Nomenclature: ghrelin receptor

Family: Ghrelin receptor

Annotation status:  image of a green circle Annotated and expert reviewed. Please contact us if you can help with updates. 

Contents

Gene and Protein Information
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 366 3q26.31 GHSR growth hormone secretagogue receptor 30
Mouse 7 364 3 A3 Ghsr growth hormone secretagogue receptor 75
Rat 7 364 2q24 Ghsr growth hormone secretagogue receptor 47
Previous and Unofficial Names
GHSR-1a
growth hormone secretagogue receptor
GHS-R1a (Growth hormone secretagogue receptor type 1)
growth hormone-releasing peptide receptor
GH-releasing peptide receptor
GHRP
GHS-R
C530020I22Rik
ghrelin receptor 1a
Database Links
ChEMBL Target
Ensembl Gene
Entrez Gene
GPCRDB
GeneCards
GenitoUrinary Development Molecular Anatomy Project
HomoloGene
Human Protein Reference Database
InterPro
KEGG Gene
OMIM
Orphanet Gene
PharmGKB Gene
Protein Ontology (PRO)
RefSeq Nucleotide
RefSeq Protein
TreeFam
UniGene Hs.
UniProtKB
Wikipedia
Natural/Endogenous Ligands
[des-Gln14]ghrelin {Sp: Human} , [des-Gln14]ghrelin {Sp: Mouse, Rat}
ghrelin {Sp: Human} , ghrelin {Sp: Mouse, Rat}
Rank order of potency (Human)
ghrelin (GHRL, Q9UBU3) = [des-Gln14]ghrelin (GHRL, Q9UBU3)  [2,46]
Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
[125I][Tyr4]ghrelin (human) Hs Full agonist 9.4 pKd 51
pKd 9.4 (Kd 4x10-10 M) [51]
[125I][His9]ghrelin (human) Hs Full agonist 9.4 pKd 33
pKd 9.4 (Kd 4x10-10 M) [33]
[35S]ibutamoren Hs Full agonist 9.2 pKd 47
pKd 9.2 [47]
ghrelin {Sp: Human} Hs Full agonist 8.64 – 9.44 pKd 26-27
pKd 8.64 – 9.44 (Kd 2.3x10-9 – 3.6x10-10 M) [26-27]
[125I]Tyr-Ala-hexarelin Hs Full agonist 8.2 pKd 58
pKd 8.2 [58]
hexarelin Hs Full agonist 7.89 pKd 58
pKd 7.89 (Kd 1.3x10-8 M) [58]
GHRP-6 Hs Full agonist 6.6 – 8.8 pKd 26,47
pKd 6.6 – 8.8 (Kd 2.5x10-7 – 1.6x10-9 M) [26,47]
ibutamoren Hs Full agonist 9.34 pKi 25
pKi 9.34 (Ki 4.6x10-10 M) [25]
GHRP-2 Rn Full agonist 9.3 pKi 47
pKi 9.3 [47]
GHRP-6 Rn Full agonist 8.8 pKi 47
pKi 8.8 [47]
[125I][His9]ghrelin (human) Rn Full agonist 8.4 pKi 33
pKi 8.4 [33]
ghrelin {Sp: Human} Hs Full agonist 7.8 – 8.1 pKi 51
pKi 7.8 – 8.1 [51]
[des-octanoyl]ghrelin {Sp: Human} Rn Full agonist 7.9 pKi 6,51
pKi 7.9 [6,51]
SM-130,686 Hs Partial agonist 9.51 pEC50 28
pEC50 9.51 (EC50 3.1x10-10 M) IP3 accumulation [28]
ibutamoren Hs Full agonist 8.62 – 9.72 pEC50 25-26
pEC50 8.62 – 9.72 (EC50 2.4x10-9 – 1.9x10-10 M) Calcium release, IP3 accumulation. [25-26]
GHRP-6 Hs Full agonist 8.34 – 9.08 pEC50 26
pEC50 9.08 (EC50 8.3x10-10 M) IP3 accumulation [26]
pEC50 8.34 (EC50 4.6x10-9 M) Calcium release [26]
ghrelin {Sp: Human} Hs Full agonist 7.21 – 9.47 pEC50 26-27,57,69
pEC50 9.47 (EC50 3.4x10-10 M) IP3 accumulation [27,69]
pEC50 7.21 – 7.49 (EC50 6.1x10-8 – 3.2x10-8 M) calcium release [26,57]
L-692,429 Hs Agonist 7.33 – 7.59 pEC50 26
pEC50 7.33 – 7.59 (EC50 4.7x10-8 – 2.6x10-8 M) Calcium release, IP3 accumulation. [26]
L-692,429 Rn Agonist 7.22 pEC50 70
pEC50 7.22 (EC50 6x10-8 M) GH release [70]
wFw-Isn-NH2 Hs Partial agonist 5.92 – 8.41 pEC50 69
pEC50 5.92 – 8.41 (EC50 1.2x10-6 – 3.9x10-9 M) IP3 accumulation, ERK phosphotylation, binding [69]
SM-130,686 Hs Partial agonist 8.92 pIC50 78
pIC50 8.92 (IC50 1.2x10-9 M) [78]
View species-specific agonist tables
Agonist Comments
Ghrelin and des-Gln14-ghrelin are two different naturally occuring ghrelin variants that both activate the ghrelin receptor to induce Ca2+ release and GH secretion [29]. It is important to notice that the potency of ghrelin meassured in Ca2+ release compared to the potency observed in inositol phosphate accumulation is not the same and that the pharmacological profile of ghrelin receptor agonists differ between these two assays, indicating differences in signalling pathway. GHRP-2, GHRP-6 and hexarelin were initially discovered as synthetic peptide growth hormone secretagogues but are today known as high potency hexapeptide agonists for the ghrelin receptor [26,47]. [3H]MK677 and [35S]MK677 are both high affinity radioactive ghrelin receptor full agonists that are no longer comercially availiable, but have been used [3,82]. wFw-Isn-NH2 is a biased agonist that has a lower potency and efficacy in G12/13 coupling compared to other signalling pathways where it is a partial agonist. Only a few of the mentioned agonists have been characterized for receptor interaction pattern by mutation mapping [28]. One study reports the multifunctional glycoprotein CD36 to be a hexarelin binding site in membranes from rat heart [5].
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
GSK1614343 Rn Antagonist 8.0 pKB 61
pKB 8.0 [61]
[D-Arg1,D-Phe5,D-Trp7,9,Leu11]substance P Hs Antagonist 7.35 pKd 27
pKd 7.35 (Kd 4.5x10-8 M) [27]
BIM 28163 Hs Antagonist 8.09 pKi 24
pKi 8.09 (Ki 8.1x10-9 M) [24]
YIL781 Hs Antagonist 7.77 pKi 18
pKi 7.77 (Ki 1.7x10-8 M) [18]
GSK1614343 Hs Antagonist 8.4 pIC50 65
pIC50 8.4 (IC50 4x10-9 M) [65]
JMV3008 Hs Antagonist 8.25 pIC50 50
pIC50 8.25 (IC50 5.6x10-9 M) [50]
Abbott 14c Hs Antagonist 8.15 pIC50 89
pIC50 8.15 (IC50 7x10-9 M) [89]
View species-specific antagonist tables
Antagonist Comments
It has been observed that in heterologous expression systems the constitutive signalling of the ghrelin receptor via the IP3 signallling pathway, can be completely abolished by the inverse agonist [D-Arg1,D-Phe, D-Trp7,9, Leu11] [27]. The peptide ligand BIM28163 is an antagonist when measuring ghrelin induced calicium secretion and GH-release, however when measuring food intake it acts as a full agonist [24]. The same has been observed for the non-peptide ligand GSK161443 that behaves as an antagonist both in GH release and [35S]GTPγS. However, this compound turned out to be an agonist on food intake [8]. D-Lys3-GHRP-6 is another ghrelin receptor antagonist, but no binding data is available for this ligand because it has never been tested in binding assays in tissues expressing the ghrelin receptor. Antagonism observed in functional assays was not quantitated and expressed in terms of potency.
Allosteric Modulators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
L-692,429 Hs Positive 7.0 pEC50 26
pEC50 7.0 (EC50 1x10-7 M) [26]
Allosteric Modulator Comments
L-692,429 is both a "super-agonist", that displays a larger efficacy than ghrelin and an allosteric ligand by increasing the potency of ghrelin when measuring IP accumulation [26,28]. In membrane preparations overexpressing both the ghrelin receptor and Gqi, a similar ligand L-692,585 did not act as an allosteric modulator, when GTPγS was meassured [4].
Primary Transduction Mechanisms
Transducer Effector/Response
Gq/G11 family Phospholipase C stimulation
References:  9,71
Secondary Transduction Mechanisms
Transducer Effector/Response
Gi/Go family
G12/G13 family
G protein independent mechanism
Other - See Comments
Comments:  In addition the ghrelin receptor activates the following intracellular responses: β-arrestin [9,26], adaptor-related protein complex [9]. The ghrelin receptor has been shown to dimerize with the following receptors: dopamine D1 receptor [31], dopamine D2 receptor [34], melanocortin MC3 receptor [64], serotonin 5-HT2c receptor [66], thus affecting signalling. The promitotic actions of ghrelin in pancreatic tumour cells can be abolished by the PI3-kinase inhibitor wortmannin [16]. Several studies have shown constitutive production of inositol phosphate and components of other signalling pathways in cells expressing the ghrelin receptor [9,16].
References:  9,26,69
Tissue Distribution
Radioligand binding has demonstrated ghrelin receptors in human heart, large conduit vessels and brain. Ghrelin receptor density is significantly upregulated in human atherosclerosis.
Species:  Human
Technique:  Radioligand binding.
References:  33
Immunocytochemsitry has detected ghrelin in human testis and ovary (Leydig, Sertoli, follicular and luteal cells as well as germ cells).
Species:  Human
Technique:  immunocytochemistry.
References:  22
Arcuate nucleus and pituitary.
Species:  Rat
Technique:  immunocytochemistry.
References:  49
Heart: aorta, left ventricle, left atria.
Species:  Rat
Technique:  RT-PCR.
References:  53
Rat brain, NB also in mouse brain.
Species:  Rat
Technique:  in situ hybridisation
References:  92
Radioligand binding has demonstrated ghrelin receptors in the rat heart, brain and chondrocytes.
Species:  Rat
Technique:  Radioligand binding.
References:  33
Pancreas, pituitary.
Species:  Rat
Technique:  Western blotting, RT-PCR
References:  37
Small intestine, large intestine > stomach.
Species:  Rat
Technique:  RT-PCR
References:  10
Pancreatic islets.
Species:  Rat
Technique:  immunocytochemistry.
References:  32
Expression Datasets

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays
Ghrelin induces GH release from isolated rat pituitary cells (EC50: 2nM).
Species:  Rat
Tissue:  Pituitary cells.
Response measured:  GH release.
References:  36
Ca2+ release (32nM)
Species:  Human
Tissue:  HEK 293 cells
Response measured:  Ca2+ release
References:  57
Ghrelin induces inositol phosphate accumulation (EC50=0.2nM)
Species:  Human
Tissue:  COS-7 cells
Response measured:  Inositol phosphate accumulation
References:  27
Ghrelin receptor in lipid dics, couples to Gi and increases GTPγS binding.
Species:  Human
Tissue:  cell free conditions
Response measured: 
References:  9,44
Activation of RhoA (RhoA-GTP) by ghrelin at 0.1uM.
Species:  Rat
Tissue:  RC-4B/C cells
Response measured: 
References:  69
Ghrelin induces arrestin recruitment (EC50=0.5nM) and recruitment of the u-subunit of AP2 (at 1uM ghrelin).
Species:  Human
Tissue:  HEK 293 cells, U2OS cells
Response measured: 
References:  9,48
Systematic testing of short ghrelin peptides truncated at the c-terminus revealed that Gly-Ser-Ser(Octanoyl)-Phe is the active core of ghrelin showing comparable potency in eliciting increase in intracellular calcium from CHO cells expressing the ghrelin receptor as mature ghrelin. Other acyl modifications on Ser3 do not substantially hamper the receptor activation potency of ghrelin.
Species:  Human
Tissue:  CHO cells, HEK 293 cells
Response measured:  Increase in Ca2+ levels.
References:  3,46
Ghrelin induces cAMP response element binding protein (EC50=0.6nM), serum response element transcription (EC50=2.8nM) and extracellular signal regulated kinase 1/2 (EC50=~0.1nM).
Species:  Human
Tissue:  HEK 293 cells
Response measured: 
References:  26
Physiological Functions
Ghrelin potently reverses nicotine and VitaminD3 induced calcification of the aortic vessel wall.
Species:  Rat
Tissue:  Aorta.
References:  38
Intravenous infusion of ghrelin in humans results in a significant increase in growth hormone (GH) as well as ACTH, cortisol and prolactin.
Species:  Human
Tissue:  In vivo.
References:  54,60,74
Intracerebroventricular injection of ghrelin into the nucleus of the solitary tract resulted in a decrease in mean arterial pressure and heart rate as well as supressed renal sympathetic nerve activity.
Species:  Rat
Tissue:  In vivo.
References:  41,81
Ghrelin (intravenous, intracerebroventricular) has been shown to stimulate food intake and lead to body weight gain both in rats. This effect is independent of the GH secretagogue action of ghrelin as it was also observed in GH deficient rats. Ghrelin increases expression of AGRP and NPY in the arcuate and paraventricular nucleus and ghrelin actions can partly be abolished using a NPY antagonist, suggesting that ghrelin actions are mediated by the orexigenic AGRP and NPY pathways.
Species:  Rat
Tissue:  In vivo.
References:  35,56
Ghrelin (intravenous) has been shown to stimulate food intake and lead to body weight gain both in humans.
Species:  Human
Tissue:  In vivo.
References:  15,87
Intravenous infusion of ghrelin in rats results in a significant increase in growth hormone (GH).
Species:  Rat
Tissue:  In vivo.
References:  79
In GH deficient rats unilateral infusion of ghrelin and des-octanoyl ghrelin into the tibial bone marrow stimulated bone marrow adipogenesis.
Species:  Rat
Tissue:  bone marrow in vivo
References:  77
Ghrelin infusion (ICV) in rats resulted in a decreased sympathetic nerve acivity in brown adipose tissue leading to decreased thermogensis and energy expenditure.
Species:  Rat
Tissue:  Brown adipose tissue.
References:  91
Both intravenous and intraperitoneal infusion of ghrelin induces gastric motility and gastric acid and pepsin secretion in rats.
Species:  Rat
Tissue:  Stomach in vivo.
References:  12,17,45
Chronic subcutaneous administration of ghrelin improves left ventricular dysfunction and decreases the development of cardiac cachexia in rats with chronic heart failure.
Species:  Rat
Tissue:  In vivo.
References:  55
Intravenous infusion of ghrelin causes a decrease in mean arterial pressure with no change in heart rate.
Species:  Human
Tissue:  In vivo.
References:  53-54
Ghrelin showed vasodilator actions in studies determining forearm blood flow in healthy volunteers and in endothelium denuded human isolated internal mammary artery.
Species:  Human
Tissue:  In vivo.
References:  86
The acute haemodynamic response was also observed in GH deficient rats and hypotensive actions have been observed for des-octaboyl ghrelin after central administration in the rat nucleus of the solitary tract. The role of endothelial vasodilators in mediating ghrelin-induced vasodilatation is not clear.
Species:  Rat
Tissue:  In vivo.
References:  81
Ghrelin causes increased cell proliferation of H9c2 cardiomyocytes in vitro.
Species:  Rat
Tissue:  Cardiomyocytes in vitro.
References:  1,62
Intracerebroventricular and intravenous injection of ghrelin in rats induces fasted motor activity in the stomach and duodenum.
Species:  Rat
Tissue:  Stomach and duodenum in vivo.
References:  21
Ghrelin significantly reduced infarct size in isolated rat hearts with temporary coronary ligation.
Species:  Rat
Tissue:  Heart.
References:  20
Ghrelin promotes pancreatic adenocarcinoma cell proliferation and invasiveness.
Species:  Human
Tissue:  Pancreatic adenocarcinoma cells.
References:  16
Ghrelin inhibits proliferation of human thyroid carcinoma cells.
Species:  Human
Tissue:  Thyroid carcinoma cell lines.
References:  7,84
Ghrelin is a growth-hormone-releasing peptide secreted from the stomach, that acts both on the hypothalamus and the pituitary.
Species:  Rat
Tissue:  Pituitary
References:  36
Ghrelin induces adiposity in rodents. Administration of ghrelin increases the acute food intake both after intracerebral and peripheral administration. Chronic administration of ghrelin also increases fat accumulation independen of food intake. Ghrelin has also been shown to increase food intake in humans.
Species:  Rat
Tissue:  Hypothalamus
References:  56,76,80,88
Ghrelin inhibits leptin- and activation-induced proinflammatory cytokine expression by human monocytes and T cells. Both the ghrelin receptor and ghrelin are expressed in human T lymphocytes and monocytes, where ghrelin acts to specifically inhibit the expression of proinflammatory anorectic cytokines such as IL-1β, IL-6, and TNFα.
Species:  Human
Tissue:  Hypothalamus, endothelial cells
References:  13-14,39
Ghrelin, a novel growth hormone-releasing peptide, in the treatment of cardiopulmonary-associated cachexia.
Species:  Human
Tissue: 
References:  52
Ghrelin regulates gut motility by central and peripheral mechanisms. Ghrelin for example regulates gastrointestinal motility by the activation of receptors on enteric neurons.
Species:  Human
Tissue: 
References:  59,83,90
Ghrelin protects against ethanol-induced gastric ulcers.
Species:  Rat
Tissue:  Stomach
References:  85
Physiological Consequences of Altering Gene Expression
Ghrelin receptor knockout mice show no obvious changes in their bodyweight or food intake phenotype. The GH secretory and feeding inducing effects of ghrelin however are abolished in the ghrelin receptor knockouts.
Species:  Mouse
Tissue: 
Technique:  Gene knock-outs
References:  73
Targeted knockdown of the Ghrelin receptor gene in the arcuate nucleus of the rat results in a significant decrease in food intake, body weight, body fat content and feeding response to growth hormone secretagogues. GH and insulin-like growth factor levels in these rats are also reduced.
Species:  Rat
Tissue: 
Technique:  Gene targeting in embryonic stem cells
References:  68
Mice lacking ghrelin receptors resist the development of diet induced obesity.
Species:  Mouse
Tissue: 
Technique:  Gene knockouts.
References:  93
Ablation of ghrelin receptor in leptin-deficient ob/ob mice has paradoxical effects on glucose homeostasis whencompared with ablation of ghrelin in ob/ob mice.
Species:  Mouse
Tissue: 
Technique:  Gene knockouts.
References:  43
Impaired wake-promoting mechanisms in ghrelin receptor-deficient mice.
Species:  Mouse
Tissue: 
Technique:  Not specified.
References:  19
Ablation of ghrelin receptor reduces adiposity and improves insulin sensitivity during aging by regulating fat metabolism in white and brown adipose tissues.
Species:  Mouse
Tissue: 
Technique:  Gene knockouts.
References:  40
Ghrelin is produced in taste cells and ghrelin receptor null mice show reduced taste responsivity to salty (NaCl) and sour (citric acid) tastants.
Species:  Mouse
Tissue: 
Technique:  Gene knockouts.
References:  67
Unacylated ghrelin rapidly modulates lipogenic and insulin signaling pathway gene expression in metabolically active tissues of Ghsr deleted mice.
Species:  Mouse
Tissue: 
Technique:  Gene knockouts.
References:  11
Improved insulin sensitivity and metabolic flexibility in ghrelin receptor knockout mice.
Species:  Mouse
Tissue: 
Technique:  Gene knockouts.
References:  42
Simultaneous deletion of ghrelin and its receptor increases motor activity and energy expenditure.
Species:  Mouse
Tissue: 
Technique:  Gene knockouts.
References:  63
Physiological Consequences of Altering Gene Expression Comments
Characterization of adult ghrelin and ghrelin receptor knockout mice under positive and negative energy balance [72].
Phenotypes, Alleles and Disease Models Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Ghsrtm1.1Lex Ghsrtm1.1Lex/Ghsrtm1.1Lex
involves: 129S4/SvJae * 129S5/SvEvBrd * C57BL/6
MGI:2441906  MP:0001663 abnormal digestive system physiology PMID: 18657539 
Ghsrtm1Lowl Ghsrtm1Lowl/Ghsrtm1Lowl
involves: C57BL/6J
MGI:2441906  MP:0005450 abnormal energy expenditure PMID: 16322794 
Ghsrtm1Rgs Ghsrtm1Rgs/Ghsrtm1Rgs
involves: 129/Sv * C57BL/6J
MGI:2441906  MP:0005449 abnormal food intake PMID: 15070777 
Ghsrtm1Rgs Ghsrtm1Rgs/Ghsrtm1Rgs
involves: 129/Sv * C57BL/6J
MGI:2441906  MP:0003968 abnormal growth hormone level PMID: 15070777 
Ghsrtm1Mws Ghsrtm1Mws/Ghsrtm1Mws
Not Specified
MGI:2441906  MP:0002803 abnormal operant conditional behavior PMID: 19633195 
Ghsrtm1.1Lex Ghsrtm1.1Lex/Ghsrtm1.1Lex
involves: 129S4/SvJae * 129S5/SvEvBrd * C57BL/6
MGI:2441906  MP:0008872 abnormal physiological response to xenobiotic PMID: 18657539 
Ghsrtm1Rgs Ghsrtm1Rgs/Ghsrtm1Rgs
involves: 129/Sv * C57BL/6J
MGI:2441906  MP:0003638 abnormal response/metabolism to endogenous compounds PMID: 15070777 
Ghsrtm1Lowl Ghsrtm1Lowl/Ghsrtm1Lowl
involves: C57BL/6J
MGI:2441906  MP:0003638 abnormal response/metabolism to endogenous compounds PMID: 16322794 
Ghsrtm1Rgs Ghsrtm1Rgs/Ghsrtm1Rgs
involves: 129/Sv * C57BL/6J
MGI:2441906  MP:0001262 decreased body weight PMID: 15070777 
Ghsrtm1Lowl Ghsrtm1Lowl/Ghsrtm1Lowl
involves: C57BL/6J
MGI:2441906  MP:0001262 decreased body weight PMID: 16322794 
Ghsrtm1Lowl Ghsrtm1Lowl/Ghsrtm1Lowl
involves: C57BL/6J
MGI:2441906  MP:0005560 decreased circulating glucose level PMID: 16322794 
Ghsrtm1Rgs Ghsrtm1Rgs/Ghsrtm1Rgs
involves: 129/Sv * C57BL/6J
MGI:2441906  MP:0004701 decreased circulating insulin-like growth factor I level PMID: 15070777 
Ghsrtm1Lowl Ghsrtm1Lowl/Ghsrtm1Lowl
involves: C57BL/6J
MGI:2441906  MP:0003910 decreased eating behavior PMID: 16322794 
Ghsrtm1Lowl Ghsrtm1Lowl/Ghsrtm1Lowl
involves: C57BL/6J
MGI:2441906  MP:0010379 decreased respiratory quotient PMID: 16322794 
Ghsrtm1Lowl Ghsrtm1Lowl/Ghsrtm1Lowl
involves: C57BL/6J
MGI:2441906  MP:0010025 decreased total body fat amount PMID: 16322794 
Ghsrtm1Lowl Ghsrtm1Lowl/Ghsrtm1Lowl
involves: C57BL/6J
MGI:2441906  MP:0001402 hypoactivity PMID: 16322794 
Ghsrtm1Lowl Ghsrtm1Lowl/Ghsrtm1Lowl
involves: C57BL/6J
MGI:2441906  MP:0005659 increased resistance to diet-induced obesity PMID: 16322794 
Clinically-Relevant Mutations and Pathophysiology
Disease:  Short stature, idiopathic, autosomal
OMIM:  604271
Orphanet:  314811
References: 
Mutations not determined
Biologically Significant Variants
Type:  Splice variants.
Species:  Human
Description:  GHSR1(b) is derived from the GHSR gene by alternative splicing. The splice variant has only five transmembrane domains and does not bind or is activated by ghrelin or other growth hormone secretagogues. GHSR1(b) mRNA however is widely expressed.
References:  23,30
Type:  Splice variant.
Species:  Human
Description:  GHSR1(b) is derived from the GHSR gene by alternative splicing. The splice variant has only five transmembrane domains and does not bind or is activated by ghrelin or other growth hormone secretagogues. GHSR1(b) mRNA however is widely expressed.
References:  23,30
General Comments
The role of endothelial vasodilators in mediating ghrelin-induced vasodilatation is not clear.
Available Assays
DiscoveRx PathHunter® CHO-K1 GHSR1b β-Arrestin Orphan GPCR Cell Line (Cat no. 93-0354C2A)
PathHunter® eXpress GHSR U2OS β-Arrestin-1 GPCR Assay (Cat no. 93-0242E3CP5M)
PathHunter® eXpress GHSR1b CHO-K1 β-Arrestin Orphan GPCR Assay (Cat no. 93-0354E2ACP1M)
PathHunter® U2OS GHSR β-Arrestin-1 Cell Line (Cat no. 93-0242C3)
more info

REFERENCES

1. Baldanzi G, Filigheddu N, Cutrupi S, Catapano F, Bonissoni S, Fubini A, Malan D, Baj G, Granata R, Broglio F, Papotti M, Surico N, Bussolino F, Isgaard J, Deghenghi R, Sinigaglia F, Prat M, Muccioli G, Ghigo E, Graziani A. (2002) Ghrelin and des-acyl ghrelin inhibit cell death in cardiomyocytes andendothelial cells through ERK1/2 and PI 3-kinase/AKT. J Cell Biol.159: 1029-1037. [PMID:12486113]

2. Bedendi I, Alloatti G, Marcantoni A, Malan D, Catapano F, Ghé C, Deghenghi R, Ghigo E, Muccioli G. (2003) Cardiac effects of ghrelin and its endogenous derivatives des-octanoyl ghrelin and des-Gln14-ghrelin. Eur. J. Pharmacol.476 (1-2): 87-95. [PMID:12969753]

3. Bednarek MA, Feighner SD, Pong SS, McKee KK, Hreniuk DL, Silva MV, Warren VA, Howard AD, Van der Ploeg LH, Heck JV. (2000) Structure-function studies on the new growth hormone-releasing peptide, ghrelin: minimal sequence of ghrelin necessary for activation of growth hormone secretagogue receptor 1a. J Med Chem.43: 4370-4376. [PMID:11087562]

4. Bennett KA, Langmead CJ, Wise A, Milligan G. (2009) Growth hormone secretagogues and growth hormone releasing peptides act as orthosteric super-agonists but not allosteric regulators for activation of the G protein Galpha(o1) by the Ghrelin receptor. Mol. Pharmacol.76 (4): 802-11. [PMID:19625579]

5. Bodart V, Febbraio M, Demers A, McNicoll N, Pohankova P, Perreault A, Sejlitz T, Escher E, Silverstein RL, Lamontagne D, Ong H. (2002) CD36 mediates the cardiovascular action of growth hormone-releasing peptides inthe heart. Circ Res.90: 844-849. [PMID:11988484]

6. Cassoni P, Ghe C, Marrocco T, Tarabra E, Allia E, Catapano F, Deghenghi R, Ghigo E, Papotti M, Muccioli G. (2004) Expression of ghrelin and biological activity of specific receptors for ghrelin and des-acyl ghrelin in human prostate neoplasms and related cell lines. Eur J Endocrinol.150: 173-184. [PMID:14763915]

7. Cassoni P, Papotti M, Catapano F, Ghe C, Deghenghi R, Ghigo E, Muccioli G. (2000) Specific binding sites for synthetic growth hormone secretagogues in non-tumoral and neoplastic human thyroid tissue. J Endocrinol.165: 139-146. [PMID:10750044]

8. Costantini VJ, Vicentini E, Sabbatini FM, Valerio E, Lepore S, Tessari M, Sartori M, Michielin F, Melotto S, Bifone A et al.. (2011) GSK1614343, a novel ghrelin receptor antagonist, produces an unexpected increase of food intake and body weight in rodents and dogs. Neuroendocrinology94 (2): 158-68. [PMID:21778696]

9. Damian M, Marie J, Leyris JP, Fehrentz JA, Verdié P, Martinez J, Banères JL, Mary S. (2012) High constitutive activity is an intrinsic feature of ghrelin receptor protein: a study with a functional monomeric GHS-R1a receptor reconstituted in lipid discs. J. Biol. Chem.287 (6): 3630-41. [PMID:22117076]

10. Date Y, Murakami N, Kojima M, Kuroiwa T, Matsukura S, Kangawa K, Nakazato M. (2000) Central effects of a novel acylated peptide, ghrelin, on growth hormone release in rats. Biochem. Biophys. Res. Commun.275 (2): 477-80. [PMID:10964690]

11. Delhanty PJ, Sun Y, Visser JA, van Kerkwijk A, Huisman M, van Ijcken WF, Swagemakers S, Smith RG, Themmen AP, van der Lely AJ. (2010) Unacylated ghrelin rapidly modulates lipogenic and insulin signaling pathway gene expression in metabolically active tissues of GHSR deleted mice. PLoS ONE5 (7): e11749. [PMID:20668691]

12. Depoortere I, De Winter B, Thijs T, De Man J, Pelckmans P, Peeters T. (2005) Comparison of the gastroprokinetic effects of ghrelin, GHRP-6 and motilin in rats in vivo and in vitro. Eur J Pharmacol.515: 160-168. [PMID:15890336]

13. Dixit VD, Schaffer EM, Pyle RS, Collins GD, Sakthivel SK, Palaniappan R, Lillard JW, Taub DD. (2004) Ghrelin inhibits leptin- and activation-induced proinflammatory cytokine expression by human monocytes and T cells. J. Clin. Invest.114 (1): 57-66. [PMID:15232612]

14. Dixit VD, Yang H, Cooper-Jenkins A, Giri BB, Patel K, Taub DD. (2009) Reduction of T cell-derived ghrelin enhances proinflammatory cytokine expression: implications for age-associated increases in inflammation. Blood113 (21): 5202-5. [PMID:19324904]

15. Druce MR, Wren AM, Park AJ, Milton JE, Patterson M, Frost G, Ghatei MA, Small C, Bloom SR. (2005) Ghrelin increases food intake in obese as well as lean subjects. Int J Obes Relat Metab Disord.29: 1130-1136. [PMID:15917842]

16. Duxbury MS, Waseem T, Ito H, Robinson MK, Zinner MJ, Ashley SW, Whang EE. (2003) Ghrelin promotes pancreatic adenocarcinoma cellular proliferation and invasiveness. Biochem Biophys Res Commun.309: 464-468. [PMID:12951072]

17. Edholm T, Levin F, Hellstrom PM, Schmidt PT. (2004) Ghrelin stimulates motility in the small intestine of rats through intrinsic cholinergic neurons. Regul Pept.121: 25-30. [PMID:15256270]

18. Esler WP, Rudolph J, Claus TH, Tang W, Barucci N, Brown SE, Bullock W, Daly M, Decarr L, Li Y et al.. (2007) Small-molecule ghrelin receptor antagonists improve glucose tolerance, suppress appetite, and promote weight loss. Endocrinology148 (11): 5175-85. [PMID:17656463]

19. Esposito M, Pellinen J, Kapás L, Szentirmai É. (2012) Impaired wake-promoting mechanisms in ghrelin receptor-deficient mice. Eur. J. Neurosci.35 (2): 233-43. [PMID:22211783]

20. Frascarelli S, Ghelardoni S, Ronca-Testoni S, Zucchi R. (2003) Effect of ghrelin and synthetic growth hormone secretagogues in normal and ischemic rat heart. Basic Res Cardiol.98: 401-405. [PMID:14556085]

21. Fujino K, Inui A, Asakawa A, Kihara N, Fujimura M, Fujimiya M. (2003) Ghrelin induces fasted motor activity of the gastrointestinal tract in conscious fed rats. J Physiol.550: 227-240. [PMID:12837928]

22. Gaytan F, Morales C, Barreiro ML, Jeffery P, Chopin LK, Herington AC, Casanueva FF, Aguilar E, Dieguez C, Tena-Sempere M. (2005) Expression of growth hormone secretagogue receptor type 1a, the functional ghrelin receptor, in human ovarian surface epithelium, mullerian duct derivatives, and ovarian tumors. J Clin Endocrinol Metab.90: 1798-1804. [PMID:15585554]

23. Gnanapavan S, Kola B, Bustin SA, Morris DG, McGee P, Fairclough P, Bhattacharya S, Carpenter R, Grossman AB, Korbonits M. (2002) The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans. J Clin Endocrinol Metab.87: 2988-2988. [PMID:12050285]

24. Halem HA, Taylor JE, Dong JZ, Shen Y, Datta R, Abizaid A, Diano S, Horvath T, Zizzari P, Bluet-Pajot MT, Epelbaum J, Culler MD. (2004) Novel analogs of ghrelin: physiological and clinical implications. Eur J Endocrinol.151: S71-S75. [PMID:15339248]

25. Hansen BS, Raun K, Nielsen KK, Johansen PB, Hansen TK, Peschke B, Lau J, Andersen PH, Ankersen M. (1999) Pharmacological characterisation of a new oral GH secretagogue, NN703. Eur. J. Endocrinol.141 (2): 180-9. [PMID:10427162]

26. Holst B, Brandt E, Bach A, Heding A, Schwartz TW. (2005) Nonpeptide and peptide growth hormone secretagogues act both as ghrelin receptor agonist and as positive or negative allosteric modulators of ghrelin signaling. Mol. Endocrinol.19 (9): 2400-11. [PMID:15905359]

27. Holst B, Cygankiewicz A, Jensen TH, Ankersen M, Schwartz TW. (2003) High constitutive signaling of the ghrelin receptor--identification of a potent inverse agonist. Mol Endocrinol.17: 2201-2210. [PMID:12907757]

28. Holst B, Frimurer TM, Mokrosinski J, Halkjaer T, Cullberg KB, Underwood CR, Schwartz TW. (2009) Overlapping binding site for the endogenous agonist, small-molecule agonists, and ago-allosteric modulators on the ghrelin receptor. Mol. Pharmacol.75 (1): 44-59. [PMID:18923064]

29. Hosoda H, Kojima M, Matsuo H, Kangawa K. (2000) Purification and characterization of rat des-Gln14-Ghrelin, a second endogenous ligand for the growth hormone secretagogue receptor. J Biol Chem.275: 21995-22000. [PMID:10801861]

30. Howard AD, Feighner SD, Cully DF, Arena JP, Liberator PA, Rosenblum CI, Hamelin M, Hreniuk DL, Palyha OC, Anderson J, Paress PS, Diaz C, Chou M, Liu KK, McKee KK, Pong SS, Chaung LY, Elbrecht A, Dashkevicz M, Heavens R, Rigby M Sirinathsinghji Dean DC, Melillo DG, Patchett AA, Nargund R, Griffin PR DeMartino Gupta SK, Schaeffer JM, Smith RG, Van der Ploeg LH. (1996) A receptor in pituitary and hypothalamus that functions in growth hormone release. Science.273: 974-977. [PMID:8688086]

31. Jiang H, Betancourt L, Smith RG. (2006) Ghrelin amplifies dopamine signaling by cross talk involving formation of growth hormone secretagogue receptor/dopamine receptor subtype 1 heterodimers. Mol. Endocrinol.20 (8): 1772-85. [PMID:16601073]

32. Kageyama H, Funahashi H, Hirayama M, Takenoya F, Kita T, Kato S, Sakurai J, Lee EY, Inoue S, Date Y, Nakazato M, Kangawa K, Shioda S. (2005) Morphological analysis of ghrelin and its receptor distribution in the rat pancreas. Regul Pept.126: 67-71. [PMID:15620416]

33. Katugampola SD, Pallikaros Z, Davenport AP. (2001) [125I-His(9)]-ghrelin, a novel radioligand for localizing GHS orphan receptors in human and rat tissue: up-regulation of receptors with athersclerosis. Br J Pharmacol.134: 143-149. [PMID:11522606]

34. Kern A, Albarran-Zeckler R, Walsh HE, Smith RG. (2012) Apo-ghrelin receptor forms heteromers with DRD2 in hypothalamic neurons and is essential for anorexigenic effects of DRD2 agonism. Neuron73 (2): 317-32. [PMID:22284186]

35. Kobelt P, Tebbe JJ, Tjandra I, Stengel A, Bae HG, Andresen V, van der Voort IR, Veh RW, Werner CR, Klapp BF, Wiedenmann B, Wang L, Tache Y, Monnikes H. (2005) CCK inhibits the orexigenic effect of peripheral ghrelin. Am J Physiol Regul Integr Comp Physiol.288: R751-R758. [PMID:15550621]

36. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature.402: 656-660. [PMID:10604470]

37. Lai JK, Cheng CH, Ko WH, Leung PS. (2005) Ghrelin system in pancreatic AR42J cells: its ligand stimulation evokes calcium signalling through ghrelin receptors. Int J Biochem Cell Biol.37: 887-900. [PMID:15694847]

38. Li GZ, Jiang W, Zhao J, Pan CS, Cao J, Tang CS, Chang L. (2005) Ghrelin blunted vascular calcification in vivo and in vitro in rats. Regul Pept.129: 167-176. [PMID:15927713]

39. Li WG, Gavrila D, Liu X, Wang L, Gunnlaugsson S, Stoll LL, McCormick ML, Sigmund CD, Tang C, Weintraub NL. (2004) Ghrelin inhibits proinflammatory responses and nuclear factor-kappaB activation in human endothelial cells. Circulation109 (18): 2221-6. [PMID:15117840]

40. Lin L, Saha PK, Ma X, Henshaw IO, Shao L, Chang BH, Buras ED, Tong Q, Chan L, McGuinness OP et al.. (2011) Ablation of ghrelin receptor reduces adiposity and improves insulin sensitivity during aging by regulating fat metabolism in white and brown adipose tissues. Aging Cell10 (6): 996-1010. [PMID:21895961]

41. Lin Y, Matsumura K, Fukuhara M, Kagiyama S, Fujii K, Iida M. (2004) Ghrelin acts at the nucleus of the solitary tract to decrease arterial pressure in rats. Hypertension.43: 977-982. [PMID:14993197]

42. Longo KA, Charoenthongtrakul S, Giuliana DJ, Govek EK, McDonagh T, Qi Y, DiStefano PS, Geddes BJ. (2008) Improved insulin sensitivity and metabolic flexibility in ghrelin receptor knockout mice. Regul. Pept.150 (1-3): 55-61. [PMID:18453014]

43. Ma X, Lin Y, Lin L, Qin G, Pereira FA, Haymond MW, Butte NF, Sun Y. (2012) Ablation of ghrelin receptor in leptin-deficient ob/ob mice has paradoxical effects on glucose homeostasis when compared with ablation of ghrelin in ob/ob mice. Am. J. Physiol. Endocrinol. Metab.303 (3): E422-31. [PMID:22669248]

44. Mary S, Damian M, Louet M, Floquet N, Fehrentz JA, Marie J, Martinez J, Banères JL. (2012) Ligands and signaling proteins govern the conformational landscape explored by a G protein-coupled receptor. Proc. Natl. Acad. Sci. U.S.A.109 (21): 8304-9. [PMID:22573814]

45. Masuda Y, Tanaka T, Inomata N, Ohnuma N, Tanaka S, Itoh Z, Hosoda H, Kojima M, Kangawa K. (2000) Ghrelin stimulates gastric acid secretion and motility in rats. Biochem Biophys Res Commun.276: 905-908. [PMID:11027567]

46. Matsumoto M, Hosoda H, Kitajima Y, Morozumi N, Minamitake Y, Tanaka S, Matsuo H, Kojima M, Hayashi Y, Kangawa K. (2001) Structure-activity relationship of ghrelin: pharmacological study of ghrelin peptides. Biochem Biophys Res Commun.287: 142-146. [PMID:11549267]

47. McKee KK, Palyha OC, Feighner SD, Hreniuk DL, Tan CP, Phillips MS, Smith RG, Van der Ploeg LH, Howard AD. (1997) Molecular analysis of rat pituitary and hypothalamic growth hormone secretagogue receptors. Mol Endocrinol.11: 415-423. [PMID:9092793]

48. Mokrosiński J, Frimurer TM, Sivertsen B, Schwartz TW, Holst B. (2012) Modulation of constitutive activity and signaling bias of the ghrelin receptor by conformational constraint in the second extracellular loop. J. Biol. Chem.287 (40): 33488-502. [PMID:22846991]

49. Mondal MS, Date Y, Yamaguchi H, Toshinai K, Tsuruta T, Kangawa K, Nakazato M. (2005) Identification of ghrelin and its receptor in neurons of the rat arcuate nucleus. Regul Pept.126: 55-59. [PMID:15620414]

50. Moulin A, Demange L, Bergé G, Gagne D, Ryan J, Mousseaux D, Heitz A, Perrissoud D, Locatelli V, Torsello A et al.. (2007) Toward potent ghrelin receptor ligands based on trisubstituted 1,2,4-triazole structure. 2. Synthesis and pharmacological in vitro and in vivo evaluations. J. Med. Chem.50 (23): 5790-806. [PMID:17927165]

51. Muccioli G, Papotti M, Locatelli V, Ghigo E, Deghenghi R. (2001) Binding of 125I-labeled ghrelin to membranes from human hypothalamus and pituitary gland. J Endocrinol Invest.24: RC7-RC9. [PMID:11314756]

52. Nagaya N, Kojima M, Kangawa K. (2006) Ghrelin, a novel growth hormone-releasing peptide, in the treatment of cardiopulmonary-associated cachexia. Intern. Med.45 (3): 127-34. [PMID:16508225]

53. Nagaya N, Kojima M, Uematsu M, Yamagishi M, Hosoda H, Oya H, Hayashi Y, Kangawa K. (2001) Hemodynamic and hormonal effects of human ghrelin in healthy volunteers. Am J Physiol Regul Integr Comp Physiol.280: R1483-R1487. [PMID:11294772]

54. Nagaya N, Miyatake K, Uematsu M, Oya H, Shimizu W, Hosoda H, Kojima M, Nakanishi N, Mori H, Kangawa K. (2001) Hemodynamic, renal, and hormonal effects of ghrelin infusion in patients with chronic heart failure. J Clin Endocrinol Metab.86: 5854-5859. [PMID:11739451]

55. Nagaya N, Uematsu M, Kojima M, Ikeda Y, Yoshihara F, Shimizu W, Hosoda H, Hirota Y, Ishida H, Mori H, Kangawa K. (2001) Chronic administration of ghrelin improves left ventricular dysfunction and attenuates development of cardiac cachexia in rats with heart failure. Circulation.104: 1430-1435. [PMID:11560861]

56. Nakazato M, Murakami N, Date Y, Kojima M, Matsuo H, Kangawa K, Matsukura S. (2001) A role for ghrelin in the central regulation of feeding. Nature.409: 194-198. [PMID:11196643]

57. Palyha OC, Feighner SD, Tan CP, McKee KK, Hreniuk DL, Gao YD, Schleim KD, Yang L, Morriello GJ, Nargund R et al.. (2000) Ligand activation domain of human orphan growth hormone (GH) secretagogue receptor (GHS-R) conserved from Pufferfish to humans. Mol. Endocrinol.14 (1): 160-9. [PMID:10628755]

58. Papotti M, Ghe C, Cassoni P, Catapano F, Deghenghi R, Ghigo E, Muccioli G. (2000) Growth hormone secretagogue binding sites in peripheral human tissues. J Clin Endocrinol Metab.85: 3803-3807. [PMID:11061542]

59. Peeters TL. (2003) Central and peripheral mechanisms by which ghrelin regulates gut motility. J. Physiol. Pharmacol.54 Suppl 4: 95-103. [PMID:15075452]

60. Peino R, Baldelli R, Rodriguez-Garcia J, Rodriguez-Segade S, Kojima M, Kangawa K, Arvat E, Ghigo E, Dieguez C, Casanueva FF. (2000) Ghrelin-induced growth hormone secretion in humans. Eur J Endocrinol.143: R11-R14. [PMID:11124868]

61. Perdonà E, Faggioni F, Buson A, Sabbatini FM, Corti C, Corsi M. (2011) Pharmacological characterization of the ghrelin receptor antagonist, GSK1614343 in rat RC-4B/C cells natively expressing GHS type 1a receptors. Eur. J. Pharmacol.650 (1): 178-83. [PMID:21034740]

62. Pettersson I, Muccioli G, Granata R, Deghenghi R, Ghigo E, Ohlsson C, Isgaard J. (2002) Natural (ghrelin) and synthetic (hexarelin) GH secretagogues stimulate H9c2 cardiomyocyte cell proliferation. J Endocrinol.175: 201-209. [PMID:12379504]

63. Pfluger PT, Kirchner H, Günnel S, Schrott B, Perez-Tilve D, Fu S, Benoit SC, Horvath T, Joost HG, Wortley KE et al.. (2008) Simultaneous deletion of ghrelin and its receptor increases motor activity and energy expenditure. Am. J. Physiol. Gastrointest. Liver Physiol.294 (3): G610-8. [PMID:18048479]

64. Rediger A, Piechowski CL, Habegger K, Grüters A, Krude H, Tschöp MH, Kleinau G, Biebermann H. (2012) MC4R dimerization in the paraventricular nucleus and GHSR/MC3R heterodimerization in the arcuate nucleus: is there relevance for body weight regulation?. Neuroendocrinology95 (4): 277-88. [PMID:22327910]

65. Sabbatini FM, Di Fabio R, Corsi M, Cavanni P, Bromidge SM, St-Denis Y, D'Adamo L, Contini S, Rinaldi M, Guery S et al.. (2010) Discovery process and characterization of novel carbohydrazide derivatives as potent and selective GHSR1a antagonists. ChemMedChem5 (9): 1450-5. [PMID:20593439]

66. Schellekens H, van Oeffelen WE, Dinan TG, Cryan JF. (2013) Promiscuous dimerization of the growth hormone secretagogue receptor (GHS-R1a) attenuates ghrelin-mediated signaling. J. Biol. Chem.288 (1): 181-91. [PMID:23161547]

67. Shin YK, Martin B, Kim W, White CM, Ji S, Sun Y, Smith RG, Sévigny J, Tschöp MH, Maudsley S et al.. (2010) Ghrelin is produced in taste cells and ghrelin receptor null mice show reduced taste responsivity to salty (NaCl) and sour (citric acid) tastants. PLoS ONE5 (9): e12729. [PMID:20856820]

68. Shuto Y, Shibasaki T, Otagiri A, Kuriyama H, Ohata H, Tamura H, Kamegai J, Sugihara H, Oikawa S, Wakabayashi I. (2002) Hypothalamic growth hormone secretagogue receptor regulates growth hormone secretion, feeding, and adiposity. J Clin Invest.109: 1429-1436. [PMID:12045256]

69. Sivertsen B, Lang M, Frimurer TM, Holliday ND, Bach A, Els S, Engelstoft MS, Petersen PS, Madsen AN, Schwartz TW et al.. (2011) Unique interaction pattern for a functionally biased ghrelin receptor agonist. J. Biol. Chem.286 (23): 20845-60. [PMID:21402696]

70. Smith RG, Cheng K, Schoen WR, Pong SS, Hickey G, Jacks T, Butler B, Chan WW, Chaung LY, Judith F et al.. (1993) A nonpeptidyl growth hormone secretagogue. Science260 (5114): 1640-3. [PMID:8503009]

71. Stevens T, Parsi MA. (2010) Endoscopic ultrasound for the diagnosis of chronic pancreatitis. World J. Gastroenterol.16 (23): 2841-50. [PMID:20556829]

72. Sun Y, Butte NF, Garcia JM, Smith RG. (2008) Characterization of adult ghrelin and ghrelin receptor knockout mice under positive and negative energy balance. Endocrinology149 (2): 843-50. [PMID:18006636]

73. Sun Y, Wang P, Zheng H, Smith RG. (2004) Ghrelin stimulation of growth hormone release and appetite is mediated through the growth hormone secretagogue receptor. Proc Natl Acad Sci U S A.101: 4679-4684. [PMID:15070777]

74. Takaya K, Ariyasu H, Kanamoto N, Iwakura H, Yoshimoto A, Harada M, Mori K, Komatsu Y, Usui T, Shimatsu A, Ogawa Y, Hosoda K, Akamizu T, Kojima M, Kangawa K, Nakao K. (2000) Ghrelin strongly stimulates growth hormone release in humans. J Clin Endocrinol Metab.85: 4908-4911. [PMID:11134161]

75. Tanaka M, Hayashida Y, Iguchi T, Nakao N, Nakai N, Nakashima K. (2001) Organization of the mouse ghrelin gene and promoter: occurrence of a short noncoding first exon. Endocrinology142 (8): 3697-700. [PMID:11459820]

76. Theander-Carrillo C, Wiedmer P, Cettour-Rose P, Nogueiras R, Perez-Tilve D, Pfluger P, Castaneda TR, Muzzin P, Schürmann A, Szanto I et al.. (2006) Ghrelin action in the brain controls adipocyte metabolism. J. Clin. Invest.116 (7): 1983-93. [PMID:16767221]

77. Thompson NM, Gill DA, Davies R, Loveridge N, Houston PA, Robinson IC, Wells T. (2004) Ghrelin and des-octanoyl ghrelin promote adipogenesis directly in vivo by a mechanism independent of the type 1a growth hormone secretagogue receptor. Endocrinology.145: 234-242. [PMID:14551228]

78. Tokunaga T, Hume WE, Umezome T, Okazaki K, Ueki Y, Kumagai K, Hourai S, Nagamine J, Seki H, Taiji M et al.. (2001) Oxindole derivatives as orally active potent growth hormone secretagogues. J. Med. Chem.44 (26): 4641-9. [PMID:11741481]

79. Tolle V, Zizzari P, Tomasetto C, Rio MC, Epelbaum J, Bluet-Pajot MT. (2001) In vivo and in vitro effects of ghrelin/motilin-related peptide on growth hormone secretion in the rat. Neuroendocrinology.73: 54-61. [PMID:11174017]

80. Tschöp M, Smiley DL, Heiman ML. (2000) Ghrelin induces adiposity in rodents. Nature407 (6806): 908-13. [PMID:11057670]

81. Tsubota Y, Owada-Makabe K, Yukawa K, Maeda M. (2005) Hypotensive effect of des-acyl ghrelin at nucleus tractus solitarii of rat. Neuroreport.16: 163-166. [PMID:15671869]

82. Valentin-Hansen L, Holst B, Frimurer TM, Schwartz TW. (2012) PheVI:09 (Phe6.44) as a sliding microswitch in seven-transmembrane (7TM) G protein-coupled receptor activation. J. Biol. Chem.287 (52): 43516-26. [PMID:23135271]

83. Verhulst PJ, De Smet B, Saels I, Thijs T, Ver Donck L, Moechars D, Peeters TL, Depoortere I. (2008) Role of ghrelin in the relationship between hyperphagia and accelerated gastric emptying in diabetic mice. Gastroenterology135 (4): 1267-76. [PMID:18657539]

84. Volante M, Allia E, Fulcheri E, Cassoni P, Ghigo E, Muccioli G, Papotti M. (2003) Ghrelin in fetal thyroid and follicular tumors and cell lines: expression and effects on tumor growth. Am J Pathol.162: 645-654. [PMID:12547722]

85. Weber J, Staerz E, Mettang T, Machleidt C, Kuhlmann U. (1989) Treatment of peritonitis in continuous ambulatory peritoneal dialysis (CAPD) with intraperitoneal cefazolin and gentamicin. Perit Dial Int9 (3): 191-5. [PMID:2488364]

86. Wiley KE, Davenport AP. (2002) Comparison of vasodilators in human internal mammary artery: ghrelin is a potent physiological antagonist of endothelin-1. Br J Pharmacol.136: 1146-1152. [PMID:12163347]

87. Wren AM, Seal LJ, Cohen MA, Brynes AE, Frost GS, Murphy KG, Dhillo WS, Ghatei MA, Bloom SR. (2001) Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab.86: 5992-5992. [PMID:11739476]

88. Wren AM, Small CJ, Ward HL, Murphy KG, Dakin CL, Taheri S, Kennedy AR, Roberts GH, Morgan DG, Ghatei MA et al.. (2000) The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology141 (11): 4325-8. [PMID:11089570]

89. Xin Z, Serby MD, Zhao H, Kosogof C, Szczepankiewicz BG, Liu M, Liu B, Hutchins CW, Sarris KA, Hoff ED et al.. (2006) Discovery and pharmacological evaluation of growth hormone secretagogue receptor antagonists. J. Med. Chem.49 (15): 4459-69. [PMID:16854051]

90. Xu L, Depoortere I, Tomasetto C, Zandecki M, Tang M, Timmermans JP, Peeters TL. (2005) Evidence for the presence of motilin, ghrelin, and the motilin and ghrelin receptor in neurons of the myenteric plexus. Regul. Pept.124 (1-3): 119-25. [PMID:15544849]

91. Yasuda T, Masaki T, Kakuma T, Yoshimatsu H. (2003) Centrally administered ghrelin suppresses sympathetic nerve activity in brown adipose tissue of rats. Neurosci Lett.349: 75-78. [PMID:12946556]

92. Zigman JM, Jones JE, Lee CE, Saper CB, Elmquist JK. (2006) Expression of ghrelin receptor mRNA in the rat and the mouse brain. J. Comp. Neurol.494 (3): 528-48. [PMID:16320257]

93. Zigman JM, Nakano Y, Coppari R, Balthasar N, Marcus JN, Lee CE, Jones JE, Deysher AE, Waxman AR, White RD et al.. (2005) Mice lacking ghrelin receptors resist the development of diet-induced obesity. J. Clin. Invest.115 (12): 3564-72. [PMID:16322794]

To cite this database page, please use the following:

Birgitte Holst, Bjørn B Sivertsen.
Ghrelin receptor: ghrelin receptor. Last modified on 17/03/2014. Accessed on 02/09/2014. IUPHAR database (IUPHAR-DB), http://www.iuphar-db.org/DATABASE/ObjectDisplayForward?objectId=246.

Contact us | Print | Back to top | Help
Copyright © 2014 IUPHAR