Nomenclature: CysLT2 receptor

Family: Leukotriene receptors

Annotation status:  image of a green circle Annotated and expert reviewed. Please contact us if you can help with updates. 

Contents

Gene and Protein Information
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 346 13q14.12-q21.1 CYSLTR2 cysteinyl leukotriene receptor 2 16,33
Mouse 7 309 14 D2 Cysltr2 cysteinyl leukotriene receptor 2 20,34
Rat 7 309 15p11 Cysltr2 cysteinyl leukotriene receptor 2
Previous and Unofficial Names
LTC4
HPN321
LTC4
CysLT(2)
CYSLT2R
Cyslt2
RSBPT32
cysteinyl leukotriene CysLT2 receptor
cysteinyl leukotriene receptor 2
2300001H05Rik
LT-2
CysLT2
CysLT2R
HG57
PSEC0146
KPG_011
Database Links
DrugBank Target
Ensembl Gene
Entrez Gene
GPCRDB
GeneCards
GenitoUrinary Development Molecular Anatomy Project
HomoloGene
Human Protein Reference Database
InterPro
KEGG Gene
OMIM
PharmGKB Gene
Protein Ontology (PRO)
RefSeq Nucleotide
RefSeq Protein
TreeFam
UniGene Hs.
UniProtKB
Wikipedia
Natural/Endogenous Ligands
LTC4
LTD4
LTE4
Comments: LTC4 and LTD4 are more potent agonists than LTE4
Rank order of potency
LTC4LTD4 >> LTE4  [16,33,46]
Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
[3H]LTC4 Hs Full agonist 6.97 – 10.8 pKd 6-7,46
pKd 10.54 (Kd 2.9x10-11 M) in HUVEC [7]
pKd 6.97 – 10.8 (1.58x10-11 – 1.07x10-7 M) Kd1 and Kd2 in human lung parenchyma [6]
pKd 8.52 (Kd 3x10-9 M) in COS-1 cells [46]
[3H]LTD4 Hs Full agonist 7.3 – 9.4 pKd 16
pKd 7.3 – 9.4 (Kd 3.98x10-10 – 5.01x10-8 M) Kd1 and Kd-2 in COS-7 cells [16]
LTD4 Hs Full agonist 7.3 – 8.1 pKi 6
pKi 7.3 – 8.1 Ki1 and Ki2 against [3H]LTC4 in human lung parenchyma [6]
LTE4 Hs Partial agonist 6.5 pKi 6
pKi 6.5 Ki against [3H]LTC4 in human lung parenchyma [6]
LTC4 Hs Full agonist 7.03 – 8.64 pEC50 7,16,33,46,53
pEC50 8.05 – 8.64 (EC50 2.3x10-9 – 8.9x10-9 M) Ca2+ mobilisation assay in HEK-293 cells [33,46]
pEC50 7.27 (EC50 5.4x10-8 M) β-arrestin assay in C2C12 myofibroblasts [53]
pEC50 7.24 (EC50 5.7x10-8 M) Ca2+ mobilization assay in HUVEC [7]
pEC50 7.03 – 7.24 (EC50 5.8x10-8 – 9.4x10-8 M) aequorin-based Ca2+ assay in HEK-293 cells [16,53]
LTD4 Hs Full agonist 6.98 – 8.6 pEC50 7,16,33,46,53
pEC50 8.03 – 8.6 (EC50 2.5x10-9 – 9.3x10-9 M) Ca2+ mobolisation assay in HEK-293 cells [7,33,46]
pEC50 7.46 (EC50 3.5x10-8 M) β-arrestin assay in C2C12 [53]
pEC50 7.44 (EC50 3.6x10-8 M) Ca2+ mobilization assay in HUVEC [7]
pEC50 6.98 – 6.84 (EC50 1.04x10-7 – 1.44x10-7 M) aequorin-based Ca2+ assay in HEK-293 cells [16,53]
N-methyl LTC4 Hs Full agonist 6.91 – 8.06 pEC50 53
pEC50 8.06 (EC50 8.7x10-9 M) β-arrestin assay in C2C12 myofibroblasts [53]
pEC50 6.91 (EC50 1.22x10-7 M) aequorin-based Ca2+ assay in HEK-293 cells [53]
BAYu9773 Hs Partial agonist 7.04 – 7.16 pEC50 33,52
pEC50 7.16 (EC50 6.9x10-8 M) aequorin-based Ca2+ assay in CHO cells [52]
pEC50 7.04 (EC50 9.2x10-8 M) Ca2+ mobilization assay in HEK-293 cells [33]
LTE4 Hs Partial agonist 5.64 – 7.11 pEC50 16,33,46,53
pEC50 6.53 – 7.11 (EC50 7.7x10-8 – 2.93x10-7 M) Ca2+ mobilization assay in HEK-293 cells [33,46]
pEC50 5.64 – 5.92 (EC50 1.208x10-6 – 2.3x10-6 M) aequorin-based Ca2+ assay in HEK-293 cells [16,53]
LTC4 Hs Full agonist 8.48 – 8.4 pIC50 16,33
pIC50 8.48 – 8.4 (IC50 3.3x10-9 – 4x10-9 M) against [3H]LTD4 in COS-7 or HEK-293 cells [16,33]
LTD4 Hs Full agonist 7.23 – 8.15 pIC50 33,46
pIC50 8.15 (IC50 7x10-9 M) against [3H]LTD4 in HEK-293 cells [33]
pIC50 7.23 (IC50 5.9x10-8 M) against [3H]LTC4 in COS-1 cells [46]
BAYu9773 Hs Partial agonist 6.22 – 6.4 pIC50 16,33,52
pIC50 6.22 – 6.4 (IC50 4x10-7 – 5.97x10-7 M) against [3H]LTD4 COS-7, HEK-293 or CHO cells [16,33,52]
LTE4 Hs Partial agonist 5.72 – 6.16 pIC50 16,33,46
pIC50 6.15 – 6.16 (IC50 6.93x10-7 – 7x10-7 M) against [3H]LTD4 in COS-7 or HEK-293 cells [16,33]
pIC50 5.72 (IC50 1.89x10-6 M) against [3H]LTC4 in COS-1 cells [46]
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
BayCysLT2 Hs Antagonist 8.3 – 8.4 pA2 7
pA2 8.4 against LTC4 and LTD4 Ca2+ mobilisation assays in HUVEC [7]
pA2 8.3 against LTD4 Ca2+ mobilisation assay in COS-7 cells [7]
BAYu9773 Rn Antagonist 6.8 – 7.7 pA2 49
pA2 6.8 – 7.7 against LTC4 and LTD4 induced contraction in smooth muscle preparation [49]
pranlukast Hs Antagonist 7.1 pA2
pA2 7.1 against LTC4 Ca2+ mobilization assay in HUVEC
zafirlukast Hs Antagonist 6.9 pA2
pA2 6.9 against LTC4 Ca2+ mobilisation assay in HUVEC
iralukast Hs Antagonist 6.8 pA2
pA2 6.8 against LTC4 Ca2+ mobilisation assay in HUVEC
pobilukast Hs Antagonist 6.2 pA2
pA2 6.2 against LTC4 Ca2+ mobilisation assay in HUVEC
BAYu9773 Hs Antagonist 6.5 – 6.7 pKB 24
pKB 6.5 – 6.7 against LTD4 and LTC4 human pulmonary vein contraction [24]
[3H]ICI-198615 Hs Antagonist 5.2 pKd 41
pKd 5.2 in human lung parenchyma [41]
HAMI3379 Hs Antagonist 7.42 – 8.42 pIC50 52
pIC50 8.36 – 8.42 (IC50 3.8x10-9 – 4.4x10-9 M) against 10nM LTD4 -LTC4 aequorin-based Ca2+ assay in CHO cells [52]
pIC50 7.42 (IC50 3.8x10-8 M) against [3H]LTD4 in CHO cells [52]
BayCysLT2 Hs Antagonist 6.56 – 7.28 pIC50 32
pIC50 6.56 – 7.28 (IC50 5.3x10-8 – 2.74x10-7 M) against 30-300nM LTD4 β-arrestin assay in C2C12 myofibroblasts [32]
BAYu9773 Hs Antagonist 5.34 – 7.74 pIC50 32-33,52
pIC50 7.72 – 7.74 (IC50 1.8x10-8 – 1.9x10-8 M) against 10nM LTD4 - LTC4 aequorin-based Ca2+ assay in CHO cells [52]
pIC50 6.52 (IC50 3x10-7 M) against 10nM LTD4 Ca2+ mobilisation assay in HEK-293 [33]
pIC50 5.34 (IC50 4.6x10-6 M) against 300nM LTD4 β-arrestin Assay in C2C12 myofibroblasts [32]
pranlukast Hs Antagonist 5.44 pIC50 16
pIC50 5.44 (IC50 3.62x10-6 M) against [3H]LTD4 in COS-7 cells [16]
zafirlukast Hs Antagonist 5.13 – 5.15 pIC50 16,52
pIC50 5.15 (IC50 7x10-6 M) against 10nM LTD4 aequorin-based Ca2+ assay in CHO cells [52]
pIC50 5.13 (IC50 7.397x10-6 M) againist [3H]LTD4 in COS-7 cells [16]
View species-specific antagonist tables
Antagonist Comments
Montelukast and MK-571 are totally inactive at this receptor [7,16,33,46].
Primary Transduction Mechanisms
Transducer Effector/Response
Gq/G11 family Phospholipase C stimulation
References:  7,16
Secondary Transduction Mechanisms
Transducer Effector/Response
Gi/Go family Other - See Comments
Comments:  p38 activation
References:  30
Tissue Distribution
Human umbilical vein endothelial cells
Species:  Human
Technique:  Western Blot and immunocytochemistry
References:  7
Hart (atria, left ventricle, pericardium) and coronary artery smooth muscle cells
Species:  Human
Technique:  RT-PCR
References:  22
Myocytes, fibroblasts, and vascular smooth muscle cells
Species:  Human
Technique:  in situ hybridisation
References:  22
Saphenous veins
Species:  Human
Technique:  RT-PCR
References:  29
Eosinophils, monocytes; neutrophils and T lymphocytes (weaker espression)
Species:  Human
Technique:  RT-PCR
References:  25,31
Human umbilical vein endothelial cells
Species:  Human
Technique:  RT-PCR and immunocytochemistry
References:  25,31,45
Heart, adrenals, peripheral blood leukocytes, placenta, spleen, lymph nodes, brain (strong expression); kidney, ovary, prostate and testis (weak expression)
Species:  Human
Technique:  Northern blot
References:  16,46
Lung interstitial macrophages and smooth muscle cells (weaker espression); peripherial blood monocytes and eosinophils; chromaffincontaining adrenal medulla cells; Purkinje cells
Species:  Human
Technique:  in situ hybridisation
References:  16
Heart (ventricles, atria, septum and apex), adrenals, placenta, peripheral blood leukocytes, spleen and lymph nodes; pituatiry and spinal cord (weaker espression)
Species:  Human
Technique:  Microarray analysis
References:  33
Glands and epithelium of nasal mucosa
Species:  Human
Technique:  Immunohistochemistry
References:  8
Eosinophils, mast cells and mononuclear cells (in nasal lavage from patients with allergic rhinitis)
Species:  Human
Technique:  in situ hybridisation and immunocytochemistry
References:  12
Nasal polyps from aspirin hypersensitive patients
Species:  Human
Technique:  Immunocytochemistry
References:  1
Nasal mucosa (patients with allergic rhinitis)
Species:  Human
Technique:  Western blot, immunohistochemistry
References:  44
Basophils
Species:  Human
Technique:  RT-PCR
References:  14
Smooth muscle cells of cerebral arteries and veins
Species:  Human
Technique:  Immunohistochemistry
References:  17
Colorectal cancer tissue
Species:  Human
Technique:  Immunohistochemistry
References:  26-27
Human platelets
Species:  Human
Technique:  RT-PCR and Western blotting
References:  15
Conjunctival goblet cells
Species:  Human
Technique:  Immunohistochemistry and Western blotting
References:  10
Monocyte derived dendritic cells
Species:  Human
Technique:  RT-PCR and FACS analyses
References:  9
Neuronal of colonic myenteric plexus
Species:  Mouse
Technique:  Loss-of-function model
References:  3
Functional Assays
Measurement of Ca2+ mobilization in cells transfected with the human CysLT2 receptor
Species:  Human
Tissue:  HEK-293 or COS-7 cells
Response measured:  [Ca2+]i increase
References:  7,16,33,46,53
Measurement of Ca2+ mobilization in cell endogenously expressing the CysLT2 receptor
Species:  Human
Tissue:  Coronary smooth muscle cells
Response measured:  [Ca2+]i increase
References:  22
Measurement of Ca2+ mobilization in cell endogenously expressing the CysLT2 receptor
Species:  Human
Tissue:  Umbilical vein endothelial cells
Response measured:  [Ca2+]i increase
References:  7,25,45
Measurement of aquaporin 4 upregulation in cell endogenously expressing the CysLT2 receptor
Species:  Mouse
Tissue:  Brain
Response measured:  Aquaporin 4 upregulation
References:  51
Measurement of aquaporin 4 upregulation in cell endogenously expressing the CysLT2 receptor
Species:  Rat
Tissue:  Astrocytes
Response measured:  Aquaporin 4 upregulation
References:  40
β-galactosidase complementation assay for β-Arrestin binding in cell transfected with the human CysLT2 receptor
Species:  Human
Tissue:  C2C12 myofibroblasts
Response measured:  β-Arrestin binding to the CysLT2 receptor
References:  53
Measurement of p38 activation and IL-8 production in cell endogenously expressing the CysLT2 receptor
Species:  Human
Tissue:  Mast and umbilical vein endothelial cells
Response measured:  Increased IL-8 secretion
References:  30,47
Physiological Functions
PAF accumulation and neutrophil adhesion
Species:  Human
Tissue:  Endothelial cells
References:  28
Secretion of von Willebrand factor and of P-selectin expression
Species:  Human
Tissue:  Umbilical vein endothelial cells
References:  11,38
Up-regulation of early inducible genes
Species:  Human
Tissue:  Umbilical vein endothelial cells
References:  50
Myosin light-chain kinase activation, stress fiber formation and cell contraction
Species:  Human
Tissue:  Umbilical vein endothelial cells
References: 
Edema
Species:  Rat
Tissue:  Brain
References: 
Edema
Species:  Mouse
Tissue:  Brain
References:  51
Cell death
Species:  Rat
Tissue:  PC12 cells and astrocytes
References:  18,42
Contraction
Species:  Human
Tissue:  Smooth muscle of pulmonary veins
References:  24
Endothelium-mediated indirect relaxation
Species:  Human
Tissue:  Pulmonary arteries and veins
References:  35
Physiological Consequences of Altering Gene Expression
Increased eosinophilic pulmonary inflammation, serum IgE, and Th2 cytokines
Species:  Mouse
Tissue:  Lung
Technique:  Gene knockouts
References:  4
Reduced skin thickening and collagen deposition in ovalbumin-sensitized skin
Species:  Mouse
Tissue:  Skin
Technique:  Gene knockouts
References:  36
Endothelial cell-specific human CysLT2R transgenic mouse mode. Phenotype: aggrevation of myocardial ischemia-reperfusion injury
Species:  Mouse
Tissue:  Endothelial cells
Technique:  Gene overexpression
References:  21
Decreased colitis disease progression via a reduction in inflammation-associated tissue edema and increased neuronal sensitivity to nociceptive stimuli
Species:  Mouse
Tissue:  Intestine
Technique:  Gene knockouts
References:  3
Attenuation of bleomycin-induced pulmonary inflammation and fibrosis; reduced vascular permeability associated with IgE-dependent passive cutaneous anaphylaxis
Species:  Mouse
Tissue:  Lung
Technique:  Gene knockouts
References:  5
In a oxygen-induced retinopathy model enhanced vasoobliteration-vasoproliferation and retinal edema
Species:  Mouse
Tissue:  Retina
Technique:  Gene knockouts
References:  2
Endothelial cell-specific human CysLT2R transgenic mouse model. Increased vascular permeability and systemic pressor response.
Species:  Mouse
Tissue:  Endothelial cells
Technique:  Gene overexpression
References:  19
Phenotypes, Alleles and Disease Models Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Cysltr2tm1Ykn Cysltr2tm1Ykn/Cysltr2tm1Ykn
C57BL/6-Cysltr2
MGI:1917336  MP:0009811 abnormal prostaglandin level PMID: 15328359 
Cysltr2tm1Sish Cysltr2tm1Sish/Cysltr2tm1Sish
involves: C57BL/6
MGI:1917336  MP:0000343 altered response to myocardial infarction PMID: 18276782 
Cysltr2tm1Ykn Cysltr2tm1Ykn/Cysltr2tm1Ykn
C57BL/6-Cysltr2
MGI:1917336  MP:0005597 decreased susceptibility to type I hypersensitivity reaction PMID: 15328359 
Cysltr2tm1Ykn Cysltr2tm1Ykn/Cysltr2tm1Ykn
C57BL/6-Cysltr2
MGI:1917336  MP:0006050 pulmonary fibrosis PMID: 15328359 
Clinically-Relevant Mutations and Pathophysiology
Disease:  Asthma
References: 
Click column headers to sort
Type Species Molecular location Description Reference
Missense Human M201V c.601A>G change rs41347648 39,48
Biologically Significant Variants
Type:  Single nucletide polymorphism
Species:  Human
Description:  Polymorphism associated with atopic asthma in the Japanese population.
Change:  c.-1220A>C
References:  13
Type:  Single nucleotide polymorphism
Species:  Human
Description:  Polymorphism associated with aspirin intolerance in asthmatics
Change:  c.-819T>G, c.2078C>T, c.2534A>G, c.2545+297A>G
References:  37,43
Type:  Gene variants
Species:  Human
Description:  Increased response to montelukast rs912277 and rs912278
References:  23

REFERENCES

1. Adamusiak AM, Stasikowska-Kanicka O, Lewandowska-Polak A, Danilewicz M, Wagrowska-Danilewicz M, Jankowski A, Kowalski ML, Pawliczak R. (2012) Expression of arachidonate metabolism enzymes and receptors in nasal polyps of aspirin-hypersensitive asthmatics. Int. Arch. Allergy Immunol.157 (4): 354-62. [PMID:22123288]

2. Barajas-Espinosa A, Ni NC, Yan D, Zarini S, Murphy RC, Funk CD. (2012) The cysteinyl leukotriene 2 receptor mediates retinal edema and pathological neovascularization in a murine model of oxygen-induced retinopathy. FASEB J.26 (3): 1100-9. [PMID:22131271]

3. Barajas-Espinosa A, Ochoa-Cortes F, Moos MP, Ramirez FD, Vanner SJ, Funk CD. (2011) Characterization of the cysteinyl leukotriene 2 receptor in novel expression sites of the gastrointestinal tract. Am. J. Pathol.178 (6): 2682-9. [PMID:21641390]

4. Barrett NA, Fernandez JM, Maekawa A, Xing W, Li L, Parsons MW, Austen KF, Kanaoka Y. (2012) Cysteinyl leukotriene 2 receptor on dendritic cells negatively regulates ligand-dependent allergic pulmonary inflammation. J. Immunol.189 (9): 4556-65. [PMID:23002438]

5. Beller TC, Maekawa A, Friend DS, Austen KF, Kanaoka Y. (2004) Targeted gene disruption reveals the role of the cysteinyl leukotriene 2 receptor in increased vascular permeability and in bleomycin-induced pulmonary fibrosis in mice. J. Biol. Chem.279 (44): 46129-34. [PMID:15328359]

6. Capra V, Nicosia S, Ragningi D, Mezette M, Keppler D, Rovati GE. (1998) Identifiction and characterization of two cysteinyl-leukotriene high affinity binding sites with receptor characteristics in human lung parenchyma. Mol. Pharmacol.53: 750-758. [PMID:9547367]

7. Carnini C, Accomazzo MR, Borroni E, Vitellaro-Zuccarello L, Durand T, Folco G, Rovati GE, Capra V, Sala A. (2011) Synthesis of cysteinyl leukotrienes in human endothelial cells: subcellular localization and autocrine signaling through the CysLT2 receptor. FASEB J.25 (10): 3519-28. [PMID:21753081]

8. Corrigan C, Mallett K, Ying S, Roberts D, Parikh A, Scadding G, Lee T. (2005) Expression of the cysteinyl leukotriene receptors cysLT(1) and cysLT(2) in aspirin-sensitive and aspirin-tolerant chronic rhinosinusitis. J. Allergy Clin. Immunol.115 (2): 316-22. [PMID:15696087]

9. Dannull J, Schneider T, Lee WT, de Rosa N, Tyler DS, Pruitt SK. (2012) Leukotriene C4 induces migration of human monocyte-derived dendritic cells without loss of immunostimulatory function. Blood119 (13): 3113-22. [PMID:22323449]

10. Dartt DA, Hodges RR, Li D, Shatos MA, Lashkari K, Serhan CN. (2011) Conjunctival goblet cell secretion stimulated by leukotrienes is reduced by resolvins D1 and E1 to promote resolution of inflammation. J. Immunol.186 (7): 4455-66. [PMID:21357260]

11. Datta YH, Romano M, Jacobson BC, Golan DE, Serhan CN, Ewenstein BM. (1995) Peptido-leukotrienes are potent agonists of von Willebrand factor secretion and P-selectin surface expression in human umbilical vein endothelial cells. Circulation92 (11): 3304-11. [PMID:7586318]

12. Figueroa DJ, Borish L, Baramki D, Philip G, Austin CP, Evans JF. (2003) Expression of cysteinyl leukotriene synthetic and signalling proteins in inflammatory cells in active seasonal allergic rhinitis. Clin. Exp. Allergy33 (10): 1380-8. [PMID:14519144]

13. Fukai H, Ogasawara Y, Migita O, Koga M, Ichikawa K, Shibasaki M, Arinami T, Noguchi E. (2004) Association between a polymorphism in cysteinyl leukotriene receptor 2 on chromosome 13q14 and atopic asthma. Pharmacogenetics14 (10): 683-90. [PMID:15454733]

14. Gauvreau GM, Plitt JR, Baatjes A, MacGlashan DW. (2005) Expression of functional cysteinyl leukotriene receptors by human basophils. J. Allergy Clin. Immunol.116 (1): 80-7. [PMID:15990778]

15. Hasegawa S, Ichiyama T, Hashimoto K, Suzuki Y, Hirano R, Fukano R, Furukawa S. (2010) Functional expression of cysteinyl leukotriene receptors on human platelets. Platelets21 (4): 253-9. [PMID:20433311]

16. Heise CE, O'Dowd BF, Figueroa DJ, Sawyer N, Nguyen T, Im DS, Stocco R, Bellefeuille JN, Abramovitz M, Cheng R, Williams DL Jr, Zeng Z, Liu Q, Ma L, Clements MK, Coulombe N, Liu Y, Austin CP, George SR, O'Neill GP, Metters KM, Lynch KR, Evans JF. (2000) Characterization of the new human cysteinyl leukotriene 2 receptor. J. Biol. Chem.275: 30531-30536. [PMID:10851239]

17. Hu H, Chen G, Zhang JM, Zhang WP, Zhang L, Ge QF, Yao HT, Ding W, Chen Z, Wei EQ. (2005) Distribution of cysteinyl leukotriene receptor 2 in human traumatic brain injury and brain tumors. Acta Pharmacol. Sin.26 (6): 685-90. [PMID:15916734]

18. Huang XJ, Zhang WP, Li CT, Shi WZ, Fang SH, Lu YB, Chen Z, Wei EQ. (2008) Activation of CysLT receptors induces astrocyte proliferation and death after oxygen-glucose deprivation. Glia56 (1): 27-37. [PMID:17910051]

19. Hui Y, Cheng Y, Smalera I, Jian W, Goldhahn L, Fitzgerald GA, Funk CD. (2004) Directed vascular expression of human cysteinyl leukotriene 2 receptor modulates endothelial permeability and systemic blood pressure. Circulation110 (21): 3360-6. [PMID:15545522]

20. Hui Y, Yang G, Galczenski H, Figueroa DJ, Austin CP, Copeland NG, Gilbert DJ, Jenkins NA, Funk CD. (2001) The murine cysteinyl leukotriene 2 (CysLT2) receptor. cDNA and genomic cloning, alternative splicing, and in vitro characterization. J. Biol. Chem.276 (50): 47489-95. [PMID:11591709]

21. Jiang W, Hall SR, Moos MP, Cao RY, Ishii S, Ogunyankin KO, Melo LG, Funk CD. (2008) Endothelial cysteinyl leukotriene 2 receptor expression mediates myocardial ischemia-reperfusion injury. Am. J. Pathol.172 (3): 592-602. [PMID:18276782]

22. Kamohara M, Takasaki J, Matsumoto M, Matsumoto Si, Saito T, Soga T, Matsushime H, Furuichi K. (2001) Functional characterization of cysteinyl leukotriene CysLT(2) receptor on human coronary artery smooth muscle cells. Biochem. Biophys. Res. Commun.287 (5): 1088-92. [PMID:11587533]

23. Klotsman M, York TP, Pillai SG, Vargas-Irwin C, Sharma SS, van den Oord EJ, Anderson WH. (2007) Pharmacogenetics of the 5-lipoxygenase biosynthetic pathway and variable clinical response to montelukast. Pharmacogenet. Genomics17 (3): 189-96. [PMID:17460547]

24. Labat C, Ortiz JL, Norel X, Gorenne I, Verley J, Abram TS, Cuthbert NJ, Tudhope SR, Norman P, Gardiner P et al.. (1992) A second cysteinyl leukotriene receptor in human lung. J. Pharmacol. Exp. Ther.263: 800-805. [PMID:1331415]

25. Lötzer K, Spanbroek R, Hildner M, Urbach A, Heller R, Bretschneider E, Galczenski H, Evans JF, Habenicht AJ. (2003) Differential leukotriene receptor expression and calcium responses in endothelial cells and macrophages indicate 5-lipoxygenase-dependent circuits of inflammation and atherogenesis. Arterioscler. Thromb. Vasc. Biol.23 (8): e32-6. [PMID:12816882]

26. Magnusson C, Ehrnström R, Olsen J, Sjölander A. (2007) An increased expression of cysteinyl leukotriene 2 receptor in colorectal adenocarcinomas correlates with high differentiation. Cancer Res.67 (19): 9190-8. [PMID:17909024]

27. Magnusson C, Mezhybovska M, Lörinc E, Fernebro E, Nilbert M, Sjölander A. (2010) Low expression of CysLT1R and high expression of CysLT2R mediate good prognosis in colorectal cancer. Eur. J. Cancer46 (4): 826-35. [PMID:20064706]

28. McIntyre TM, Zimmerman GA, Prescott SM. (1986) Leukotrienes C4 and D4 stimulate human endothelial cells to synthesize platelet-activating factor and bind neutrophils. Proc. Natl. Acad. Sci. U.S.A.83 (7): 2204-8. [PMID:3457383]

29. Mechiche H, Candenas L, Pinto FM, Nazeyrollas P, Clément C, Devillier P. (2004) Characterization of cysteinyl leukotriene receptors on human saphenous veins: antagonist activity of montelukast and its metabolites. J. Cardiovasc. Pharmacol.43 (1): 113-20. [PMID:14668576]

30. Mellor EA, Frank N, Soler D, Hodge MR, Lora JM, Austen KF, Boyce JA. (2003) Expression of the type 2 receptor for cysteinyl leukotrienes (CysLT2R) by human mast cells: Functional distinction from CysLT1R. Proc. Natl. Acad. Sci. U.S.A.100 (20): 11589-93. [PMID:13679572]

31. Mita H, Hasegawa M, Saito H, Akiyama K. (2001) Levels of cysteinyl leukotriene receptor mRNA in human peripheral leucocytes: significantly higher expression of cysteinyl leukotriene receptor 2 mRNA in eosinophils. Clin. Exp. Allergy31 (11): 1714-23. [PMID:11696047]

32. Ni NC, Yan D, Ballantyne LL, Barajas-Espinosa A, St Amand T, Pratt DA, Funk CD. (2011) A selective cysteinyl leukotriene receptor 2 antagonist blocks myocardial ischemia/reperfusion injury and vascular permeability in mice. J. Pharmacol. Exp. Ther.339 (3): 768-78. [PMID:21903747]

33. Nothacker HP, Wang Z, Zhu Y, Reinscheid RK, Lin SH, Civelli O. (2000) Molecular cloning and characterization of a second human cysteinyl leukotriene receptor: discovery of a subtype selective agonist. Mol. Pharmacol.58: 1601-1608. [PMID:11093801]

34. Ogasawara H, Ishii S, Yokomizo T, Kakinuma T, Komine M, Tamaki K, Shimizu T, Izumi T. (2002) Characterization of mouse cysteinyl leukotriene receptors mCysLT1 and mCysLT2: differential pharmacological properties and tissue distribution. J. Biol. Chem.277 (21): 18763-8. [PMID:11854273]

35. Ortiz JL, Gorenne I, Cortijo J, Seller A, Labat C, Sarria B, Abram TS, Gardiner PJ, Morcillo E, Brink C. (1995) Leukotriene receptors on human pulmonary vascular endothelium. Br. J. Pharmacol.115 (8): 1382-6. [PMID:8564195]

36. Oyoshi MK, He R, Kanaoka Y, ElKhal A, Kawamoto S, Lewis CN, Austen KF, Geha RS. (2012) Eosinophil-derived leukotriene C4 signals via type 2 cysteinyl leukotriene receptor to promote skin fibrosis in a mouse model of atopic dermatitis. Proc. Natl. Acad. Sci. U.S.A.109 (13): 4992-7. [PMID:22416124]

37. Park JS, Chang HS, Park CS, Lee JH, Lee YM, Choi JH, Park HS, Kim LH, Park BL, Choi YH et al.. (2005) Association analysis of cysteinyl-leukotriene receptor 2 (CYSLTR2) polymorphisms with aspirin intolerance in asthmatics. Pharmacogenet. Genomics15 (7): 483-92. [PMID:15970796]

38. Pedersen KE, Bochner BS, Undem BJ. (1997) Cysteinyl leukotrienes induce P-selectin expression in human endothelial cells via a non-CysLT1 receptor-mediated mechanism. J. Pharmacol. Exp. Ther.281 (2): 655-62. [PMID:9152370]

39. Pillai SG, Cousens DJ, Barnes AA, Buckley PT, Chiano MN, Hosking LK, Cameron LA, Fling ME, Foley JJ, Green A et al.. (2004) A coding polymorphism in the CYSLT2 receptor with reduced affinity to LTD4 is associated with asthma. Pharmacogenetics14 (9): 627-33. [PMID:15475736]

40. Qi LL, Fang SH, Shi WZ, Huang XQ, Zhang XY, Lu YB, Zhang WP, Wei EQ. (2011) CysLT2 receptor-mediated AQP4 up-regulation is involved in ischemic-like injury through activation of ERK and p38 MAPK in rat astrocytes. Life Sci.88 (1-2): 50-6. [PMID:21055410]

41. Rovati GE, Giovanazzi S, Mezzetti M, Nicosia S. (1992) Heterogeneity of binding sites for ICI 198,615 in human lung parenchyma. Biochem. Pharmacol.44 (7): 1411-5. [PMID:1329767]

42. Sheng WW, Li CT, Zhang WP, Yuan YM, Hu H, Fang SH, Zhang L, Wei EQ. (2006) Distinct roles of CysLT1 and CysLT2 receptors in oxygen glucose deprivation-induced PC12 cell death. Biochem. Biophys. Res. Commun.346 (1): 19-25. [PMID:16756959]

43. Shin JA, Chang HS, Park SM, Jang AS, Park SW, Park JS, Uh ST, Il Lim G, Rhim T, Kim MK et al.. (2009) Genetic effect of CysLTR2 polymorphisms on its mRNA synthesis and stabilization. BMC Med. Genet.10: 106. [PMID:19840403]

44. Shirasaki H, Kanaizumi E, Seki N, Fujita M, Kikuchi M, Himi T. (2013) Localization and up-regulation of cysteinyl leukotriene-2 receptor in human allergic nasal mucosa. Allergol Int62 (2): 223-8. [PMID:23524649]

45. Sjöström M, Johansson AS, Schröder O, Qiu H, Palmblad J, Haeggström JZ. (2003) Dominant expression of the CysLT2 receptor accounts for calcium signaling by cysteinyl leukotrienes in human umbilical vein endothelial cells. Arterioscler. Thromb. Vasc. Biol.23 (8): e37-41. [PMID:12816881]

46. Takasaki J, Kamohara M, Matsumoto M, Saito T, Sugimoto T, Ohishi T, Ishii H, Ota T, Nishikawa T, Kawai Y, Masuho Y, Isogai T, Suzuki Y, Sugano S, Furuichi K. (2000) The molecular characterization and tissue distribution of the human cysteinyl leukotriene CysLT2 receptor. Biochem. Biophys. Res. Commun.274: 316-322. [PMID:10913337]

47. Thompson C, Cloutier A, Bossé Y, Poisson C, Larivée P, McDonald PP, Stankova J, Rola-Pleszczynski M. (2008) Signaling by the cysteinyl-leukotriene receptor 2. Involvement in chemokine gene transcription. J. Biol. Chem.283 (4): 1974-84. [PMID:18048362]

48. Thompson MD, Storm van's Gravesande K, Galczenski H, Burnham WM, Siminovitch KA, Zamel N, Slutsky A, Drazen JM, George SR, Evans JF et al.. (2003) A cysteinyl leukotriene 2 receptor variant is associated with atopy in the population of Tristan da Cunha. Pharmacogenetics13 (10): 641-9. [PMID:14515063]

49. Tudhope SR, Cuthbert NJ, Abram TS, Jennings MA, Maxey RJ, Thompson AM, Norman P, Gardiner PJ. (1994) BAYu9773, a novel antagonist of cysteinyl-leukotrienes with activity against two receptor subtypes. Eur. J. Pharmacol.264: 317-323. [PMID:7698171]

50. Uzonyi B, Lötzer K, Jahn S, Kramer C, Hildner M, Bretschneider E, Radke D, Beer M, Vollandt R, Evans JF et al.. (2006) Cysteinyl leukotriene 2 receptor and protease-activated receptor 1 activate strongly correlated early genes in human endothelial cells. Proc. Natl. Acad. Sci. U.S.A.103 (16): 6326-31. [PMID:16606835]

51. Wang ML, Huang XJ, Fang SH, Yuan YM, Zhang WP, Lu YB, Ding Q, Wei EQ. (2006) Leukotriene D4 induces brain edema and enhances CysLT2 receptor-mediated aquaporin 4 expression. Biochem. Biophys. Res. Commun.350 (2): 399-404. [PMID:17010308]

52. Wunder F, Tinel H, Kast R, Geerts A, Becker EM, Kolkhof P, Hütter J, Ergüden J, Härter M. (2010) Pharmacological characterization of the first potent and selective antagonist at the cysteinyl leukotriene 2 (CysLT(2)) receptor. Br. J. Pharmacol.160 (2): 399-409. [PMID:20423349]

53. Yan D, Stocco R, Sawyer N, Nesheim ME, Abramovitz M, Funk CD. (2011) Differential signaling of cysteinyl leukotrienes and a novel cysteinyl leukotriene receptor 2 (CysLT₂) agonist, N-methyl-leukotriene C₄, in calcium reporter and β arrestin assays. Mol. Pharmacol.79 (2): 270-8. [PMID:21078884]

To cite this database page, please use the following:

G. Enrico Rovati, Magnus Bäck, Sven-Erik Dahlén, Jeffrey Drazen, Jilly F. Evans, Takao Shimizu, Charles N. Serhan, Takehiko Yokomizo.
Leukotriene receptors: CysLT2 receptor. Last modified on 23/07/2013. Accessed on 23/09/2014. IUPHAR database (IUPHAR-DB), http://www.iuphar-db.org/DATABASE/ObjectDisplayForward?objectId=270.

Contact us | Print | Back to top | Help
Copyright © 2014 IUPHAR