Nomenclature: LPA1 receptor

Family: Lysophospholipid (LPA) receptors

Annotation status:  image of an orange circle Annotated and awaiting review. Please contact us if you can help with reviewing. 

Contents

Gene and Protein Information
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 364 9q31.3 LPAR1 lysophosphatidic acid receptor 1 5
Mouse 7 364 4 32.2cM Lpar1 lysophosphatidic acid receptor 1 5
Rat 7 364 5q24 Lpar1 lysophosphatidic acid receptor 1 1
Previous and Unofficial Names
EDG2
VZG1
LPA1
GPR26
edg-2
vzg-1
Gpcr26
Mrec1.3
rec0.1.3
VZG-1
Edg2
lp A1
rec.1.3
endothelial differentiation, lysophosphatidic acid G-protein-coupled receptor, 2
Lpar1
MGC105279
LPA receptor 1
LPA-1
lysophosphatidic acid receptor 1
lysophosphatidic acid receptor Edg-2
Kdt2
AI326300
Database Links
ChEMBL Target
Ensembl Gene
Entrez Gene
GPCRDB
GeneCards
GenitoUrinary Development Molecular Anatomy Project
HomoloGene
Human Protein Reference Database
InterPro
KEGG Gene
OMIM
PharmGKB Gene
PhosphoSitePlus
Protein Ontology (PRO)
RefSeq Nucleotide
RefSeq Protein
TreeFam
UniGene Hs.
UniProtKB
Wikipedia
Natural/Endogenous Ligands
LPA
Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
LPA Mm Full agonist 7.9 – 8.3 pEC50 9,19,23
pEC50 7.9 – 8.3 (EC50 5x10-9 – 1.17x10-8 M) [9,19,23]
NAEPA Mm Partial agonist 6.71 pEC50 23
pEC50 6.71 (EC50 1.97x10-7 M) [23]
oleoyl-thiophosphate Mm Partial agonist 6.71 pEC50 21
pEC50 6.71 (EC50 1.93x10-7 M) [21]
oleoyl-thiophosphate Hs Partial agonist 6.71 pEC50 10
pEC50 6.71 (EC50 1.93x10-7 M) [10]
2-oleoyl-LPA Hs Agonist 6.7 pEC50 3
pEC50 6.7 [3]
T13 Mm Partial agonist 6.3 pEC50 21,23
pEC50 6.3 (EC50 5x10-7 M) [21,23]
alkyl OMPT Hs Agonist 6.1 – 6.2 pEC50 29
pEC50 6.1 – 6.2 [29]
View species-specific agonist tables
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
VPC32183 Hs Antagonist 7.75 pKi 18
pKi 7.75 [18]
syn-BrP-LPA Hs Antagonist 6.56 pKi 36
pKi 6.56 (Ki 2.73x10-7 M) [36]
anti-BrP-LPA Hs Antagonist 6.12 pKi 36
pKi 6.12 (Ki 7.52x10-7 M) [36]
BrP-LPA Hs Antagonist 6.09 pKi 36
pKi 6.09 (Ki 8.05x10-7 M) [36]
VPC12249 Mm Antagonist 5.24 – 6.86 pKi 20,23
pKi 5.24 – 6.86 (Ki 1.37x10-7 – 5.7x10-6 M) [20,23]
dioctanoy​lglycerol​ pyrophos​phate Hs Antagonist 5.15 – 5.18 pKi 12,23
pKi 5.15 – 5.18 (Ki 6.6x10-6 – 7x10-6 M) [12,23]
AM966 Mm Antagonist 7.7 pEC50 32
pEC50 7.7 [32]
AM966 Hs Antagonist 6.7 – 7.8 pIC50 32
pIC50 6.7 – 7.8 [32]
VPC32183 Mm Antagonist 6.96 pIC50 18
pIC50 6.96 (IC50 1.09x10-7 M) [18]
Ki16425 Mm Antagonist 6.6 – 6.9 pIC50 7,26
pIC50 6.6 – 6.9 (IC50 1.3x10-7 – 2.5x10-7 M) [7,26]
syn-BrP-LPA Hs Antagonist 6.19 pIC50 36
pIC50 6.19 (IC50 6.48x10-7 M) [36]
AM095 Mm Antagonist 6.11 pIC50 31
pIC50 6.11 (IC50 7.78x10-7 M) [31]
anti-BrP-LPA Hs Antagonist 5.68 pIC50 36
pIC50 5.68 (IC50 2.079x10-6 M) [36]
BrP-LPA Hs Antagonist 5.34 pIC50 36
pIC50 5.34 (IC50 4.52x10-6 M) [36]
View species-specific antagonist tables
Antagonist Comments
Although we have recorded the in vitro, pIC50 for AM966 from the LPA-stimulated intracellular calcium release from CHO cells expressing hLPA1 receptors the same paper also reports the it inhibited LPA-induced chemotaxis (pIC50= 6.7) of human IMR-90 lung fibroblasts [32].
Primary Transduction Mechanisms
Transducer Effector/Response
Gi/Go family
Gq/G11 family
G12/G13 family
Adenylate cyclase inhibition
Phospholipase C stimulation
Phospholipase A2 stimulation
Other - See Comments
Comments:  In general LPA1 is known to induce many responses including cell proliferation and survival, cell migration, and cytoskeletal changes; altered cell-cell contact through serum-response element activation, Ca2+ mobilization, and adenylyl cyclase inhibition; and activation of mitogen-activated protein kinase, phospholipase C, Akt, and Rho pathways. For a detailed review please see [4].
References:  14,22
Tissue Distribution
Brain, uterus, testis, lung, small intestine, heart, stomach, kidney, spleen, thymus, placenta, and skeletal muscle
Species:  Human
Technique:  Northern blot
References:  2
Brain, heart, lung, and testis
Expression level:  High
Species:  Mouse
Technique:  Northern blot
References:  35
Kidney,spleen, thymus (not in liver)
Expression level:  Low
Species:  Mouse
Technique:  Northern Blot
References:  35
Embryonic cerebral dorsal telencephalon (cortical ventricular zone (VZ))
Expression level:  High
Species:  Mouse
Technique:  In situ hybridisation and RT-PCR, Western Blot
References:  8,19
Brain, uterus, testis, lung, small intestine, heart, stomach, kidney, spleen, thymus, placenta, and skeletal muscle, embryonic brain, embryonic dorsal olfactory bulb, embryonic limb buds, embryonic craniofacial region, embryonic somites, and embryonic genital tubercle
Species:  Mouse
Technique:  In situ hybridisation, Northern blot
References:  6,19,27
In the postnatal murine nervous system: oligodendrocytes and Schwann cells, the myelinating cells of the central and peripheral nervous systems
Species:  Rat
Technique:  In situ hybridisation, histochemistry, immunocytochemistry, Northern blot
References:  1
Expression Datasets

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays
Actin rearrangement, stress fibre formation, and cell rounding
Species:  Rat
Tissue:  Neuroblastoma (B103 cell line)
Response measured:  Cell rounding upon receptor stimulation by LPA ligand
References:  14,22
Physiological Functions
Increased cell proliferation and/or survival
Species:  Mouse
Tissue:  Schwann cells
References:  24,33
Increase in neuronal differentiation
Species:  Mouse
Tissue:  Brain
References:  15,24
Actin rearrangement and alteration of cortical neuroblast morphology in vitro and in vivo
Species:  Mouse
Tissue:  Neuroprogenitors, Schwann cells
References:  13,16-17,34
Cell migration
Species:  Mouse
Tissue:  Cortical neuroprogenitor
References:  17
Inhibition of adipocyte differentiation
Species:  Mouse
Tissue:  Adipose
References:  30
Physiological Consequences of Altering Gene Expression
Phenotypes include: (50 %) neonatal lethality; impaired suckling in neonatal pups; smaller size pups; craniofacial dysmorphism; increased apoptosis. Alterations in signaling characteristics are also observed.
Species:  Mouse
Tissue: 
Technique:  Gene knockout
References:  6
Mice with receptor knockout develop 50% perinatal lethality due to defective olfaction and impaired suckling behavior, decreased body size, craniofacial dysmorphism with blunted snouts, and increased apoptosis in sciatic nerve Schwann cells.
Species:  Mouse
Tissue:  Brain
Technique:  Gene knockouts
References:  6,19
Malaga receptor knockout have negligible perinatal lethality, reduced NPC proliferation, increased cerebral cortical apoptosis, decreased cortical size, and premature expression of neuronal markers, reduced neurogenesis in dentate gyrus, inhibition of fear extinction.
Species:  Mouse
Tissue:  Brain
Technique:  Gene knockouts
References:  11,25,28
Phenotypes, Alleles and Disease Models Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Lpar1tm1Mcox Lpar1tm1Mcox/Lpar1tm1Mcox
B6.129P2-Lpar1
MGI:108429  MP:0005332 abnormal amino acid level PMID: 14697676 
Lpar1tm1Mcox Lpar1tm1Mcox/Lpar1tm1Mcox
B6.129P2-Lpar1
MGI:108429  MP:0000428 abnormal craniofacial morphology PMID: 14697676 
Lpar1tm1Jch Lpar1tm1Jch/Lpar1tm1Jch
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J
MGI:108429  MP:0001106 abnormal Schwann cell morphology PMID: 11087877 
Lpar1tm1Jch Lpar1tm1Jch/Lpar1tm1Jch
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J
MGI:108429  MP:0002651 abnormal sciatic nerve PMID: 11087877 
Lpar1tm1Mcox Lpar1tm1Mcox/Lpar1tm1Mcox
B6.129P2-Lpar1
MGI:108429  MP:0005322 abnormal serotonin concentration PMID: 14697676 
Lpar1tm1Jch Lpar1tm1Jch/Lpar1tm1Jch
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J
MGI:108429  MP:0001436 abnormal suckling behavior PMID: 11087877 
Lpar1tm1Mcox Lpar1tm1Mcox/Lpar1tm1Mcox
B6.129P2-Lpar1
MGI:108429  MP:0001255 decreased body height PMID: 14697676 
Lpar1tm1Mcox Lpar1tm1Mcox/Lpar1tm1Mcox
B6.129P2-Lpar1
MGI:108429  MP:0006086 decreased body mass index PMID: 14697676 
Lpar1tm1Jch Lpar1tm1Jch/Lpar1tm1Jch
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J
MGI:108429  MP:0001265 decreased body size PMID: 11087877 
Lpar1tm1Mcox Lpar1tm1Mcox/Lpar1tm1Mcox
B6.129P2-Lpar1
MGI:108429  MP:0009142 decreased prepulse inhibition PMID: 14697676 
Lpar1tm1Jch Lpar1tm1Jch/Lpar1tm1Jch
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J
MGI:108429  MP:0001107 decreased Schwann cell number PMID: 11087877 
Lpar1tm1Jch Lpar1tm1Jch/Lpar1tm1Jch
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J
MGI:108429  MP:0010025 decreased total body fat amount PMID: 11087877 
Lpar1tm1Jch Lpar1tm1Jch/Lpar1tm1Jch
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J
MGI:108429  MP:0000914 exencephaly PMID: 11087877 
Lpar1tm1Jch Lpar1tm1Jch/Lpar1tm1Jch
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J
MGI:108429  MP:0001914 hemorrhage PMID: 11087877 
Lpar1tm1Mcox Lpar1tm1Mcox/Lpar1tm1Mcox
B6.129P2-Lpar1
MGI:108429  MP:0001402 hypoactivity PMID: 14697676 
Lpar1tm1Mcox Lpar1tm1Mcox/Lpar1tm1Mcox
B6.129P2-Lpar1
MGI:108429  MP:0001906 increased dopamine level PMID: 14697676 
Lpar1tm1Mcox Lpar1tm1Mcox/Lpar1tm1Mcox
B6.129P2-Lpar1
MGI:108429  MP:0004831 long incisors PMID: 14697676 
Lpar1tm1Jch Lpar1tm1Jch/Lpar1tm1Jch
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J
MGI:108429  MP:0002058 neonatal lethality PMID: 11087877 
Lpar1tm1Jch Lpar1tm1Jch/Lpar1tm1Jch
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J
MGI:108429  MP:0001300 ocular hypertelorism PMID: 11087877 
Lpar1tm1Mcox Lpar1tm1Mcox/Lpar1tm1Mcox
B6.129P2-Lpar1
MGI:108429  MP:0001300 ocular hypertelorism PMID: 14697676 
Lpar1tm1Mcox Lpar1tm1Mcox/Lpar1tm1Mcox
B6.129P2-Lpar1
MGI:108429  MP:0002081 perinatal lethality PMID: 14697676 
Lpar1tm1Jch Lpar1tm1Jch/Lpar1tm1Jch
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J
MGI:108429  MP:0001732 postnatal growth retardation PMID: 11087877 
Lpar1tm1Jch Lpar1tm1Jch/Lpar1tm1Jch
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J
MGI:108429  MP:0002082 postnatal lethality PMID: 11087877 
Lpar1tm1Mcox Lpar1tm1Mcox/Lpar1tm1Mcox
B6.129P2-Lpar1
MGI:108429  MP:0002082 postnatal lethality PMID: 14697676 
Lpar1tm1Jch Lpar1tm1Jch/Lpar1tm1Jch
involves: 129S1/Sv * 129X1/SvJ * C57BL/6J
MGI:108429  MP:0000445 short snout PMID: 11087877 
Lpar1tm1Mcox Lpar1tm1Mcox/Lpar1tm1Mcox
B6.129P2-Lpar1
MGI:108429  MP:0000445 short snout PMID: 14697676 
Biologically Significant Variant Comments
There is a splice variant (mrec 1.3) that results in an 18-amino acid deletion of the N terminus, but its biological significance is unknown [5].
Available Assays
DiscoveRx PathHunter® CHO-K1 EDG2 β-Arrestin Cell Line (Cat no. 93-0644C2) more info

REFERENCES

1. Allard J, Barrón S, Diaz J, Lubetzki C, Zalc B, Schwartz JC, Sokoloff P. (1998) A rat G protein-coupled receptor selectively expressed in myelin-forming cells. Eur. J. Neurosci.10 (3): 1045-53. [PMID:9753172]

2. An S, Bleu T, Hallmark OG, Goetzl EJ. (1998) Characterization of a novel subtype of human G protein-coupled receptor for lysophosphatidic acid. J. Biol. Chem.273 (14): 7906-10. [PMID:9525886]

3. Bandoh K, Aoki J, Taira A, Tsujimoto M, Arai H, Inoue K. (2000) Lysophosphatidic acid (LPA) receptors of the EDG family are differentially activated by LPA species. Structure-activity relationship of cloned LPA receptors. FEBS Lett.478 (1-2): 159-65. [PMID:10922489]

4. Choi JW, Herr DR, Noguchi K, Yung YC, Lee CW, Mutoh T, Lin ME, Teo ST, Park KE, Mosley AN, Chun J. (2010) LPA receptors: subtypes and biological actions. Annu. Rev. Pharmacol. Toxicol.50: 157-86. [PMID:20055701]

5. Contos JJ, Chun J. (1998) Complete cDNA sequence, genomic structure, and chromosomal localization of the LPA receptor gene, lpA1/vzg-1/Gpcr26. Genomics51 (3): 364-78. [PMID:9721207]

6. Contos JJ, Fukushima N, Weiner JA, Kaushal D, Chun J. (2000) Requirement for the lpA1 lysophosphatidic acid receptor gene in normal suckling behavior. Proc. Natl. Acad. Sci. U.S.A.97 (24): 13384-9. [PMID:11087877]

7. David M, Ribeiro J, Descotes F, Serre CM, Barbier M, Murone M, Clézardin P, Peyruchaud O. (2012) Targeting lysophosphatidic acid receptor type 1 with Debio 0719 inhibits spontaneous metastasis dissemination of breast cancer cells independently of cell proliferation and angiogenesis. Int. J. Oncol.40 (4): 1133-41. [PMID:22200658]

8. Dubin AE, Bahnson T, Weiner JA, Fukushima N, Chun J. (1999) Lysophosphatidic acid stimulates neurotransmitter-like conductance changes that precede GABA and L-glutamate in early, presumptive cortical neuroblasts. J. Neurosci.19 (4): 1371-81. [PMID:9952414]

9. Dubin AE, Herr DR, Chun J. (2010) Diversity of lysophosphatidic acid receptor-mediated intracellular calcium signaling in early cortical neurogenesis. J. Neurosci.30 (21): 7300-9. [PMID:20505096]

10. Durgam GG, Virag T, Walker MD, Tsukahara R, Yasuda S, Liliom K, van Meeteren LA, Moolenaar WH, Wilke N, Siess W et al.. (2005) Synthesis, structure-activity relationships, and biological evaluation of fatty alcohol phosphates as lysophosphatidic acid receptor ligands, activators of PPARgamma, and inhibitors of autotaxin. J. Med. Chem.48 (15): 4919-30. [PMID:16033271]

11. Estivill-Torrús G, Llebrez-Zayas P, Matas-Rico E, Santín L, Pedraza C, De Diego I, Del Arco I, Fernández-Llebrez P, Chun J, De Fonseca FR. (2008) Absence of LPA1 signaling results in defective cortical development. Cereb. Cortex18 (4): 938-50. [PMID:17656621]

12. Fischer DJ, Nusser N, Virag T, Yokoyama K, Wang Da, Baker DL, Bautista D, Parrill AL, Tigyi G. (2001) Short-chain phosphatidates are subtype-selective antagonists of lysophosphatidic acid receptors. Mol. Pharmacol.60 (4): 776-84. [PMID:11562440]

13. Fukushima N, Ishii I, Habara Y, Allen CB, Chun J. (2002) Dual regulation of actin rearrangement through lysophosphatidic acid receptor in neuroblast cell lines: actin depolymerization by Ca(2+)-alpha-actinin and polymerization by rho. Mol. Biol. Cell13 (8): 2692-705. [PMID:12181339]

14. Fukushima N, Kimura Y, Chun J. (1998) A single receptor encoded by vzg-1/lpA1/edg-2 couples to G proteins and mediates multiple cellular responses to lysophosphatidic acid. Proc. Natl. Acad. Sci. U.S.A.95 (11): 6151-6. [PMID:9600933]

15. Fukushima N, Shano S, Moriyama R, Chun J. (2007) Lysophosphatidic acid stimulates neuronal differentiation of cortical neuroblasts through the LPA1-G(i/o) pathway. Neurochem. Int.50 (2): 302-7. [PMID:17056154]

16. Fukushima N, Weiner JA, Chun J. (2000) Lysophosphatidic acid (LPA) is a novel extracellular regulator of cortical neuroblast morphology. Dev. Biol.228 (1): 6-18. [PMID:11087622]

17. Fukushima N, Weiner JA, Kaushal D, Contos JJ, Rehen SK, Kingsbury MA, Kim KY, Chun J. (2002) Lysophosphatidic acid influences the morphology and motility of young, postmitotic cortical neurons. Mol. Cell. Neurosci.20 (2): 271-82. [PMID:12093159]

18. Heasley BH, Jarosz R, Lynch KR, Macdonald TL. (2004) Initial structure-activity relationships of lysophosphatidic acid receptor antagonists: discovery of a high-affinity LPA1/LPA3 receptor antagonist. Bioorg. Med. Chem. Lett.14 (11): 2735-40. [PMID:15125924]

19. Hecht JH, Weiner JA, Post SR, Chun J. (1996) Ventricular zone gene-1 (vzg-1) encodes a lysophosphatidic acid receptor expressed in neurogenic regions of the developing cerebral cortex. J. Cell Biol.135 (4): 1071-83. [PMID:8922387]

20. Heise CE, Santos WL, Schreihofer AM, Heasley BH, Mukhin YV, Macdonald TL, Lynch KR. (2001) Activity of 2-substituted lysophosphatidic acid (LPA) analogs at LPA receptors: discovery of a LPA1/LPA3 receptor antagonist. Mol. Pharmacol.60 (6): 1173-80. [PMID:11723223]

21. Im DS. (2010) Pharmacological tools for lysophospholipid GPCRs: development of agonists and antagonists for LPA and S1P receptors. Acta Pharmacol. Sin.31 (9): 1213-22. [PMID:20729877]

22. Ishii I, Contos JJ, Fukushima N, Chun J. (2000) Functional comparisons of the lysophosphatidic acid receptors, LP(A1)/VZG-1/EDG-2, LP(A2)/EDG-4, and LP(A3)/EDG-7 in neuronal cell lines using a retrovirus expression system. Mol. Pharmacol.58 (5): 895-902. [PMID:11040035]

23. Kano K, Arima N, Ohgami M, Aoki J. (2008) LPA and its analogs-attractive tools for elucidation of LPA biology and drug development. Curr. Med. Chem.15 (21): 2122-31. [PMID:18781939]

24. Kingsbury MA, Rehen SK, Contos JJ, Higgins CM, Chun J. (2003) Non-proliferative effects of lysophosphatidic acid enhance cortical growth and folding. Nat. Neurosci.6 (12): 1292-9. [PMID:14625558]

25. Matas-Rico E, García-Diaz B, Llebrez-Zayas P, López-Barroso D, Santín L, Pedraza C, Smith-Fernández A, Fernández-Llebrez P, Tellez T, Redondo M et al.. (2008) Deletion of lysophosphatidic acid receptor LPA1 reduces neurogenesis in the mouse dentate gyrus. Mol. Cell. Neurosci.39 (3): 342-55. [PMID:18708146]

26. Ohta H, Sato K, Murata N, Damirin A, Malchinkhuu E, Kon J, Kimura T, Tobo M, Yamazaki Y, Watanabe T, Yagi M, Sato M, Suzuki R, Murooka H, Sakai T, Nishitoba T, Im DS, Nochi H, Tamoto K, Tomura H, Okajima F. (2003) Ki16425, a subtype-selective antagonist for EDG-family lysophosphatidic acid receptors. Mol. Pharmacol.64 (4): 994-1005. [PMID:14500756]

27. Ohuchi H, Hamada A, Matsuda H, Takagi A, Tanaka M, Aoki J, Arai H, Noji S. (2008) Expression patterns of the lysophospholipid receptor genes during mouse early development. Dev. Dyn.237 (11): 3280-94. [PMID:18924241]

28. Pedraza C, Sánchez-López J, Castilla-Ortega E, Rosell-Valle C, Zambrana-Infantes E, García-Fernández M, Rodriguez de Fonseca F, Chun J, Santín LJ, Estivill-Torrús G. (2013) Fear extinction and acute stress reactivity reveal a role of LPA1 receptor in regulating emotional-like behaviors. Brain Struct Funct,  [Epub ahead of print]. [PMID:23775489]

29. Qian L, Xu Y, Simper T, Jiang G, Aoki J, Umezu-Goto M, Arai H, Yu S, Mills GB, Tsukahara R et al.. (2006) Phosphorothioate analogues of alkyl lysophosphatidic acid as LPA3 receptor-selective agonists. ChemMedChem1 (3): 376-83. [PMID:16892372]

30. Simon MF, Daviaud D, Pradère JP, Grès S, Guigné C, Wabitsch M, Chun J, Valet P, Saulnier-Blache JS. (2005) Lysophosphatidic acid inhibits adipocyte differentiation via lysophosphatidic acid 1 receptor-dependent down-regulation of peroxisome proliferator-activated receptor gamma2. J. Biol. Chem.280 (15): 14656-62. [PMID:15710620]

31. Swaney JS, Chapman C, Correa LD, Stebbins KJ, Broadhead AR, Bain G, Santini AM, Darlington J, King CD, Baccei CS et al.. (2011) Pharmacokinetic and pharmacodynamic characterization of an oral lysophosphatidic acid type 1 receptor-selective antagonist. J. Pharmacol. Exp. Ther.336 (3): 693-700. [PMID:21159750]

32. Swaney JS, Chapman C, Correa LD, Stebbins KJ, Bundey RA, Prodanovich PC, Fagan P, Baccei CS, Santini AM, Hutchinson JH et al.. (2010) A novel, orally active LPA(1) receptor antagonist inhibits lung fibrosis in the mouse bleomycin model. Br. J. Pharmacol.160 (7): 1699-713. [PMID:20649573]

33. Weiner JA, Chun J. (1999) Schwann cell survival mediated by the signaling phospholipid lysophosphatidic acid. Proc. Natl. Acad. Sci. U.S.A.96 (9): 5233-8. [PMID:10220449]

34. Weiner JA, Fukushima N, Contos JJ, Scherer SS, Chun J. (2001) Regulation of Schwann cell morphology and adhesion by receptor-mediated lysophosphatidic acid signaling. J. Neurosci.21 (18): 7069-78. [PMID:11549717]

35. Yang AH, Ishii I, Chun J. (2002) In vivo roles of lysophospholipid receptors revealed by gene targeting studies in mice. Biochim. Biophys. Acta1582 (1-3): 197-203. [PMID:12069829]

36. Zhang H, Xu X, Gajewiak J, Tsukahara R, Fujiwara Y, Liu J, Fells JI, Perygin D, Parrill AL, Tigyi G et al.. (2009) Dual activity lysophosphatidic acid receptor pan-antagonist/autotaxin inhibitor reduces breast cancer cell migration in vitro and causes tumor regression in vivo. Cancer Res.69 (13): 5441-9. [PMID:19509223]

To cite this database page, please use the following:

Yun C. Yung, Jerold Chun, Chido Mpamhanga.
Lysophospholipid (LPA) receptors: LPA1 receptor. Last modified on 28/01/2014. Accessed on 02/09/2014. IUPHAR database (IUPHAR-DB), http://www.iuphar-db.org/DATABASE/ObjectDisplayForward?objectId=272.

Contact us | Print | Back to top | Help
Copyright © 2014 IUPHAR