Nomenclature: α1D-adrenoceptor

Family: Adrenoceptors

Annotation status:  image of a green circle Annotated and expert reviewed. Please contact us if you can help with updates. 


Gene and Protein Information
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 572 20p13 ADRA1D adrenoceptor alpha 1D 7
Mouse 7 562 2 F1 Adra1d adrenergic receptor, alpha 1d 2
Rat 7 561 3q36 Adra1d adrenoceptor alpha 1D 50
Previous and Unofficial Names
adrenergic receptor
adrenergic, alpha-1D-, receptor
adrenergic receptor delta1
adrenergic receptor, alpha 1d
adrenergic receptor, delta1
alpha 1D-adrenoceptor
alpha 1D-adrenoreceptor
alpha-1A adrenergic receptor
alpha-1D adrenergic receptor
alpha-1D adrenoceptor
alpha-1D adrenoreceptor
Database Links
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
GenitoUrinary Development Molecular Anatomy Project
Human Protein Reference Database
PharmGKB Gene
Protein Ontology (PRO)
RefSeq Nucleotide
RefSeq Protein
UniGene Hs.
Natural/Endogenous Ligands
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
[125I]HEAT Hs Full agonist 9.5 pKd 78
pKd 9.5 [78]
alfuzosin Hs Agonist 8.44 pKi 35
pKi 8.44 (Ki 3.6x10-9 M) [35]
(-)-noradrenaline Hs Full agonist 7.4 pKi 78
pKi 7.4 [78]
(-)-adrenaline Hs Full agonist 7.2 pKi 78
pKi 7.2 [78]
clonidine Rn Full agonist 6.9 pKi 60
pKi 6.9 [60]
cirazoline Rn Full agonist 6.9 pKi 60
pKi 6.9 [60]
St 587 Rn Full agonist 6.5 pKi 60
pKi 6.5 [60]
oxymetazoline Hs Partial agonist 6.4 pKi 67,78
pKi 6.4 [67,78]
(-)-noradrenaline Rn Full agonist 6.3 pKi 60
pKi 6.3 [60]
(-)-adrenaline Rn Full agonist 6.3 pKi 60
pKi 6.3 [60]
oxymetazoline Rn Partial agonist 6.2 pKi 60
pKi 6.2 [60]
SKF 89748 Rn Full agonist 6.1 pKi 60
pKi 6.1 [60]
(+)-adrenaline Hs Full agonist 6.0 pKi 78
pKi 6.0 [78]
xylometazoline Rn Full agonist 6.0 pKi 60
pKi 6.0 [60]
6-fluoro-noradrenaline Rn Full agonist 6.0 pKi 60
pKi 6.0 [60]
phenylephrine Rn Full agonist 5.9 pKi 60
pKi 5.9 [60]
α-methylnoradrenaline Hs Full agonist 5.6 pKi 60
pKi 5.6 [60]
indanidine Rn Full agonist 5.5 pKi 60
pKi 5.5 [60]
NS-49 Hs Partial agonist 5.4 pKi 67
pKi 5.4 [67]
methoxamine Hs Full agonist 4.9 pKi 78
pKi 4.9 [78]
methoxamine Rn Full agonist 4.5 pKi 60
pKi 4.5 [60]
amidephrine Rn Full agonist 4.2 pKi 60
pKi 4.2 [60]
View species-specific agonist tables
Agonist Comments
Non catecholamine agonists, such as methoxamine and amidephrine, have both low affinity and low intrinsic activity at the α1D- adrenoceptor[60].
Alfuzosin is an approved drug which is an agonist of several α1-adrenoceptors.
As the endogenous ligand, (-)-adrenaline has intrinsic activity across the adrenoceptor family, but we've only tagged α1D and α2A subtypes as primary drug target as the drug has highest affinity at these isoforms.
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
olanzapine Rn Antagonist 6.37 pA2 66
pA2 6.37 [66]
Description: Measured as antagonism of phenylephrine-induced contraction of endothelium-denuded rat aorta.
[125I]BE-2254 Hs Antagonist 9.9 pKd 75
pKd 9.9 [75]
tamsulosin Hs Antagonist 9.8 – 10.2 pKi 22,78,91
pKi 9.8 – 10.2 [22,78,91]
prazosin Hs Inverse agonist 9.5 – 10.2 pKi 22,78,91
pKi 9.5 – 10.2 [22,78,91]
A-123189 Rn Antagonist 9.8 pKi 8
pKi 9.8 [8]
A-119637 Rn Antagonist 9.7 pKi 8
pKi 9.7 [8]
A-119637 Hs Antagonist 9.6 pKi 8
pKi 9.6 [8]
WB 4101 Hs Antagonist 9.6 pKi 22,78
pKi 9.6 [22,78]
A-123189 Hs Antagonist 9.5 pKi 8
pKi 9.5 [8]
NAN 190 Hs Antagonist 9.2 pKi 92
pKi 9.2 [92]
doxazosin Hs Antagonist 9.09 pKi 33
pKi 9.09 (Ki 8.13x10-10 M) [33]
terazosin Hs Antagonist 9.07 pKi 56
pKi 9.07 (Ki 8.5x10-10 M) [56]
BMY-7378 Rn Antagonist 9.0 pKi 8
pKi 9.0 [8]
BMY-7378 Hs Antagonist 8.7 – 9.1 pKi 8,92
pKi 8.7 – 9.1 [8,92]
silodosin Hs Antagonist 8.7 pKi 78
pKi 8.7 [78]
(+)-cyclazosin Hs Inverse agonist 8.5 pKi 27
pKi 8.5 [27]
dapiprazole Hs Antagonist 8.39 pKi 5
pKi 8.39 (Ki 4.09x10-9 M) [5]
phentolamine Hs Inverse agonist 8.2 pKi 78
pKi 8.2 [78]
spiperone Hs Antagonist 8.1 pKi 92
pKi 8.1 [92]
RS-100329 Hs Antagonist 7.9 pKi 91
pKi 7.9 [91]
spiroxatrine Hs Antagonist 7.9 pKi 92
pKi 7.9 [92]
Rec 15/2739 Hs Antagonist 7.8 pKi 22
pKi 7.8 [22]
ritanserin Hs Antagonist 7.8 pKi 92
pKi 7.8 [92]
ketanserin Hs Antagonist 7.8 pKi 92
pKi 7.8 [92]
RS-17053 Hs Antagonist 7.8 pKi 22
pKi 7.8 [22]
clozapine Hs Antagonist 7.7 pKi 92
pKi 7.7 [92]
(+)-cyclazosin Rn Inverse agonist 7.6 pKi 27
pKi 7.6 [27]
5-methylurapidil Hs Antagonist 7.1 – 8.0 pKi 22,78,92
pKi 7.1 – 8.0 [22,78,92]
mianserin Hs Antagonist 7.5 pKi 92
pKi 7.5 [92]
S(+)-niguldipine Hs Antagonist 7.4 pKi 22,78
pKi 7.4 [22,78]
risperidone Hs Antagonist 7.4 pKi 92
pKi 7.4 [92]
Ro-70-0004 Hs Antagonist 7.2 pKi 91
pKi 7.2 [91]
SKF 105854 Hs Antagonist 7.1 pKi 36
pKi 7.1 [36]
cyproheptadine Hs Antagonist 6.9 pKi 92
pKi 6.9 [92]
indoramin Hs Antagonist 6.7 pKi 22
pKi 6.7 [22]
labetalol Hs Antagonist 6.59 pKi 6
pKi 6.59 (Ki 2.56x10-7 M) [6]
View species-specific antagonist tables
Antagonist Comments
Although cyclazosin does not show selectivity in radioligand binding assays with recombinant α1-adrenoceptors, functional selectivity for the α1D-adrenoceptor is observed in functional assays using isolated tissue assays measuring affinity for native α1- subtypes [59]. RS-100329 and Ro-70-0004 are both 50-fold selective for α1A-adrenoceptors over the α1B- and α1D-adrenoceptor subtypes [91].
Differentiation between neutral antagonists and inverse agonists at the α1D- adrenoceptor has not been studied extensively.
Doxazosin and dapiprazole are selective for α1-adrenoceptors.
Allosteric Modulator Comments
Lorazepam and midazolam have been shown to increase the maximum response to phenylephrine in cells expressing the human α1D-adrenoceptor[90].
Primary Transduction Mechanisms
Transducer Effector/Response
Gq/G11 family Phospholipase C stimulation
Calcium channel
Other - See Comments
Comments:  The α1D-adrenoceptor is coupled to calcium release and inositol phosphate production less efficiently than either the α1A- or α1B-adrenoceptor.
References:  29,58
Secondary Transduction Mechanisms
Transducer Effector/Response
Phospholipase D stimulation
Other - See Comments
Comments:  α1-adrenoceptors (all subtypes) can also activate protein Kinase C, mitogen activated protein kinases.
References:  29,58
Tissue Distribution
α1D- adrenoceptor message and protein is predominant in human bladder.
Species:  Human
Technique:  RNase protection assay, RT-PCR.
References:  54
Epicardial coronary arteries, prefrontal cortex, hippocampus, bladder.
Species:  Human
Technique:  RT-PCR.
References:  43,79-81
Species:  Human
Technique:  In situ hybridisation.
References:  85
The α1D-adrenoceptor was the predominant α1 subtype in the human aorta, but either had the lowest expression of the three subtypes, or was not detectable, in other arteries and veins. However, another report showed high expression of α1D-adrenoceptor in blood vessels of human prostate.
Species:  Human
Technique:  RNAse Protection, immunohistochemistry.
References:  72,88
Prefrontal cortex, reticular thalmic nucleus, hippocampus, cingulate cortex, spinal cord.
Species:  Mouse
Technique:  In situ hybridisation.
References:  34,74
Leydig cells.
Species:  Mouse
Technique:  RT-PCR.
References:  41
In the rat brain, highest levels of α1D-adrenoceptor message are found in the olfactory bulb, cerebral cortex, hippocampus, dentate gyrus, reticular thalamic nucleus, motor neurons and the inferior olivary complex. In the thalamus, the α1B and α1D-adrenoceptors have a complimentary distribution.
Species:  Rat
Technique:  In situ hybridisation, RT-PCR.
References:  17,64,77
Expression Datasets

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays
Contraction of isolated rat aortic ring and skeletal muscle arteriole.
Species:  Rat
Tissue:  Vasculature.
Response measured:  Contraction.
References:  37,49
Tamsulosin treatment upregulates both α1A- and α1D-AR mRNA.
Species:  Rat
Tissue:  Prostate.
Response measured:  Receptor mRNA expression.
References:  46
α1D-AR stimulates protein secretion and ectodomain shedding of EGF to transactivate the EGF receptor, potentially via ADAM17, which activates p42/p44 MAPK to negatively modulate protein secretion.
Species:  Rat
Tissue:  Lacrimal gland epithelial cells.
Response measured:  Measurement of EGF release and receptor activation.
References:  10,38
Alteration of α1D-AR density, signal transduction and blood pressure by syntrophins (α-syntrophin increases α1D-AR density; β2-syntrophin increases signaling efficacy of inositol phosphates and ERK).
Species:  Human
Tissue:  Transfected HEK 293 cells.
Response measured:  Receptor density and signalling.
References:  12,51-52
α1D-AR releases ATP, which induces P2X7 receptors to increase [Ca2+](i) but not to stimulate protein secretion. P2X7 receptors in turn activate α1D-AR to increase [Ca2+](i) but not to stimulate protein secretion.
Species:  Rat
Tissue:  Lacrimal gland.
Response measured:  [Ca2+](i).
References:  16
Regualtion of α1D-AR signal complex signalosome.
Species:  Human
Tissue:  Transfected HEK 293 cells.
Response measured:  Coimmunoprecipitation and blot overlay assays.
References:  53
Function and phosphorylation state of α1D-AR is modulated by activation of receptor tyrosine kinases, PKC, insulin, IGF-I and EGF.
Species:  Rat
Tissue:  Transfected Rat-1 fibroblasts.
Response measured:  Phosphorylation and desensitization.
References:  25-26,71
In a renal artery stenosis model, GRK2 gene knockout or GRKct peptide treated mice enhance α1D-AR vasoconstriction.
Species:  Mouse
Tissue:  Kidney.
Response measured:  Vasoconstriction.
References:  14
Cell surface expression of α1D-AR is controlled by heterodimerization with α1B-or β2-ARs; Angiotensin I receptor hetrodimerizes with α1D-AR in preeclamptic rats.
Species:  Human
Tissue:  Transfected HEK 293 cells, rat aorta.
Response measured:  Receptor dimerization.
References:  12,28,30-31,86
The α1D-AR induces vascular smooth muscle apoptosis via a p53-dependent mechanism.
Species:  Human
Tissue:  Aortic smooth muscle cells.
Response measured:  Apoptosis.
References:  23
Regulation of hippocampal α1D-AR mRNA by corticosterone in adrenalectomized rats. Corticosteroids prevent the adrenalectomized decrease in hippocampal α1D-AR.
Species:  Rat
Tissue:  Brain.
Response measured:  Receptor expression.
References:  17
The α1D-AR is intracellular but still mediates increases in intracellular calcium and reactive oxygen species.
Species:  Human
Tissue:  Aortic smooth muscle, transfected HEK 293 cells.
Response measured:  Measurement of intracellular calcium and reactive oxygen species.
References:  24,44,89
Amino acids Asp176 in the third transmembrane domain (TMD), Glu237 in TMD IV, and Ser258 in TMD V of α1D-AR are involved in binding prazosin and tamsulosin.
Species:  Human
Tissue:  Transfected HEK 293 cells.
Response measured:  Receptor binding.
References:  63
Methylation-dependent disruption of Sp1 binding in promoter region in a cell-specific manner results in repression of basal α1D-AR expression
Species:  Human
Tissue:  SK-N-MC and DU145 cells.
Response measured:  DNA methylation, receptor expression.
References:  57
α1D-AR promotes trophic effects(pseudocapillary formation, proliferation and migration) in fragments of human mature vessels and is potentiated with hypoxia.
Species:  Human
Tissue:  Endothelial cells.
Response measured:  Cell trophism.
References:  87
Addition of a signal peptide sequence (16 amino acids) to, or N-terminal truncation of the α1D-AR gene increases expression of binding sites but not protein.
Species:  Human
Tissue:  Transfected neuro2A and COS-1 cells
Response measured:  [3H]-prazosin binding to α1D-AR.
References:  69-70
Carvedilol selectively inhibits oscillatory intracellular calcium changes evoked by α1D- and α1B-AR.
Species:  Human
Tissue:  Transfected HEK 293 cells.
Response measured:  Measurement of intracellular calcium.
References:  48
Physiological Functions
Contraction of mesenteric resistance arteries.
Species:  Rat
Tissue:  Vasculature.
References:  58
α1D-adrenoceptors mediate nerve stimulated contraction of corpus cavernosa.
Species:  Rat
Tissue:  Corpus Cavernosa.
References:  62
Coronary artery vasoconstriction.
Species:  Mouse
Tissue:  Vasculature.
References:  9
Femoral artery vasoconstriction.
Species:  Rat
Tissue:  Vasculature.
References:  40
Locomotor activity in response to environmental stimulation.
Species:  Mouse
Tissue:  Brain.
References:  73
Reflex evoked urethral contraction.
Species:  Rat
Tissue:  Urethra.
References:  15
Endothelium dependent vasodilation of mesenteric vascular bed.
Species:  Rat
Tissue:  Vasculature.
References:  21
Vasopressor nerve responses in the pithed rat, previously identified as α2-ARr mediated, may be α1D-AR mediated.
Species:  Rat
Tissue:  Carotid artery.
References:  19-20
Management of distal ureteral stone by α1D-AR antagonist naftopidil.
Species:  Human
Tissue:  Kidney, ureter, bladder.
References:  94
High-fructose feeding reduces renal vascular response that is blocked by α1D-AR antagonist BMY7378.
Species:  Rat
Tissue:  Kidney.
References:  1
Control of carotid and mesenteric vasoconstriction by α1D-AR as revealed in α1A/B double knockout mice.
Species:  Mouse
Tissue:  Carotid and mesenteric vasculature.
References:  4,13,55
α1A- and α1D-ARs are the major functional subtypes of renal vasoconstriction and haemodynamics in streptozotocin-induced diabetic and normal Sprague-Dawley rats.
Species:  Rat
Tissue:  Kidney.
References:  3
Tamsulosin hydrochloride is more effective in patients with dominant expression of the α1A-AR subtype, whereas naftopidil is more effective in those with dominant expression of the α1D-AR subtype.
Species:  Human
Tissue:  Prostate.
References:  45
α1D-AR-induced relaxation of rat carotid artery is impaired during the endothelial dysfunction evoked in the early stages of hyperhomocysteinemia.
Species:  Rat
Tissue:  Carotid artery.
References:  18
Activation of α1D-AR in the urothelium facilitates the micturition reflex and storage.
Species:  Mouse
Tissue:  Bladder.
References:  11,42,76
Evidence for involvement of α1D-AR in contraction of femoral resistance arteries using knockout mice.
Species:  Mouse
Tissue:  Femoral artery.
References:  93
Physiological Consequences of Altering Gene Expression
α1D knockout mice had hypotension, a decreased pressor and decreased coronary vasoconstrictor response to phenylephrine and resistance to salt induced hypertension.
Species:  Mouse
Technique:  Transgenesis.
References:  9,83-84
α1D knockout mice have delayed tail-flick and hindpaw-licking responses to thermal stimuli.
Species:  Mouse
Technique:  Gene knockout.
References:  34
α1D-AR knockout mice have lower levels of basal systolic and mean arterial BP, and lower levels of circulating catecholamines than wild-type mice; effects of salt-loading
Species:  Mouse
Tissue:  Vasculature.
Technique:  Gene knockout.
References:  39,83
α1D-AR plays an important role in the process of auditory sensory function, attention or working memory rather than reference memory, and the sensorimotor gating deficits induced by the NMDA receptor antagonist. These mice show sensory, attention and memory abnormalities of behavior.
Species:  None
Tissue:  Brain, behavior.
Technique:  Gene knockout.
References:  61
Phenotypes, Alleles and Disease Models Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Adra1dtm1Gzt Adra1dtm1Gzt/Adra1dtm1Gzt
involves: 129/Sv * C57BL/6J
MGI:106673  MP:0001544 abnormal cardiovascular system physiology PMID: 11901185 
Adra1dtm1Jabl Adra1dtm1Jabl/Adra1dtm1Jabl
involves: 129S6/SvEvTac
MGI:106673  MP:0003313 abnormal locomotor activation PMID: 12874602 
Adra1dtm1Gzt Adra1dtm1Gzt/Adra1dtm1Gzt
involves: 129X1/SvJ * C57BL/6
MGI:106673  MP:0004142 abnormal muscle tone PMID: 15196805 
Adra1dtm1Gzt Adra1dtm1Gzt/Adra1dtm1Gzt
involves: 129X1/SvJ * C57BL/6
MGI:106673  MP:0003088 abnormal prepulse inhibition PMID: 15196805 
Adra1dtm1Gzt Adra1dtm1Gzt/Adra1dtm1Gzt
involves: 129X1/SvJ * C57BL/6
MGI:106673  MP:0008428 abnormal spatial working memory PMID: 15196805 
Adra1dtm1Gzt Adra1dtm1Gzt/Adra1dtm1Gzt
involves: 129X1/SvJ * C57BL/6
MGI:106673  MP:0001489 decreased startle reflex PMID: 15196805 
Adra1dtm1Gzt Adra1dtm1Gzt/Adra1dtm1Gzt
involves: 129/Sv * C57BL/6J
MGI:106673  MP:0002843 decreased systemic arterial blood pressure PMID: 11901185 
Adra1dtm1Gzt Adra1dtm1Gzt/Adra1dtm1Gzt
involves: 129/Sv * C57BL/6J
MGI:106673  MP:0006264 decreased systemic arterial systolic blood pressure PMID: 11901185 
Adra1dtm1Jabl Adra1dtm1Jabl/Adra1dtm1Jabl
involves: 129S6/SvEvTac
MGI:106673  MP:0002757 decreased vertical activity PMID: 12874602 
Adra1dtm1Gzt Adra1dtm1Gzt/Adra1dtm1Gzt
involves: 129X1/SvJ * C57BL/6
MGI:106673  MP:0003858 enhanced coordination PMID: 15196805 
Adra1dtm1Gzt Adra1dtm1Gzt/Adra1dtm1Gzt
involves: 129/Sv * C57BL/6J
MGI:106673  MP:0001596 hypotension PMID: 11901185 
Adra1dtm1Jabl Adra1dtm1Jabl/Adra1dtm1Jabl
involves: 129S6/SvEvTac
MGI:106673  MP:0009750 impaired behavioral response to addictive substance PMID: 12874602 
Xenobiotics Influencing Gene Expression
Peroxynitrite generated through septic shock (bacterial infection) can inhibit maximum binding and signal transduction (intracellular calcium) of the α1A- and α1D-AR. This may be due to modification of these receptor subtypes by peroxynitrite and represents a possible mechanism contributing to systemic hypotension in sepsis.
Species:  Human
Tissue:  CHO cells transfected with the human α1A-, α1B- and α1D-ARs.
Technique:  Ligand binding and measurement of intracellular calcium.
References:  82
Peroxynitrite generated through septic shock (bacterial infection) can inhibit noradrenaline-induced contraction in rat endothelium-denuded aorta strips which contain 1A- and 1D-AR subtypes and represents a possible contributory mechanism underlying systemic hypotension in sepsis.
Species:  Rat
Tissue:  Endothelium-denuded aorta strips.
Technique:  Recording of tension changes in organ bath culture.
References:  82
Biologically Significant Variants
Type:  Single nucleotide polymorphisms.
Species:  Human
Description:  ADRA1D T1848A (P=0.023) and ADRA1D A1905G (P=0.029) SNPs are associated with the improvement of left ventricular fractional shortening by β-blockers in chronic heart failure.
SNP accession: 
References:  65
Type:  Single nucleotide polymorphisms.
Species:  Human
Description:  The side effects of domperidone to treat gastroparesis are associated with SNPs in the α1D-AR promoter region.
SNP accession: 
References:  68
General Comments
α1D- adrenoceptor message and protein is predominant in human bladder [54]. In bladder tissue from normal rats, only 25% of α1- adrenoceptor message was of the α1D- subtype; however following bladder obstruction, this percentage increased to 75% [32].
When recombinant α1D- adrenoceptors are expressed in fibroblast cell lines, most of the expression is intracellular, as opposed to the cell surface expression of the other α1 subtypes [47].


1. Abdulla MH, Sattar MA, Johns EJ, Abdullah NA, Hye Khan MA, Rathore HA. (2012) High-fructose feeding impacts on the adrenergic control of renal haemodynamics in the rat. Br. J. Nutr.107 (2): 218-28. [PMID:21733307]

2. Alonso-Llamazares A, Zamanillo D, Casanova E, Ovalle S, Calvo P, Chinchetru MA. (1995) Molecular cloning of alpha 1d-adrenergic receptor and tissue distribution of three alpha 1-adrenergic receptor subtypes in mouse. J Neurochem65: 2387-2392. [PMID:7595531]

3. Armenia, Sattar MA, Abdullah NA, Khan MA, Johns EJ. (2008) Alpha1A- and alpha1D-adrenoceptors are the major functional subtypes of renal alpha1-adrenoceptors in streptozotocin-induced diabetic and normal Sprague-Dawley rats. Auton Autacoid Pharmacol28 (1): 1-10. [PMID:18257746]

4. Arévalo-León LE, Gallardo-Ortíz IA, Urquiza-Marín H, Villalobos-Molina R. (2003) Evidence for the role of alpha1D- and alpha1A-adrenoceptors in contraction of the rat mesenteric artery. Vascul. Pharmacol.40 (2): 91-6. [PMID:12646397]

5. Auerbach SS, DrugMatrix® and ToxFX® Coordinator National Toxicology Program. DrugMatrix in vitro pharmacology data. , .

6. Auerbach SS, DrugMatrix® and ToxFX® Coordinator National Toxicology Program. National Toxicoligy Program: Dept of Health and Human Services. Accessed on 02/05/2014. Modified on 02/05/2014. DrugMatrix,

7. Bruno JF, Whittaker J, Song JF, Berelowitz M. (1991) Molecular cloning and sequencing of a cDNA encoding a human alpha 1A adrenergic receptor. Biochem Biophys Res Commun179: 1485-1490. [PMID:1656955]

8. Carroll WA, Sippy KB, Esbenshade TA, Buckner SA, Hancock AA, Meyer MD. (2001) Two novel and potent 3-[(o-methoxyphenyl)piperazinylethyl]-5-phenylthien. Bioorganic & Medicinal Chemistry Letters11: 1119-1121. [PMID:11354357]

9. Chalothorn D, McCune DF, Edelmann SE, Tobita K, Keller BB, Lasley RD, Perez DM, Tanoue A, Tsujimoto G, Post GR, Piascik MT. (2003) Differential cardiovascular regulatory activities of the alpha 1B- and alpha 1D-adrenoceptor subtypes. Journal of Pharmacology & Experimental Therapeutics305: 1045-1053. [PMID:12649302]

10. Chen L, Hodges RR, Funaki C, Zoukhri D, Gaivin RJ, Perez DM, Dartt DA. (2006) Effects of alpha1D-adrenergic receptors on shedding of biologically active EGF in freshly isolated lacrimal gland epithelial cells. Am. J. Physiol., Cell Physiol.291 (5): C946-56. [PMID:16760267]

11. Chen Q, Takahashi S, Zhong S, Hosoda C, Zheng HY, Ogushi T, Fujimura T, Ohta N, Tanoue A, Tsujimoto G et al.. (2005) Function of the lower urinary tract in mice lacking alpha1d-adrenoceptor. J. Urol.174 (1): 370-4. [PMID:15947692]

12. Chen Z, Hague C, Hall RA, Minneman KP. (2006) Syntrophins regulate alpha1D-adrenergic receptors through a PDZ domain-mediated interaction. J. Biol. Chem.281 (18): 12414-20. [PMID:16533813]

13. Chiba S, Tsukada M. (2002) Existence of functional alpha1A- and alpha1D- but no alpha1B-adrenoceptor subtypes in rat common carotid arteries. Jpn. J. Pharmacol.88 (2): 146-50. [PMID:11928714]

14. Cohn HI, Harris DM, Pesant S, Pfeiffer M, Zhou RH, Koch WJ, Dorn GW, Eckhart AD. (2008) Inhibition of vascular smooth muscle G protein-coupled receptor kinase 2 enhances alpha1D-adrenergic receptor constriction. Am. J. Physiol. Heart Circ. Physiol.295 (4): H1695-704. [PMID:18723764]

15. Conley RK, Williams TJ, Ford AP, Ramage AG. (2001) The role of alpha(1)-adrenoceptors and 5-HT(1A) receptors in the control of the micturition reflex in male anaesthetized rats. British Journal of Pharmacology133: 61-72. [PMID:11325795]

16. Dartt DA, Hodges RR. (2011) Interaction of alpha1D-adrenergic and P2X(7) receptors in the rat lacrimal gland and the effect on intracellular [Ca2+] and protein secretion. Invest. Ophthalmol. Vis. Sci.52 (8): 5720-9. [PMID:21685341]

17. Day HE, Kryskow EM, Watson SJ, Akil H, Campeau S. (2008) Regulation of hippocampal alpha1d adrenergic receptor mRNA by corticosterone in adrenalectomized rats. Brain Res.1218: 132-40. [PMID:18534559]

18. de Andrade CR, Fukada SY, Olivon VC, de Godoy MA, Haddad R, Eberlin MN, Cunha FQ, de Souza HP, Laurindo FR, de Oliveira AM. (2006) Alpha1D-adrenoceptor-induced relaxation on rat carotid artery is impaired during the endothelial dysfunction evoked in the early stages of hyperhomocysteinemia. Eur. J. Pharmacol.543 (1-3): 83-91. [PMID:16828078]

19. Docherty JR. (2011) Vasopressor nerve responses in the pithed rat, previously identified as α2-adrenoceptor mediated, may be α1D-adrenoceptor mediated. Eur. J. Pharmacol.658 (2-3): 182-6. [PMID:21376031]

20. Docherty JR. (2012) Yohimbine antagonises α1A- and α1D-adrenoceptor mediated components in addition to the α2A-adrenoceptor component to pressor responses in the pithed rat. Eur. J. Pharmacol.679 (1-3): 90-4. [PMID:22290390]

21. Filippi S, Parenti A, Donnini S, Granger HJ, Fazzini A, Ledda F. (2001) alpha(1D)-adrenoceptors cause endothelium-dependent vasodilatation in the rat mesenteric vascular bed. Journal of Pharmacology & Experimental Therapeutics296: 869-875. [PMID:11181918]

22. Ford APDW, Daniels DV, Chang DJ, Gever JR, Jasper JR, Lesnick JD, Clarke DE. (1997) Pharmacological pleiotropism of the human recombinant α1A-adrenoceptor: implications for α1-adrenoceptor classification. Br. J. Pharmacol.121: 1127-1135. [PMID:9249248]

23. García-Cazarín ML, Smith JL, Clair DK, Piascik MT. (2008) The alpha1D-adrenergic receptor induces vascular smooth muscle apoptosis via a p53-dependent mechanism. Mol. Pharmacol.74 (4): 1000-7. [PMID:18628404]

24. García-Cazarín ML, Smith JL, Olszewski KA, McCune DF, Simmerman LA, Hadley RW, Kraner SD, Piascik MT. (2008) The alpha1D-adrenergic receptor is expressed intracellularly and coupled to increases in intracellular calcium and reactive oxygen species in human aortic smooth muscle cells. J Mol Signal3: 6. [PMID:18304336]

25. García-Sáinz JA, Rodríguez-Pérez CE, Romero-Avila MT. (2004) Human alpha1D-adrenoceptor phosphorylation and desensitization. Biochem. Pharmacol.67 (10): 1853-8. [PMID:15130762]

26. García-Sáinz JA, Vázquez-Cuevas FG, Romero-Avila MT. (2001) Phosphorylation and desensitization of alpha1d-adrenergic receptors. Biochem. J.353 (Pt 3): 603-10. [PMID:11171057]

27. Giardina D, Crucianelli M, Romanelli R, Leonardi A, Poggesi E, Melchiorre C. (1996) Synthesis and biological profile of the enantiomers of [4-(4-amino-6,7-dimethoxyquinazolin-2-yl)-cis-octahydroquinoxalin-1-yl]furan-2-ylmethanone (cyclazosin) a potent competitive alpha-1B adrenoceptor antagonist. J Med Chem39: 4602-4607. [PMID:8917649]

28. González-Hernández Mde L, Godínez-Hernández D, Bobadilla-Lugo RA, López-Sánchez P. (2010) Angiotensin-II type 1 receptor (AT1R) and alpha-1D adrenoceptor form a heterodimer during pregnancy-induced hypertension. Auton Autacoid Pharmacol30 (3): 167-72. [PMID:20102360]

29. Hague C, Chen Z, Uberti M, Minneman KP. (2003) alpha1- adrenergic receptor subtypes: non-identical triplets with different dancing partners. Life Sci74: 411-418. [PMID:14609720]

30. Hague C, Lee SE, Chen Z, Prinster SC, Hall RA, Minneman KP. (2006) Heterodimers of alpha1B- and alpha1D-adrenergic receptors form a single functional entity. Mol. Pharmacol.69 (1): 45-55. [PMID:16195468]

31. Hague C, Uberti MA, Chen Z, Hall RA, Minneman KP. (2004) Cell surface expression of alpha1D-adrenergic receptors is controlled by heterodimerization with alpha1B-adrenergic receptors. J. Biol. Chem.279 (15): 15541-9. [PMID:14736874]

32. Hampel C, Dolber PC, Smith MP, Savic SL, Throff JW, Thor KB, Schwinn DA. (2002) Modulation of bladder alpha1-adrenergic receptor subtype expression by bladder outlet obstruction. Journal of Urology167: 1513-1521. [PMID:11832780]

33. Hancock AA, Buckner SA, Brune ME, Katwala S, Milicic I, Ireland LM, Morse PA, Knepper SM, Meyer MD,Chapple CR et al.. (1998) Pharmacological characterization of A-131701, a novel R 1 -adrenoceptor antagonist selective for R 1A - and R 1D - compared to R 1B -adrenoceptors. Drug Development Research44: 140-162.

34. Harasawa I, Honda K, Tanoue A, Shinoura H, Ishida Y, Okamura H, Murao N, Tsujimoto G, Higa K, Kamiya HO, Takano Y. (2003) Responses to noxious stimuli in mice lacking alpha(1d)-adrenergic receptors. Neuroreport14: 1857-1860. [PMID:14534435]

35. Hieble JP. (2000) Adrenoceptor subclassification: an approach to improved cardiovascular therapeutics. Pharmaceutica Acta Helvetiae74: 163-171. [PMID:10812954]

36. Hieble JP, Bylund DB, Clarke DE, Eikenburg DC, Langer SZ, Lefkowitz RJ, Minneman KP, Ruffolo RR Jr. (1995) International Union of Pharmacology. X. Recommendation for nomenclature of α1-adrenoceptors: Consensus update. Pharmacol. Rev.47: 267-270. [PMID:7568329]

37. Hieble JP, Ruffolo RR Jr. (1996) Subclassification and nomenclature of alpha-1 and alpha-2 adrenoceptors. Prog in Drug Res47: 81-130. [PMID:8961765]

38. Hodges RR, Shatos MA, Tarko RS, Vrouvlianis J, Gu J, Dartt DA. (2005) Nitric oxide and cGMP mediate alpha1D-adrenergic receptor-Stimulated protein secretion and p42/p44 MAPK activation in rat lacrimal gland. Invest. Ophthalmol. Vis. Sci.46 (8): 2781-9. [PMID:16043851]

39. Hosoda C, Koshimizu TA, Tanoue A, Nasa Y, Oikawa R, Tomabechi T, Fukuda S, Shinoura H, Oshikawa S, Takeo S et al.. (2005) Two alpha1-adrenergic receptor subtypes regulating the vasopressor response have differential roles in blood pressure regulation. Mol. Pharmacol.67 (3): 912-22. [PMID:15598970]

40. Hrometz SL, Edelmann SE, McCune DF, Olges JR, Hadley RW, Perez DM, Piascik MT. (1999) Expression of multiple alpha1-adrenoceptors on vascular smooth muscle: correlation with the regulation of contraction. Journal of Pharmacology & Experimental Therapeutics290: 452-463. [PMID:10381812]

41. Huo S, Zhong X, Wu X, Li Y. (2012) Effects of norepinephrine and acetylcholine on the development of cultured Leydig cells in mice. J. Biomed. Biotechnol.2012: 503093. [PMID:23093848]

42. Ishihama H, Momota Y, Yanase H, Wang X, de Groat WC, Kawatani M. (2006) Activation of alpha1D adrenergic receptors in the rat urothelium facilitates the micturition reflex. J. Urol.175 (1): 358-64. [PMID:16406942]

43. Jensen BC, Swigart PM, Laden ME, DeMarco T, Hoopes C, Simpson PC. (2009) The alpha-1D Is the predominant alpha-1-adrenergic receptor subtype in human epicardial coronary arteries. J. Am. Coll. Cardiol.54 (13): 1137-45. [PMID:19761933]

44. Khattar SK, Bora RS, Priyadarsiny P, Gautam A, Gupta D, Tiwari A, Nanda K, Singh R, Chugh A, Bansal V et al.. (2006) Molecular cloning, stable expression and cellular localization of human alpha1-adrenergic receptor subtypes: effect of charcoal/dextran treated serum on expression and localization of alpha1D -adrenergic receptor. Biotechnol. Lett.28 (21): 1731-9. [PMID:16912925]

45. Kojima Y, Sasaki S, Kubota Y, Hayase M, Hayashi Y, Shinoura H, Tsujimoto G, Kohri K. (2008) Expression of alpha1-adrenoceptor subtype mRNA as a predictor of the efficacy of subtype selective alpha1-adrenoceptor antagonists in the management of benign prostatic hyperplasia. J. Urol.179 (3): 1040-6. [PMID:18206918]

46. Kojima Y, Sasaki S, Kubota Y, Imura M, Oda N, Kiniwa M, Hayashi Y, Kohri K. (2011) Up-regulation of α1a and α1d-adrenoceptors in the prostate by administration of subtype selective α1-adrenoceptor antagonist tamsulosin in patients with benign prostatic hyperplasia. J. Urol.186 (4): 1530-6. [PMID:21855934]

47. Koshimizu TA, Tanoue A, Hirasawa A, Yamauchi J, Tsujimoto G. (2003) Recent advances in alpha1-adrenoceptor pharmacology. Pharmacology & Therapeutics98: 235-244. [PMID:12725871]

48. Koshimizu TA, Tsujimoto G, Hirasawa A, Kitagawa Y, Tanoue A. (2004) Carvedilol selectively inhibits oscillatory intracellular calcium changes evoked by human alpha1D- and alpha1B-adrenergic receptors. Cardiovasc. Res.63 (4): 662-72. [PMID:15306222]

49. Leech CJ, Faber JE. (1996) Different alpha-adrenoceptor subtypes mediate constriction of arterioles and venules. American Journal of Physiology270: H710-H722. [PMID:8779849]

50. Lomasney JW, Cotecchia S, Lorenz W, Leung WY, Schwinn DA, Yang-Feng TL, Brownstein M, Lefkowitz RJ, Caron MG. (1991) Molecular cloning and expression of the cDNA for the alpha 1A-adrenergic receptor. The gene for which is located on human chromosome 5. J. Biol. Chem.266 (10): 6365-9. [PMID:1706716]

51. Lyssand JS, DeFino MC, Tang XB, Hertz AL, Feller DB, Wacker JL, Adams ME, Hague C. (2008) Blood pressure is regulated by an alpha1D-adrenergic receptor/dystrophin signalosome. J. Biol. Chem.283 (27): 18792-800. [PMID:18468998]

52. Lyssand JS, Lee KS, DeFino M, Adams ME, Hague C. (2011) Syntrophin isoforms play specific functional roles in the α1D-adrenergic receptor/DAPC signalosome. Biochem. Biophys. Res. Commun.412 (4): 596-601. [PMID:21846462]

53. Lyssand JS, Whiting JL, Lee KS, Kastl R, Wacker JL, Bruchas MR, Miyatake M, Langeberg LK, Chavkin C, Scott JD et al.. (2010) Alpha-dystrobrevin-1 recruits alpha-catulin to the alpha1D-adrenergic receptor/dystrophin-associated protein complex signalosome. Proc. Natl. Acad. Sci. U.S.A.107 (50): 21854-9. [PMID:21115837]

54. Malloy BJ, Price DT, Price RR, Bienstock AM, Dole MK, Funk BL, Rudner XL, Richardson CD, Donatucci CF, Schwinn DA. (1998) Alpha1-adrenergic receptor subtypes in human detrusor. Journal of Urology160: 937-943. [PMID:9720591]

55. Methven L, Simpson PC, McGrath JC. (2009) Alpha1A/B-knockout mice explain the native alpha1D-adrenoceptor's role in vasoconstriction and show that its location is independent of the other alpha1-subtypes. Br. J. Pharmacol.158 (7): 1663-75. [PMID:19888965]

56. Meyer MD, Altenbach RJ, Basha FZ, Carroll WA, Drizin I, Elmore SW, Ehrlich PP, Lebold SA, Tietje K, Sippy KB et al.. (1997) Synthesis and pharmacological characterization of 3-[2-((3aR,9bR)-cis-6-methoxy-2,3,3a,4,5,9b-hexahydro-1H-benz[e] isoindol-2-yl)ethyl]pyrido-[3',4':4,5]thieno[3,2-d]pyrimidine-2,4 (1H,3H)-dione (A-131701): a uroselective alpha 1A adrenoceptor antagonist for the symptomatic treatment of benign prostatic hyperplasia. J. Med. Chem.40 (20): 3141-3. [PMID:9379432]

57. Michelotti GA, Brinkley DM, Morris DP, Smith MP, Louie RJ, Schwinn DA. (2007) Epigenetic regulation of human alpha1d-adrenergic receptor gene expression: a role for DNA methylation in Sp1-dependent regulation. FASEB J.21 (9): 1979-93. [PMID:17384146]

58. Michelotti GA, Price DT, Schwinn DA. (2000) alpha-1 Adrenergic receptor regulation: basic science and clinical implications. Pharmacol & Ther88: 281-309. [PMID:11337028]

59. Minarini A, Budriesi R, Chiarini A, Leonardi A, Melchiorre C. (1998) Search for alpha 1-adrenoceptor subtypes selective antagonists: design, synthesis and biological activity of cystazosin, an alpha 1D-adrenoceptor antagonist. Bioorganic & Medicinal Chemistry Letters8: 1353-1358. [PMID:9871765]

60. Minneman KP, Theroux TL, Hollinger S, Han C, Esbenshade TA. (1994) Selectivity of agonists for cloned α1-adrenergic receptor subtypes. Mol. Pharmacol.46: 929-936. [PMID:7969082]

61. Mishima K, Tanoue A, Tsuda M, Hasebe N, Fukue Y, Egashira N, Takano Y, Kamiya HO, Tsujimoto G, Iwasaki K et al.. (2004) Characteristics of behavioral abnormalities in alpha1d-adrenoceptors deficient mice. Behav. Brain Res.152 (2): 365-73. [PMID:15196805]

62. Mizusawa H, Hedlund P, Sjunnesson J, Brioni JD, Sullivan JP, Andersson KE. (2002) Enhancement of apomorphine-induced penile erection in the rat by a selective alpha(1D)-adrenoceptor antagonist. British Journal of Pharmacology136: 701-708. [PMID:12086979]

63. Nagaoka Y, Ahmed M, Hossain M, Bhuiyan MA, Ishiguro M, Nakamura T, Watanabe M, Nagatomo T. (2008) Amino acids of the human alpha1d-adrenergic receptor involved in antagonist binding. J. Pharmacol. Sci.106 (1): 114-20. [PMID:18187928]

64. Nicholas AP, Hokfelt T, Pieribone VA. (1996) The distribution and significance of CNS adrenoceptors examined with in situ hybridization. Trends in Pharmacological Sciences17: 245-255. [PMID:8756183]

65. Nonen S, Okamoto H, Fujio Y, Takemoto Y, Yoshiyama M, Hamaguchi T, Matsui Y, Yoshikawa J, Kitabatake A, Azuma J. (2008) Polymorphisms of norepinephrine transporter and adrenergic receptor alpha1D are associated with the response to beta-blockers in dilated cardiomyopathy. Pharmacogenomics J.8 (1): 78-84. [PMID:17404580]

66. Nourian Z, Mow T, Muftic D, Burek S, Pedersen ML, Matz J, Mulvany MJ. (2008) Orthostatic hypotensive effect of antipsychotic drugs in Wistar rats by in vivo and in vitro studies of alpha1-adrenoceptor function. Psychopharmacology (Berl.)199 (1): 15-27. [PMID:18542932]

67. Obika K, Shibata K, Horie K, Foglar R, Kimura K, Tsujimoto G. (1995) NS-49, a novel alpha-1a adrenoceptor selective agonist characterization using recombinant human alpha-1 adrenoceptors. Europ J Pharmacol291: 327-334. [PMID:8719417]

68. Parkman HP, Jacobs MR, Mishra A, Hurdle JA, Sachdeva P, Gaughan JP, Krynetskiy E. (2011) Domperidone treatment for gastroparesis: demographic and pharmacogenetic characterization of clinical efficacy and side-effects. Dig. Dis. Sci.56 (1): 115-24. [PMID:21063774]

69. Paton DM. (1976) Adrenergic innervation of the oviduct in the regulation of ovum transport. Res Reprod8 (1): 3. [PMID:1251089]

70. Petrovska R, Kapa I, Klovins J, Schiöth HB, Uhlén S. (2005) Addition of a signal peptide sequence to the alpha1D-adrenoceptor gene increases the density of receptors, as determined by [3H]-prazosin binding in the membranes. Br. J. Pharmacol.144 (5): 651-9. [PMID:15678090]

71. Rodríguez-Pérez CE, Calvo-Ochoa E, Kalashnikova EV, Reyes-Cruz G, Romero-Avila MT, García-Sáinz JA. (2009) Receptor tyrosine kinases regulate alpha1D-adrenoceptor signaling properties: phosphorylation and desensitization. Int. J. Biochem. Cell Biol.41 (6): 1276-83. [PMID:19038360]

72. Rudner XL, Berkowitz DE, Booth JV, Funk BL, Cozart KL, D'Amico EB, El-Moalem H, Page SO, Richardson CD, Winters B, Marucci L, Schwinn DA. (1999) Subtype specific regulation of human vascular alpha(1)-adrenergic receptors by vessel bed and age. Circulation100: 2336-2343. [PMID:10587338]

73. Sadalge A, Coughlin L, Fu H, Wang B, Valladares O, Valentino R, Blendy JA. (2003) alpha 1d Adrenoceptor signaling is required for stimulus induced locomotor activity. Molecular Psychiatry8: 664-672. [PMID:12874602]

74. Santana N, Mengod G, Artigas F. (2012) Expression of α1-adrenergic receptors in rat prefrontal cortex: cellular co-localization with 5-HT2A receptors. Int. J. Neuropsychopharmacol., : 1-13 [Epub ahead of print]. [PMID:23195622]

75. Schwinn DA, Johnston GI, Page SO, Mosley MJ, Wilson KH, Worman NP, Campbell S, Fidock MD, Furness LM, Parry-Smith DJ et al.. (1995) Cloning and pharmacological characterization of human alpha-1 adrenergic receptors: sequence corrections and direct comparison with other species homologues. J. Pharmacol. Exp. Ther.272 (1): 134-42. [PMID:7815325]

76. Schwinn DA, Michelotti GA. (2000) alpha1-adrenergic receptors in the lower urinary tract and vascular bed: potential role for the alpha1d subtype in filling symptoms and effects of ageing on vascular expression. BJU Int.85 Suppl 2: 6-11. [PMID:10781179]

77. Segura V, Flacco N, Oliver E, Barettino D, D'Ocon P, Ivorra MD. (2010) Alpha1-adrenoceptors in the rat cerebral cortex: new insights into the characterization of alpha1L- and alpha1D-adrenoceptors. Eur. J. Pharmacol.641 (1): 41-8. [PMID:20511116]

78. Shibata K, Foglar R, Horie K, Obika K, Sakamoto A, Ogawa S, Tsujimoto G. (1995) KMD-3213, a novel, potent, alpha 1a-adrenoceptor-selective antagonist: characterization using recombinant human alpha 1-adrenoceptors and native tissues. Mol. Pharmacol.48: 250-258. [PMID:7651358]

79. Sigala S, Peroni A, Mirabella G, Fornari S, Palazzolo F, Pezzotti G, Simeone C, Cunico SC, Spano P. (2004) Alpha1 adrenoceptor subtypes in human urinary bladder: sex and regional comparison. Life Sci.76 (4): 417-27. [PMID:15530504]

80. Szot P, White SS, Greenup JL, Leverenz JB, Peskind ER, Raskind MA. (2006) Compensatory changes in the noradrenergic nervous system in the locus ceruleus and hippocampus of postmortem subjects with Alzheimer's disease and dementia with Lewy bodies. J. Neurosci.26 (2): 467-78. [PMID:16407544]

81. Szot P, White SS, Greenup JL, Leverenz JB, Peskind ER, Raskind MA. (2007) Changes in adrenoreceptors in the prefrontal cortex of subjects with dementia: evidence of compensatory changes. Neuroscience146 (1): 471-80. [PMID:17324522]

82. Takakura K, Taniguchi T, Muramatsu I, Takeuchi K, Fukuda S. (2002) Modification of alpha1 -adrenoceptors by peroxynitrite as a possible mechanism of systemic hypotension in sepsis. Crit. Care Med.30 (4): 894-9. [PMID:11940765]

83. Tanoue A, Koba M, Miyawaki S, Koshimizu TA, Hosoda C, Oshikawa S, Tsujimoto G. (2002) Role of the alpha1D-adrenergic receptor in the development of salt-induced hypertension. Hypertension40: 101-106. [PMID:12105146]

84. Tanoue A, Nasa Y, Koshimizu T, Shinoura H, Oshikawa S, Kawai T, Sunada S, Takeo S, Tsujimoto G. (2002) The alpha(1D)-adrenergic receptor directly regulates arterial blood pressure via vasoconstriction. Journal of Clinical Investigation109: 765-775. [PMID:11901185]

85. Tayebati SK, Bronzetti E, Morra Di Cella S, Mulatero P, Ricci A, Rossodivita I, Schena M, Schiavone D, Veglio F, Amenta F. (2000) In situ hybridization and immunocytochemistry of alpha1-adrenoceptors in human peripheral blood lymphocytes. J Auton Pharmacol20 (5-6): 305-12. [PMID:11350496]

86. Uberti MA, Hague C, Oller H, Minneman KP, Hall RA. (2005) Heterodimerization with beta2-adrenergic receptors promotes surface expression and functional activity of alpha1D-adrenergic receptors. J. Pharmacol. Exp. Ther.313 (1): 16-23. [PMID:15615865]

87. Vinci MC, Bellik L, Filippi S, Ledda F, Parenti A. (2007) Trophic effects induced by alpha1D-adrenoceptors on endothelial cells are potentiated by hypoxia. Am. J. Physiol. Heart Circ. Physiol.293 (4): H2140-7. [PMID:17660397]

88. Walden PD, Gerardi C, Lepor H. (1999) Localization and expression of the alpha1A-1, alpha1B and alpha1D-adrenoceptors in hyperplastic and non-hyperplastic human prostate. Journal of Urology161: 635-640. [PMID:9915474]

89. Wang SY, Song Y, Xu M, He QH, Han QD, Zhang YY. (2007) Internalization and distribution of three alpha1-adrenoceptor subtypes in HEK293A cells before and after agonist stimulation. Acta Pharmacol. Sin.28 (3): 359-66. [PMID:17302998]

90. Waugh DJ, Gaivin RJ, Damron DS, Murray PA, Perez DM. (1999) Binding, partial agonism, and potentiation of alpha(1)-adrenergic receptor function by benzodiazepines: A potential site of allosteric modulation. Journal of Pharmacology & Experimental Therapeutics291: 1164-1171. [PMID:10565838]

91. Williams TJ, Blue DR, Daniels DV, Davis B, Elworthy T, Gever JR, Kava MS, Morgans D, Padilla F, Tassa S, Vimont RL, Chapple CR, Chess-Williams R, Eglen RM, Clarke DE, Ford AP. (1999) In vitroalpha1-adrenoceptor pharmacology of Ro 70-0004 and RS-100329, novel alpha1A-adrenoceptor selective antagonists. Br. J. Pharmacol.127: 252-258. [PMID:10369480]

92. Yoshio R, Taniguchi T, Itoh H, Muramatsu I. (2001) Affinity of serotonin receptor antagonists and agonists to recombinant and native alpha1-adrenoceptor subtypes. Jpn J Pharmacol86: 189-195. [PMID:11459121]

93. Zacharia J, Hillier C, Tanoue A, Tsujimoto G, Daly CJ, McGrath JC, MacDonald A. (2005) Evidence for involvement of alpha1D-adrenoceptors in contraction of femoral resistance arteries using knockout mice. Br. J. Pharmacol.146 (7): 942-51. [PMID:16170328]

94. Zhou SG, Lu JL, Hui JH. (2011) Comparing efficacy of α1D-receptor antagonist naftopidil and α1A/D-receptor antagonist tamsulosin in management of distal ureteral stones. World J Urol29 (6): 767-71. [PMID:21845472]

To cite this database page, please use the following:

Dianne Perez, Richard A. Bond, David B. Bylund, Douglas C. Eikenburg, J. Paul Hieble, Rebecca Hills, Kenneth P. Minneman, Sergio Parra.
Adrenoceptors: α1D-adrenoceptor. Last modified on 22/05/2014. Accessed on 31/10/2014. IUPHAR database (IUPHAR-DB),

Contact us | Print | Back to top | Help
Copyright © 2014 IUPHAR