Nomenclature: GAL1 receptor

Family: Galanin receptors

Annotation status:  image of an orange circle Annotated and awaiting review. Please contact us if you can help with reviewing. 

Contents

Gene and Protein Information
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 349 18q23 GALR1 galanin receptor 1 68
Mouse 7 348 18 E3-E4 Galr1 galanin receptor 1 39,98
Rat 7 346 18q12.3 Galr1 galanin receptor 1 15
Previous and Unofficial Names
Galanin-1 receptor
GALR1
GALNR1
GALNR
GAL1-R
GALR-1
galanin receptor type 1
Database Links
ChEMBL Target
Ensembl Gene
Entrez Gene
GPCRDB
GeneCards
GenitoUrinary Development Molecular Anatomy Project
HomoloGene
Human Protein Reference Database
InterPro
KEGG Gene
OMIM
PharmGKB Gene
PhosphoSitePlus
Protein Ontology (PRO)
RefSeq Nucleotide
RefSeq Protein
TreeFam
UniGene Hs.
UniProtKB
Wikipedia
Natural/Endogenous Ligand(s)
galanin {Sp: Human} , galanin {Sp: Mouse, Rat}
galanin-like peptide {Sp: Human} , galanin-like peptide {Sp: Mouse} , galanin-like peptide {Sp: Rat}
Comments: Galanin is more potent than galanin-like peptide
Rank order of potency (Human)
galanin (GAL, P22466) > galanin-like peptide (GALP, Q9UBC7)  [69]
Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
[125I][Tyr26]galanin (pig) Rn Agonist 9.52 – 10.72 pKd 15,20,22,72,85-86
pKd 9.52 – 10.72 (Kd 3x10-10 – 1.9x10-11 M) Two populations of binding sites have been identified in transfected cells with Kds of 0.3 and 0.019nM. [15,20,22,72,85-86]
[125I][Tyr26]galanin (rat/mouse) Mm Agonist 9.87 pKd 98
pKd 9.87 (Kd 1.34x10-10 M) [98]
[19Lys,26Leu]-galparan Rn Agonist 9.15 pKd 47
pKd 9.15 (Kd 7.1x10-10 M) [47]
galanin {Sp: Pig} Rn Full agonist 9.13 pKd 47
pKd 9.13 (Kd 7.4x10-10 M) [47]
galanin {Sp: Pig} Hs Full agonist 9.1 pKd 30
pKd 9.1 (Kd 8x10-10 M) [30]
[125I][Tyr26]galanin (human) Hs Agonist 7.83 – 10.32 pKd 11,24
pKd 9.54 – 10.32 (Kd 2.9x10-10 – 4.8x10-11 M) High affinity receptors [11,24]
pKd 7.83 – 7.89 (Kd 1.47x10-8 – 1.28x10-8 M) Low affinity receptors. [11,24]
galparan Rn Agonist 8.19 pKd 47
pKd 8.19 (Kd 6.4x10-9 M) [47]
galanin(1-13)amide Rn Agonist 6.9 pKd 47
pKd 6.9 (Kd 1.25x10-7 M) [47]
[2Ala]-galparan Rn Agonist 5.8 pKd 47
pKd 5.8 (Kd 1.585x10-6 M) [47]
galanin {Sp: Pig} Hs Full agonist 9.64 – 10.6 pKi 11,24,30
pKi 9.64 – 10.6 (Ki 2.3x10-10 – 2.5x10-11 M) [11,24,30]
galanin {Sp: Mouse, Rat} Mm Full agonist 9.34 – 10.33 pKi 71,98
pKi 9.34 – 10.33 (Ki 4.6x10-10 – 4.7x10-11 M) [71,98]
galanin {Sp: Human} Hs Full agonist 9.1 – 10.51 pKi 11,24,30,82
pKi 9.1 – 10.51 (Ki 8x10-10 – 3.1x10-11 M) [11,24,30,82]
M617 Hs Agonist 9.64 pKi 56
pKi 9.64 (Ki 2.3x10-10 M) [56]
M242 Hs Agonist 9.6 pKi 82
pKi 9.6 (Ki 2.5x10-10 M) [82]
galanin {Sp: Mouse, Rat} Rn Full agonist 9.0 – 10.1 pKi 15,86,94,96-97
pKi 9.0 – 10.1 (Ki 1x10-9 – 8x10-11 M) [15,86,94,96-97]
galanin {Sp: Pig} Rn Full agonist 9.09 – 10.0 pKi 15,72,85-86
pKi 9.09 – 10.0 (Ki 8.2x10-10 – 1x10-10 M) [15,72,85-86]
galanin {Sp: Human} Rn Full agonist 9.85 – 9.22 pKi 15,86
pKi 9.85 – 9.22 (Ki 1.4x10-10 – 6x10-10 M) [15,86]
galanin {Sp: Mouse, Rat} Hs Full agonist 8.76 – 10.1 pKi 11,30,54,56,78,81,88
pKi 8.76 – 10.1 (Ki 1.75x10-9 – 8x10-11 M) [11,30,54,56,78,81,88]
Gal-(K)4 Hs Agonist 9.4 pKi 106
pKi 9.4 (Ki 4x10-10 M) [106]
Gal-B2-MPEG4 Hs Agonist 9.3 pKi 106
pKi 9.3 (Ki 5x10-10 M) [106]
Gal-B2-C8 Hs Agonist 9.15 pKi 106
pKi 9.15 (Ki 7x10-10 M) [106]
Gal-B2-C10 Hs Agonist 8.89 pKi 106
pKi 8.89 (Ki 1.3x10-9 M) [106]
Gal-B2-dPEG24 Hs Agonist 8.89 pKi 105
pKi 8.89 (Ki 1.3x10-9 M) [105]
Gal-B2-C12 Hs Agonist 8.85 pKi 106
pKi 8.85 (Ki 1.4x10-9 M) [106]
galanin(1-16) (rat/mouse/pig) Mm Agonist 8.66 – 8.99 pKi 71,98
pKi 8.66 – 8.99 (Ki 2.2x10-9 – 1.02x10-9 M) [71,98]
galanin(1-16) (rat/mouse/pig) Hs Agonist 8.3 – 9.3 pKi 11,14,24,30
pKi 8.3 – 9.3 (Ki 5x10-9 – 5x10-10 M) [11,14,24,30]
Gal-B2-C14 Hs Agonist 8.59 pKi 106
pKi 8.59 (Ki 2.6x10-9 M) [106]
galanin(1-16) (rat/mouse/pig) Rn Agonist 8.05 – 9.02 pKi 15,72,85-86,94,96-97
pKi 8.05 – 9.02 (Ki 9x10-9 – 9.5x10-10 M) [15,72,85-86,94,96-97]
Gal-B2 Hs Agonist 8.46 pKi 14
pKi 8.46 (Ki 3.5x10-9 M) [14]
Gal-B2-C18 Hs Agonist 8.4 pKi 106
pKi 8.4 (Ki 4x10-9 M) [106]
galanin(1-15) Rn Agonist 7.94 – 8.52 pKi 72,85
pKi 7.94 – 8.52 (Ki 1.15x10-8 – 3x10-9 M) [72,85]
galanin(7-29) (pig) Hs Agonist 8.17 pKi 11
pKi 8.17 (Ki 6.76x10-9 M) [11]
galanin(2-29) (pig) Rn Full agonist 7.08 – 8.15 pKi 15,72
pKi 7.08 – 8.15 (Ki 8.25x10-8 – 7.14x10-9 M) [15,72]
galanin(7-29) (pig) Rn Agonist 7.61 pKi 86
pKi 7.61 (Ki 2.455x10-8 M) [86]
J20 (galanin analogue) Hs Agonist 7.6 pKi 79
pKi 7.6 (Ki 2.5x10-8 M) [79]
galanin(2-29) (pig) Hs Full agonist 7.58 pKi 11
pKi 7.58 (Ki 2.63x10-8 M) [11]
galanin(2–29) (rat/mouse) Mm Full agonist 7.07 – 7.97 pKi 71,98
pKi 7.07 – 7.97 (Ki 8.46x10-8 – 1.08x10-8 M) [71,98]
galanin(2-30) (human) Hs Agonist 7.28 pKi 17
pKi 7.28 (Ki 5.2x10-8 M) [17]
M1151 Hs Agonist 7.01 pKi 81
pKi 7.01 (Ki 9.86x10-8 M) [81]
J18 (galanin analogue) Hs Agonist 6.86 pKi 79
pKi 6.86 (Ki 1.38x10-7 M) [79]
galanin(2–29) (rat/mouse) Rn Full agonist 5.96 – 7.07 pKi 94,96-97
pKi 5.96 – 7.07 (Ki 1.1x10-6 – 8.5x10-8 M) [94,96-97]
[N-Me,des-Sar]Gal-B2 Hs Agonist 6.44 pKi 77
pKi 6.44 (Ki 3.645x10-7 M) [77]
Gal-B5 Hs Agonist 6.41 pKi 14
pKi 6.41 (Ki 3.87x10-7 M) [14]
M1145 Hs Agonist 6.23 pKi
pKi 6.23 (Ki 5.87x10-7 M)
galanin(D-Trp2) (pig) Hs Agonist 6.2 pKi 11
pKi 6.2 (Ki 6.31x10-7 M) [11]
galanin(D-Trp2) (pig) Rn Agonist 6.0 – 6.39 pKi 85-86
pKi 6.0 – 6.39 (Ki 1x10-6 – 4.074x10-7 M) [85-86]
galanin(3-29) (rat/mouse) Rn Agonist <6.0 pKi 94,97
pKi <6.0 (Ki >1x10-6 M) [94,97]
galanin(3-29) (pig) Rn Agonist <6.0 pKi 15,72,85-86
pKi <6.0 (Ki >1x10-6 M) [15,72,85-86]
galanin(10-29) (pig) Rn Agonist <6.0 pKi 72
pKi <6.0 (Ki >1x10-6 M) [72]
galanin (10-29) (rat/mouse) Mm Agonist <5.78 pKi 71
pKi <5.78 (Ki >1.67x10-6 M) [71]
galanin(3-29) (rat/mouse) Mm Agonist <5.78 pKi 71
pKi <5.78 (Ki >1.65x10-6 M) [71]
M1153 Hs Agonist 5.72 pKi 81
pKi 5.72 (Ki 1.89x10-6 M) [81]
M1152 Hs Agonist 5.63 pKi 81
pKi 5.63 (Ki 2.37x10-6 M) [81]
galanin(3-29) (pig) Hs Agonist <5.0 – 6.0 pKi 11,30
pKi <5.0 – 6.0 (Ki >1x10-5 – 1x10-6 M) [11,30]
galanin(2-11) Hs Agonist <5.3 pKi 54
pKi <5.3 (Ki >5x10-6 M) [54]
galnon Hs Agonist 4.93 pKi 5,87
pKi 4.93 (Ki 1.17x10-5 M) [5,87]
M1160 Hs Agonist 4.81 pKi 80
pKi 4.81 (Ki 1.55x10-5 M) [80]
galmic Hs Agonist 4.47 pKi 5,87
pKi 4.47 (Ki 3.42x10-5 M) [5,87]
galanin {Sp: Mouse, Rat} Rn Full agonist 9.8 pEC50 69
pEC50 9.8 (EC50 1.6x10-10 M) [69]
galanin-like peptide {Sp: Pig} Rn Agonist 7.52 pEC50 69
pEC50 7.52 (EC50 3x10-8 M) [69]
galanin {Sp: Human} Rn Full agonist 10.15 – 10.22 pIC50 34,91
pIC50 10.15 – 10.22 (IC50 7x10-11 – 6x10-11 M) [34,91]
galanin {Sp: Pig} Rn Full agonist 10.15 – 10.22 pIC50 34,91
pIC50 10.15 – 10.22 (IC50 7x10-11 – 6x10-11 M) [34,91]
galanin {Sp: Mouse, Rat} Hs Full agonist 9.89 pIC50 22
pIC50 9.89 (IC50 1.3x10-10 M) [22]
galanin {Sp: Pig} Hs Full agonist 9.8 – 9.85 pIC50 22,91
pIC50 9.8 – 9.85 (IC50 1.6x10-10 – 1.4x10-10 M) [22,91]
galanin(1-19) (human) Rn Agonist 9.82 pIC50 91
pIC50 9.82 (IC50 1.5x10-10 M) [91]
galanin {Sp: Human} Hs Full agonist 9.57 – 9.89 pIC50 22,50,91
pIC50 9.57 – 9.89 (IC50 2.7x10-10 – 1.3x10-10 M) [22,50,91]
galanin(1-16) (rat/mouse/pig) Rn Agonist 9.57 pIC50 34,91
pIC50 9.57 (IC50 2.7x10-10 M) [34,91]
galanin(1-19) (human) Hs Agonist 9.47 pIC50 91
pIC50 9.47 (IC50 3.4x10-10 M) [91]
galanin {Sp: Mouse, Rat} Rn Full agonist 8.85 – 10.01 pIC50 13,69
pIC50 8.85 – 10.01 (IC50 1.4x10-9 – 9.7x10-11 M) [13,69]
[Sar1, D-Ala12]galanin(1-16) Hs Agonist 9.4 pIC50 48
pIC50 9.4 (IC50 4x10-10 M) [48]
galanin(1-16) (rat/mouse/pig) Hs Agonist 9.0 – 9.22 pIC50 22,91
pIC50 9.0 – 9.22 (IC50 1.01x10-9 – 6x10-10 M) [22,91]
galanin(1-11) Hs Agonist 8.96 pIC50 50
pIC50 8.96 (IC50 1.1x10-9 M) [50]
galanin(1-15) Hs Agonist 8.77 pIC50 22
pIC50 8.77 (IC50 1.68x10-9 M) [22]
galanin-like peptide {Sp: Pig} Rn Agonist 8.37 pIC50 69
pIC50 8.37 (IC50 4.3x10-9 M) [69]
galanin(2–29) (rat/mouse) Rn Full agonist 8.14 pIC50 34,91
pIC50 8.14 (IC50 7.2x10-9 M) [34,91]
galanin(2–29) (rat/mouse) Hs Full agonist 8.0 pIC50 91
pIC50 8.0 (IC50 1x10-8 M) [91]
galanin(2-29) (pig) Hs Full agonist 7.52 pIC50 22
pIC50 7.52 (IC50 3.04x10-8 M) [22]
GALP(3-32) (human) Hs Agonist 7.48 pIC50 45
pIC50 7.48 (IC50 3.3x10-8 M) [45]
galanin-like peptide {Sp: Rat} Rn Agonist 7.35 pIC50 13
pIC50 7.35 (IC50 4.5x10-8 M) [13]
galanin-like peptide {Sp: Human} Hs Agonist 7.11 pIC50 45
pIC50 7.11 (IC50 7.7x10-8 M) [45]
GALP(1-32) (human) Hs Agonist 6.89 pIC50 45
pIC50 6.89 (IC50 1.29x10-7 M) [45]
galanin(2-11) Hs Agonist 6.06 pIC50 50
pIC50 6.06 (IC50 8.79x10-7 M) [50]
alarin {Sp: Rat} Rn Agonist <6.0 pIC50 13
pIC50 <6.0 (IC50 >1x10-6 M) [13]
galanin(3-29) (rat/mouse) Hs Agonist <6.0 pIC50 91
pIC50 <6.0 (IC50 >1x10-6 M) [91]
galanin(3-29) (rat/mouse) Rn Agonist <6.0 pIC50 34,91
pIC50 <6.0 (IC50 >1x10-6 M) [34,91]
galanin(3-29) (pig) Hs Agonist <6.0 pIC50 22
pIC50 <6.0 (IC50 >1x10-6 M) [22]
View species-specific agonist tables
Agonist Comments
Rat and mouse galanin sequences are identical [55]. Binding affinity is lost with removal of amino acids 1 and 2 of galanin [11].
Galanin(D-Trp2) and galanin(2-29) both have higher binding affinity for GAL2 than GAL1 receptors [11].
Many different galanin analogues were trialled in [14] and [77]. The most active compounds are reported in the table above. The Ki values of other analogues are listed in these publications.

[94] and [24] have data for two types of radioligand binding assays; membrane binding and whole-cell binding assays.

NOTE that compounds with -ve log10 affinities <6 have no appreciable agonist function.
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
M15 Hs Antagonist 9.4 – 10.57 pKi 11,24,54
pKi 9.4 – 10.57 (Ki 4x10-10 – 2.7x10-11 M) [11,24,54]
M40 Mm Antagonist 9.37 – 10.4 pKi 71,98
pKi 9.37 – 10.4 (Ki 4.3x10-10 – 4x10-11 M) [71,98]
M32 Hs Antagonist 9.59 – 9.74 pKi 11,82
pKi 9.59 – 9.74 (Ki 2.6x10-10 – 1.8x10-10 M) [11,82]
C7 Hs Antagonist 9.16 – 10.09 pKi 11,24
pKi 9.16 – 10.09 (Ki 6.9x10-10 – 8.2x10-11 M) [11,24]
M35 Hs Antagonist 8.32 – 10.92 pKi 11,24,54
pKi 8.32 – 10.92 (Ki 4.8x10-9 – 1.2x10-11 M) [11,24,54]
M35 Rn Antagonist 9.34 – 9.52 pKi 72,85-86
pKi 9.34 – 9.52 (Ki 4.6x10-10 – 3x10-10 M) [72,85-86]
M40 Hs Antagonist 8.62 – 9.96 pKi 11,24,54
pKi 8.62 – 9.96 (Ki 2.4x10-9 – 1.1x10-10 M) [11,24,54]
M32 Rn Antagonist 9.17 – 9.22 pKi 85-86
pKi 9.17 – 9.22 (Ki 6.8x10-10 – 6x10-10 M) [85-86]
C7 Mm Antagonist 8.7 – 9.02 pKi 71,98
pKi 8.7 – 9.02 (Ki 2x10-9 – 9.6x10-10 M) [71,98]
C7 Rn Antagonist 7.8 – 9.55 pKi 72,85-86
pKi 7.8 – 9.55 (Ki 1.6x10-8 – 2.8x10-10 M) [72,85-86]
M15 Rn Antagonist 8.0 – 9.19 pKi 72,85-86,96
pKi 8.0 – 9.19 (Ki 1x10-8 – 6.5x10-10 M) [72,85-86,96]
M15 Mm Antagonist 8.2 – 8.65 pKi 71,98
pKi 8.2 – 8.65 (Ki 6.3x10-9 – 2.24x10-9 M) [71,98]
M40 Rn Antagonist 7.95 – 8.4 pKi 72,85-86
pKi 7.95 – 8.4 (Ki 1.13x10-8 – 4x10-9 M) [72,85-86]
M871 Hs Antagonist 6.38 pKi 88
pKi 6.38 (Ki 4.2x10-7 M) [88]
Sch 202596 Hs Antagonist 5.77 pKi 16
pKi 5.77 (Ki 1.7x10-6 M) [16]
GalR3ant Hs Antagonist <5.0 pKi 53
pKi <5.0 (Ki >1x10-5 M) [53]
M35 Rn Antagonist 11.0 pIC50 34,91
pIC50 11.0 (IC50 1x10-11 M) [34,91]
M35 Hs Antagonist 10.4 pIC50 91
pIC50 10.4 (IC50 4x10-11 M) [91]
M40 Hs Antagonist 9.3 pIC50 91
pIC50 9.3 (IC50 5x10-10 M) [91]
M40 Rn Antagonist 9.05 pIC50 34,91
pIC50 9.05 (IC50 9x10-10 M) [34,91]
M15 Rn Antagonist 9.0 pIC50 34,91
pIC50 9.0 (IC50 1x10-9 M) [34,91]
M15 Hs Antagonist 8.82 – 8.84 pIC50 22,91
pIC50 8.82 – 8.84 (IC50 1.5x10-9 – 1.46x10-9 M) [22,91]
C7 Hs Antagonist 8.2 – 8.98 pIC50 22,91
pIC50 8.2 – 8.98 (IC50 6.3x10-9 – 1.04x10-9 M) [22,91]
C7 Rn Antagonist 8.31 pIC50 34,91
pIC50 8.31 (IC50 4.9x10-9 M) [34,91]
dithiipin-1,1,4,4-tetroxide analogue 7 Hs Antagonist 6.72 pIC50 84
pIC50 6.72 (IC50 1.9x10-7 M) [84]
2,3-dihydro-1,4-dithiin-1,1,4,4-tetroxide Hs Antagonist 5.57 pIC50 84
pIC50 5.57 (IC50 2.7x10-6 M) [84]
View species-specific antagonist tables
Antagonist Comments
In [84] a series of compounds was tested. The IC50 values for two of the analogues at the human GAL1 receptor are reported in the table above. Analogue 7 is reported as the first non-peptidic sub-micromolar antagonist to human GAL1 receptor.
GalR3ant displays receptor selectivity for GAL3 receptor, with low affinity for GAL1 and GAL2 receptors [54].
[24] has radioligand binding data for both membrane and whole-cell based assays.
Primary Transduction Mechanisms
Transducer Effector/Response
Gi/Go family Adenylate cyclase inhibition
Potassium channel
Comments:  Stimulation of GAL1 receptor transfected cells inhibits forskolin-stimulated cAMP production in a pertussis toxin-sensitive manner [24,30,72,85]. GAL1 receptor activation opens G-protein-regulated inwardly rectifying K+ (GIRK) channels [86] and stimulates pertussis-toxin sensitive MAPK activity, which is inhibited by expression of the C-terminus of β-adrenergic receptor kinase (which specifically inhibits G-βγ signalling). This demonstrates that GAL1 receptor couples to a Gi/βγ signalling pathway to mediate MAPK activation [95] (reviewed in [46]).
References:  7,30,72,86
Tissue Distribution
Bowes melanoma cell line > small intestine and fetal brain. None in colon adenocarcinoma cell line (HT29) or human liver.
Species:  Human
Technique:  Northern blot.
References:  30
Low expression. In periphery, most abundant in heart, small intestine, prostate, testes; in central nervous system, most abundant in cerebral cortex, amygdala, substantia nigra (not detectable in cerebellum).
Species:  Human
Technique:  RT-PCR.
References:  91
GAL1 receptor expressed in human gastrointestinal tract from oesophagus to rectum: largest amount in duodenum and least amount in gastric fundus.
Species:  Human
Technique:  RT-PCR.
References:  52
GAL1 receptor mRNA in > 20% of all lumbar 4 and 5 dorsal root ganglion neuron profiles, mainly small and medium sized neurons; almost all expressed CGRP mRNA. GAL1 receptor mRNA levels were transiently down-regulated by inflammation and more strongly by peripheral nerve injury
Species:  Rat
Technique:  In situ hybridisation.
References:  104
Bed nucleus of the accessory olfactory tract > Hypothalamic paraventricular nucleus (lateral magnocellular); thalamic paraventricular nucleus; subiculum (ventral); lateral parabrachial nucleus > supraoptic nucleus; dorsomedial nucleus; thalamic central medial nucleus; paracentral nucleus; CA1 (ventral region); medial (anteroventral) amygdala > insular cortex (granular); lateral septum (dorsal, ventral regions); bed nucleus of stria terminalis; medial preoptic area; anterior medial preoptic nucleus; medial preoptic nucleus; hypothalamic paraventricular nucleus (medial parvocellular); lateroanterior hypothalamic nucleus; ventromedial nucleus (ventrolateral region); lateral habenula; anterior cortical amygdala; basolmedial amygdala; amygdaloid piriform transition; posterior cortical nucleus; locus coeruleus; pontine reticular formation > taenia tecta (anterior region); septohippocampal nucleus; lateral preoptic area; subfornical organ; anterior hypothalamic area; lateral hypothalamus (tuberal region); mammillary nuclei; posterior hypothalamic area; anterodorsal thalamic nucleus; intermediodorsal nucleus; zona incerta; subincertal nucleus; precommissural nucleus; entorhinal cortex; medial amygdala (anterodorsal); central nucleus of the amygdala; ventral tegmental area; central grey; lateral substantia nigra.
Species:  Rat
Technique:  In situ hybridisation.
References:  72
Broad distribution of GAL1 receptor mRNA, especially heart, large intestines and testes (brain not included in this analysis).
Species:  Rat
Technique:  RT-PCR.
References:  91
Brain; spinal cord >> small intestine. No expression in anterior pituitary, spleen, stomach, large intestine, adrenal gland, liver, lung, kidney, heart
Species:  Rat
Technique:  Northern blot.
References:  72
Amygdala (anterior cortical amygdaloid and parastrial nuclei, amygdalohippocampal area), thalamus (subthalamic, mediodorsal, interanteromedial thalamic nuclei), ventral part of the hippocampus (CA1 field), medulla oblongata (parabrachial, vestibular, reticular, spinal, motor trigeminal nuclei); dorsal part of spinal cord (3rd and 4th layers).
Species:  Rat
Technique:  In situ hybridisation.
References:  15
High: nucleus of the lateral olfactory tract, temporal pole of CA1 region of hippocampus.Moderate: piriform cortex, lateral septum, nucleus accumbens shell, ventral pallidum, bed nucleus stria terminalis, substantia innominata, amygdalopiriform region; anterior portion of paraventricular thalamic nucleus, centromedial nucleus, paracentral nucleus, rhomboid nucleus, subparafascicular nucleus; medial preoptic area, medial preoptic nucleus, lateral hypothalamus, perifornical region, hypothalamic paraventricular nucleus (lateral and medial zones of posterior magnocellular subdivision); central grey area of mesencephalon; external subdivision of lateral parabrachial nucleus, pontine reticular nucleus, reticulotegmental nucleus, gigantocellular, paramedian, lateral reticular nuclei, raphe magnus; dorsal horn at all levels of spinal cord (mostly laminae 1 and 2, and a few at laminae 3 and 4). Weak: glomerular and internal granular layers of the olfactory bulb, anterior olfactory nucleus, dorsal endopiriform nucleus, horizontal nucleus of the diagonal band, posterior ventral medial amygdaloid nucleus, amygdalohippocampal area; posterior intralaminar nucleus, caudal zona incerta; anterior hypothalamic area, several hypothalamic nuclei (dorsomedial, ventromedial, supraoptic, dorsal premammillary, medial mammillary, supramammillary); anterior and olivary pretectal nuclei, intermediate gray of the superior colliculus, rostral periolivary nucleus, dorsal raphe, paramedian raphe; locus coeruleus, subcoeruleus, A5 region of the pons, dorsal tegmental nucleus, medial aspect of solitary tract nucleus, dorsal vagal complex. None (or very little); sensorimotor cortex, dorsal hippocampus, cerebellum.
Species:  Rat
Technique:  In situ hybridisation.
References:  28
Expression Datasets

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays
GAL1 receptor activation opens GIRK channels.
Species:  Rat
Tissue:  Oocytes.
Response measured:  Measurement of activation of G-protein-regulated inwardly rectifying K+ (GIRK) channels in an oocyte expressing GAL1, GIRK1 and GIRK4.
References:  86
Reduced forskolin-stimulated cAMP formation, presumably via interaction with pertussis toxin sensitive Gi/Go protein.
Species:  Mouse
Tissue:  CHO cells.
Response measured:  Measurement of mitogen-activated protein kinase (MAPK) activity in GAL1-transfected CHO cells following application of galanin.
References:  98
Galanin stimulated pertussis-toxin sensitive MAPK activity, which was inhibited by expression of the C-terminus of β-adrenergic receptor kinase (which specifically inhibits Gβγ signalling); but was not affected by the protein kinase C (PKC) inhibitor, bis[indolylmaleimide] or cellular depletion of PKC. These data demonstrate that GAL1 couples to a Giβγ signalling pathway to mediate MAPK activation.
Species:  Rat
Tissue:  CHO cells.
Response measured:  Measurement of mitogen-activated protein kinase (MAPK) activity in GAL1-transfected CHO cells following application of galanin.
References: 
Exposure to a fluorescein-N-galanin (F-Gal) stimulated rapid and extensive (78%) internalisation of surface F-Gal into GAL1-transfected CHO cells (and also substantial homodimerisation of the receptor).
Species:  Rat
Tissue:  CHO cells.
Response measured:  Measurement of receptor internalisation in GAL1-transfected CHO cells.
References:  93,101
Galanin reduced basal and forskolin-stimulated cAMP formation, which was blocked by treatement with pertussis toxin. Galanin did not activate inositol phospholipid turnover.
Species:  Rat
Tissue:  CHO cells.
Response measured:  Measurement of forskolin-stimulated cAMP formation in GAL1-transfected CHO cells following application of galanin.
References:  7,72,85
Reduced forskolin-stimulated increase of cAMP in a dose-dependent manner (did not affect basal cAMP production).
Species:  Human
Tissue:  COS cells.
Response measured:  Measurement of forskolin-stimulated cAMP production in GAL1-transfected COS cells following application of human galanin.
References:  30
Galanin(1-29), which is a high affinity agonist for both GAL1 and GAL2 receptors, significantly reduces CREB phosphorylation induced by high-frequency trans stimulation, suggesting GAL1 receptor may be involved.
Species:  Mouse
Tissue:  Hippocampal tissue.
Response measured:  Measurement of LTP-induced CREB phosphorylation in the dentate gyrus.
References:  4
Gal1 receptor reduces forskolin-stimulated cAMP formation in GAL1 receptor-transfected HEK293E cells following application of galanin and galanin-related peptides.
Species:  Human
Tissue:  HEK293E cells.
Response measured:  Measurement of forkolin-stimulated cAMP production.
References:  24
Galanin induces activation of ERK 1/2 (also known as MAPK 1/2/3) and suppresses proliferation. In addition, galanin stimulation mediates decreased expression of cyclin D1 and increased expression of cyclin-dependent kinase inhibitors (CKI), p27Kip1 and p57Kip2, which is prevented by pretreatment with the ERK 1/2-specific inhibitor U0126. In addition, pertussis toxin inhibition demonstrates that galanin and GAL1 receptor induce ERK 1/2 activation via Gαi, not the phosphatidylinositol 3-kinase (PI3K) pathway linked to the Gβγ subunit (i.e. the PI3K inhibitor, LY294002, did not prevent ERK 1/2 activation or cell growth suppression).
Species:  Human
Tissue:  Human oral squamous cell carcinoma cells.
Response measured:  Measurement of extracellular-regulated protein kinase-1/2 (ERK 1/2) in GAL1 receptor-transfected human oral squamous cell carcinoma cells.
References:  42
GAL1 and 5HT1A receptors heteromerise. Agonist activation of GAL1 or 5HT receptors elicits an allosteric antagonistic interaction across the GAL1-5HT1A receptor interface blocking any excessive inhibition of the AC pathway or stimulation of the MAPK pathway.
Species:  Human
Tissue:  HEK293 cells transfected with human GAL1 and human 5HT1A receptors.
Response measured:  Measurement of adenylate cyclase (AC) and mitogen-activated protein kinase (MAPK) pathways in GAL1-5HT1A receptor-transfected HEK293 cells.
References:  12
Physiological Functions
High dose galanin mediates an anti-allodynic effect on neuropathic pain at the spinal cord mediated via GAL1 receptors.
Species:  Rat
Tissue:  Locus coeruleus neurons.
References:  57
High dose galanin mediates an anti-allodynic effect on neuropathic pain at the spinal cord mediated via GAL1 receptors.
Species:  Rat
Tissue:  Spinal cord.
References:  50
Galanin inhibits (hyperpolarises) arcuate neurons, probably mediated via activation of GAL1 receptors.
Species:  Rat
Tissue:  Arcuate nucleus.
References:  74
Spinal galanin produces a reliable inhibition of formalin-induced facilitated nociceptive processing, possibly mediated via GAL1 receptors.
Species:  Rat
Tissue:  In vivo (intrathecal injections).
References:  35
The GAL1 receptor mediates the galanin excitatory action on gastric motility in the rat stomach (but not the inhibitory effect).
Species:  Rat
Tissue:  Stomach.
References:  26
Intrathecal administration of a peptide nucleic acid targeting GAL1 receptor reduces the galanin-mediated inhibitory effect on nociceptive transmission in the rat spinal cord.
Species:  Rat
Tissue:  In vivo intrathecal injections.
References:  76
Galanin inhibits midbrain dopamine activity, likely via a GAL1 receptor-mediated reduction of tyrosine hydroxylase in midbrain dopamine neurons.
Species:  Rat
Tissue:  Rat embryonic (E14) ventral mesencephalon culture.
References:  19
GAL1 receptor has antiproliferative effects in oral squamous cell cancer.
Species:  Human
Tissue:  Immortalised oral keratinocytes and oropharyngeal squamous cell carcinoma cell line.
References:  31
Galanin appears to mediate the antiproliferative and proapoptotic effects on immature rat thymocytes via GAL1 (and GAL3) receptors.
Species:  Rat
Tissue:  Thymocytes.
References:  92
GAL1 receptor may be involved in attenuating the induction, maintenance and late phase of long-term potentiation (LTP), and may be involved in reducing the level of LTP- mediated phosphorylation of CREB in the dentate gyrus granule cells.
Species:  Mouse
Tissue:  In vivo/brain.
References:  4
In a rat model of status epilepticus, galanin is involved in inhibiting seizures during the early phase, predominantly via GAL1 receptor.
Species:  Rat
Tissue:  In vivo/brain.
References:  60
Activation of GAL1 receptor in the dorsal raphe facilitate limbic seizures, and a decrease of 5HT.
Species:  Rat
Tissue:  Dorsal raphe/hippocampus/in vivo.
References:  63
Following kindling to the ventral hippocampus, a GAL1 receptor agonist (M617) was demonstrated to delay epileptogenesis.
Species:  Mouse
Tissue:  Brain/in vivo.
References:  62
Activation of peripheral GAL1 receptor results in anti-nociception.
Species:  Rat
Tissue:  In vivo (intraplantar injections).
References:  40
Galanin inihibits neural activity in the subfornical organ, mediated at least in part via GAL1 receptor.
Species:  Rat
Tissue:  Subfornical organ slices.
References:  41
Galanin inhibits colony formation and tumour growth of human oral squamous cell carcinomas (via ERK 1/2 activation).
Species:  Human
Tissue:  Human oral squamous cell carcinoma cell line transfected with GAL1 receptor.
References:  42
Galanin inhibits gastro-oesophageal vagal afferent in tension receptors and mucosal receptors predominantly via GAL1 receptor.
Species:  Mouse
Tissue:  Gastro-oesophageal vagal afferents.
References:  70
GAL1 receptor agonists increase conductance at voltages positive to -70mV and activate inwardly-rectifying conductance in ‘delay’ neurons (suggesting it may be acting as a spinal antinociceptive) and activate inwardly-rectifying conductance in ‘tonic’ neurons (suggesting it may be acting as a spinal pro-nociceptive).
Species:  Rat
Tissue:  Neurons from the substantia gelatinosa.
References:  1
Galanin plays a role in mediating the inhibitory effect of low-frequency stimulation on perforant path-kindled seizures, exerted via GAL1 receptor during focal-kindled seizures.
Species:  Rat
Tissue:  Brain/in vivo.
References:  83
GAL1 receptor appears to mediate the ‘pro-depressive’ effects of galanin (in the forced swim test).
Species:  Rat
Tissue:  Brain/in vivo.
References:  44
GAL1 receptor mediates the inhibition of depolarisation-evoked Ca2+ influx in myenteric neurons, suggesting that it is involved in the inhibition of cholinergic transmission to the longitudinal muscle of the gastrointestinal tract and the reduction of peristalsis efficiency in the small intestine.
Species:  Rat
Tissue:  Myenteric neurons.
References:  3
GAL1 receptor mediates the effects of high dose galanin injection-induced decreases of locomotor activity (following restraint stress), stress-induced hyperthermia and stress hormone responses (corticosterone and ACTH).
Species:  Mouse
Tissue:  Brain/in vivo.
References:  66
GAL1 receptor mediates hyperalgesia during thermal pain (i.e. selective destruction of GAL1 receptor expressing superficial dorsal horn interneurons by lumbar intrathecal injections of galanin-saporin led to heat hypo-algesia).
Species:  Rat
Tissue:  Lumbar spine – superficial dorsal horn.
References:  75
Galanin appears to inhibit cooling evoked neuronal activity and nociceptive behaviours via a GAL1 receptor mode of action.
Species:  Rat
Tissue:  C-fibre nociceptors/in vivo.
References:  36
Galanin exerts an analgesic effect in diabetic neuropathic pain, likely via GAL1 receptor.
Species:  Rat
Tissue:  In vivo.
References:  103
GAL1 receptor silencing induces apoptosis in drug-sensitive and drug-resistant cell lines, and synergistically enhances the effects of chemotherapy.
Species:  Human
Tissue:  Colorectal cancer cell line.
References:  89
Galanin receptor agonist M617 injection into the central amygdala induces significant antinociception.
Species:  Rat
Tissue:  In vivo (hindpaw).
References:  49
Galanin may play a role in decreasing motivation for saccharin reward at times of high appetitive behaviour via GAL1 receptor.
Species:  Rat
Tissue:  In vivo/brain.
References:  2
Galanin stimulates cortisol secretion from human inner adrenocortical cells, acting though GAL1 receptors.
Species:  Human
Tissue:  Adrenal tissue.
References:  6
Physiological Consequences of Altering Gene Expression