J, Leslie R, Wilson S, Sarau HM. (1999) Melanin-concentrating hormone is the cognate ligand for the orphan G-protein-coupled receptor SLC-1. Nature400: 261-265. [PMID:10421367]

9. Chen Y, Hu C, Hsu CK, Zhang Q, Bi C, Asnicar M, Hsiung HM, Fox N, Slieker LJ, Yang DD, Heiman ML, Shi Y. (2002) Targeted disruption of the melanin-concentrating hormone receptor-1 results in hyperphagia and resistance to diet-induced obesity. Endocrinology143: 2469-2477. [PMID:12072376]

10. David DJ, Klemenhagen KC, Holick KA, Saxe MD, Mendez I, Santarelli L, Craig D, Zong H, Swanson C, Hegde LG, Ping XI, Dong D, Marzabadi MR, Gerald C, Hen R. (2007) Efficacy of the MCHR1 antagonist N-[3-(1-{[4-(3,4-difluorophenoxy)phenyl]methyl}(4-piperidyl))-4-methylphenyl]-2-methylpropanamide (SNAP 94847) in mouse models of anxiety and depression following acute and chronic administration is independent of hippocampal neurogenesis. J Pharmacol Exp Ther, : -. [PMID:17237257]

11. Duncan EA, Rider TR, Jandacek RJ, Clegg DJ, Benoit SC, Tso P, Woods SC. (2006) The regulation of alcohol intake by melanin-concentrating hormone in rats. Pharmacol Biochem Behav85: 728-735. [PMID:17188345]

12. Frezzotti R, Caporossi A. (1990) Pathogenesis of posterior capsular opacification. Part I. Epidemiological and clinico-statistical data. J Cataract Refract Surg16: 347-352. [PMID:2355323]

13. Georgescu D, Sears RM, Hommel JD, Barrot M, Bolaños CA, Marsh DJ, Bednarek MA, Bibb JA, Maratos-Flier E, Nestler EJ, DiLeone RJ. (2005) The hypothalamic neuropeptide melanin-concentrating hormone acts in the nucleus accumbens to modulate feeding behavior and forced-swim performance. J Neurosci25: 2933-2940. [PMID:15772353]

14. Guo T, Gu H, Hobbs DW, Busler DE, Rokosz LL. (2007) Discovery of tetralin ureas as potent melanin concentrating hormone 1 receptor antagonists. Bioorg Med Chem Lett17: 1718-1721. [PMID:17251014]

15. Hawes BE, Kil E, Green B, O'Neill K, Fried S, Graziano MP. (2000) The melanin-concentrating hormone receptor couples to multiple G proteins to activate diverse intracellular signaling pathways. Endocrinology141: 4524-4532. [PMID:11108264]

16. Hertzog DL, Al-Barazanji KA, Bigham EC, Bishop MJ, Britt CS, Carlton DL, Cooper JP, Daniels AJ, Garrido DM, Goetz AS et al.. (2006) The discovery and optimization of pyrimidinone-containing MCH R1 antagonists. Bioorg. Med. Chem. Lett.16 (18): 4723-7. [PMID:16870432]

17. Hervieu GJ, Cluderay JE, Harrison D, Meakin J, Maycox P, Nasir S, Leslie RA. (2000) The distribution of the mRNA and protein products of the melanin-concentrating hormone (MCH) receptor gene, slc-1, in the central nervous system of the rat. Eur J Neurosci12: 1194-1216. [PMID:10762350]

18. Hill J, Duckworth M, Murdock P, Rennie G, Sabido-David C, Ames RS, Szekeres P, Wilson S, Bergsma DJ, Gloger IS, Levy DS, Chambers JK, Muir AI. (2001) Molecular cloning and functional characterization of MCH2, a novel human MCH receptor. J Biol Chem276: 20125-20129. [PMID:11274220]

19. Kokkotou EG, Tritos NA, Mastaitis JW, Slieker L, Maratos-Flier E. (2001) Melanin-concentrating hormone receptor is a target of leptin action in the mouse brain. Endocrinology142: 680-686. [PMID:11159839]

20. Kolakowski LF, Jung BP, Nguyen T, Johnson MP, Lynch KR, Cheng R, Heng HH, George SR, O'Dowd BF. (1996) Characterization of a human gene related to genes encoding somatostatin receptors. FEBS Lett398: 253-258. [PMID:8977118]

21. Kowalski TJ, Farley C, Cohen-Williams ME, Varty G, Spar BD. (2004) Melanin-concentrating hormone-1 receptor antagonism decreases feeding by reducing meal size. Eur J Pharmacol497: 41-47. [PMID:15321733]

22. Lakaye B, Minet A, Zorzi W, Grisar T. (1998) Cloning of the rat brain cDNA encoding for the SLC-1 G protein-coupled receptor reveals the presence of an intron in the gene. Biochim Biophys Acta1401: 216-220. [PMID:9531978]

23. Lalonde R, Qian S. (2007) Exploratory activity, motor coordination, and spatial learning in Mchr1 knockout mice. Behav Brain Res178: 293-304. [PMID:17270288]

24. Lembo PM, Grazzini E, Cao J, Hubatsch DA, Pelletier M, Hoffert C, St-Onge S, Pou C, Labrecque J, Groblewski T, O'Donnell D, Payza K, Ahmad S, Walker P. (1999) The receptor for the orexigenic peptide melanin-concentrating hormone is a G-protein-coupled receptor. Nat Cell Biol1: 267-271. [PMID:10559938]

25. Lynch JK, Freeman JC, Judd AS, Iyengar R, Mulhern M, Zhao G, Napier JJ, Wodka D, Brodjian S, Dayton BD, Falls D, Ogiela C, Reilly RM, Campbell TJ, Polakowski JS, Hernandez L, Marsh KC, Shapiro R, Knourek-Segel V, Droz B, Bush E, Brune M, Preusser LC, Fryer RM, Reinhart GA, Houseman K, Diaz G, Mikhail A, Limberis JT, Sham HL, Collins CA, Kym PR. (2006) Optimization of chromone-2-carboxamide melanin concentrating hormone receptor 1 antagonists: assessment of potency, efficacy, and cardiovascular safety. J Med Chem49: 6569-6584. [PMID:17064075]

26. Marsh DJ, Weingarth DT, Novi DE, Chen HY, Trumbauer ME, Chen AS, Guan XM, Jiang MM, Feng Y, Camacho RE, Shen Z, Frazier EG, Yu H, Metzger JM, Kuca SJ, Shearman LP, Gopal-Truter S, MacNeil DJ, Strack AM, MacIntyre DE, Van der Ploeg LH, Qian S. (2002) Melanin-concentrating hormone 1 receptor-deficient mice are lean, hyperactive, and hyperphagic and have altered metabolism. Proc Natl Acad Sci U S A99: 3240-3245. [PMID:11867747]

27. Mori M, Harada M, Terao Y, Sugo T, Watanabe T, Shimomura Y, Abe M, Shintani Y, Onda H, Nishimura O, Fujino M. (2001) Cloning of a novel G protein-coupled receptor, SLT, a subtype of the melanin-concentrating hormone receptor. Biochem Biophys Res Commun283: 1013-1018. [PMID:11355873]

28. Nagasaki H, Chung S, Dooley CT, Wang Z, Li C, Saito Y, Clark SD, Houghten RA, Civelli O. (2009) The pharmacological properties of a novel MCH1 receptor antagonist isolated from combinatorial libraries. Eur. J. Pharmacol.602: 194-202. [PMID:19041642]

29. Pissios P, Ozcan U. (2007) Melanin concentrating hormone is a novel regulator of islet function and growth. Diabetes56: 311-319. [PMID:17259374]

30. Pissios P, Trombly DJ, Tzameli I, Maratos-Flier E. (2003) Melanin-concentrating hormone receptor 1 activates extracellular signal-regulated kinase and synergizes with G(s)-coupled pathways. Endocrinology144: 3514-3523. [PMID:12865333]

31. Qu D, Ludwig DS, Gammeltoft S, Piper M, Pelleymounter MA, Cullen MJ, Mathes WF, Przypek R, Kanarek R, Maratos-Flier E. (1996) A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature380: 243-247. [PMID:8637571]

32. Rossi M, Choi SJ, O'Shea D, Miyoshi T, Ghatei MA, Bloom SR. (1997) Melanin-concentrating hormone acutely stimulates feeding, but chronic administration has no effect on body weight. Endocrinology138: 351-355. [PMID:8977423]

33. Sailer AW, Sano H, Zeng Z, McDonald TP, Pan J, Pong SS, Feighner SD, Tan CP, Fukami T, Iwaasa H, Hreniuk DL, Morin NR, Sadowski SJ, Ito M, Ito M, Bansal A, Ky B, Figueroa DJ, Jiang Q, Austin CP, MacNeil DJ, Ishihara A, Ihara M, Kanatani A, Van der Ploeg LH, Howard AD, Liu Q. (2001) Identification and characterization of a second melanin-concentrating hormone receptor, MCH-2R. Proc Natl Acad Sci U S A98: 7564-7569. [PMID:11404457]

34. Saito Y, Cheng M, Leslie FM, Civelli O. (2001) Expression of the melanin-concentrating hormone (MCH) receptor mRNA in the rat brain. J Comp Neurol435: 26-40. [PMID:11370009]

35. Saito Y, Nothacker HP, Wang Z, Lin SH, Leslie F, Civelli O. (1999) Molecular characterization of the melanin-concentrating-hormone receptor. Nature400: 265-269. [PMID:10421368]

36. Saito Y, Wang Z, Hagino-Yamagishi K, Civelli O, Kawashima S, Maruyama K. (2001) Endogenous melanin-concentrating hormone receptor SLC-1 in human melanoma SK-MEL-37 cells. Biochem Biophys Res Commun289: 44-50. [PMID:11708774]

37. Shearman LP, Camacho RE, Sloan Stribling D, Zhou D, Bednarek MA, Hreniuk DL, Feighner SD, Tan CP, Howard AD, Van der Ploeg LH, MacIntyre DE, Hickey GJ, Strack AM. (2003) Chronic MCH-1 receptor modulation alters appetite, body weight and adiposity in rats. Eur J Pharmacol475: 37-47. [PMID:12954357]

38. Shimomura Y, Mori M, Sugo T, Ishibashi Y, Abe M, Kurokawa T, Onda H, Nishimura O, Sumino Y, Fujino M. (1999) Isolation and identification of melanin-concentrating hormone as the endogenous ligand of the SLC-1 receptor. Biochem Biophys Res Commun261: 622-626. [PMID:10441476]

39. Smith DG, Davis RJ, Rorick-Kehn L, Morin M, Witkin JM, McKinzie DL, Nomikos GG, Gehlert DR. (2006) Melanin-concentrating hormone-1 receptor modulates neuroendocrine, behavioral, and corticolimbic neurochemical stress responses in mice. Neuropsychopharmacology31: 1135-1145. [PMID:16205780]

40. Suply T, Della Zuana O, Audinot V, Rodriguez M, Beauverger P, Duhault J, Canet E, Galizzi JP, Nahon JL, Levens N, Boutin JA. (2001) SLC-1 receptor mediates effect of melanin-concentrating hormone on feeding behavior in rat: a structure-activity study. J Pharmacol Exp Ther299: 137-146. [PMID:11561073]

41. Takekawa S, Asami A, Ishihara Y, Terauchi J, Kato K, Shimomura Y, Mori M, Murakoshi H, Kato K, Suzuki N, Nishimura O, Fujino M. (2002) T-226296: a novel, orally active and selective melanin-concentrating hormone receptor antagonist. Eur J Pharmacol438: 129-135. [PMID:11909603]

42. Tavares FX, Al-Barazanji KA, Bishop MJ, Britt CS, Carlton DL, Cooper JP, Feldman PL, Garrido DM, Goetz AS, Grizzle MK, Hertzog DL, Ignar DM, Lang DG, McIntyre MS, Ott RJ, Peat AJ, Zhou HQ. (2006) 6-(4-chlorophenyl)-3-substituted-thieno[3,2-d]pyrimidin-4(3H)-one-based melanin-concentrating hormone receptor 1 antagonist. J Med Chem49: 7108-7118. [PMID:17125263]

43. Verlaet M, Adamantidis A, Coumans B, Chanas G, Zorzi W, Heinen E, Grisar T, Lakaye B. (2002) Human immune cells express ppMCH mRNA and functional MCHR1 receptor. FEBS Lett527: 205-210. [PMID:12220661]

44. Wang S, Behan J, O'Neill K, Weig B, Fried S, Laz T, Bayne M, Gustafson E, Hawes BE. (2001) Identification and pharmacological characterization of a novel human melanin-concentrating hormone receptor, mch-r2. J Biol Chem276: 34664-34670. [PMID:11459838]

45. Witty DR, Bateson J, Hervieu GJ, Al Barazanji K, Jeffrey P, Hamprecht D, Haynes A, Johnson CN, Muir AI, O'Hanlon PJ, Stemp G, Stevens AJ, Thewlis K, Winborn KY. (2006) Discovery of potent and stable conformationally constrained analogues of the MCH R1 antagonist SB-568849. Bioorg. Med. Chem.16: 4872-4878. [PMID:16839763]

To cite this database page, please use the following:

Valérie Audinot, Jean A. Boutin.
Melanin-concentrating hormone receptors: MCH1 receptor. Last modified on 31/01/2013. Accessed on 20/08/2014. IUPHAR database (IUPHAR-DB), http://www.iuphar-db.org/DATABASE/ObjectDisplayForward?objectId=280.

Contact us | Print | Back to top | Help
Copyright © 2014 IUPHAR