Nomenclature: α1B-adrenoceptor

Family: Adrenoceptors

Annotation status:  image of a green circle Annotated and expert reviewed. Please contact us if you can help with updates. 

Contents

Gene and Protein Information
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 519 5q23-q32 ADRA1B adrenoceptor alpha 1B 50
Mouse 7 515 11 B1.1 Adra1b adrenergic receptor, alpha 1b 35
Rat 7 514 10q21 Adra1b adrenoceptor alpha 1B 2
Previous and Unofficial Names
α1b
adrenergic, alpha-1B-, receptor
Adrenergic alpha 1B- receptor
adrenergic alpha 1B receptor
adrenergic receptor, alpha 1b
adrenergic, alpha 1B, receptor
alpha 1B-adrenoceptor
alpha 1B-adrenoreceptor
alpha-1B adrenergic receptor
alpha-1B adrenoceptor
alpha-1B adrenoreceptor
alpha1B-adrenergic receptor
Database Links
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
GPCRDB
GeneCards
GenitoUrinary Development Molecular Anatomy Project
HomoloGene
Human Protein Reference Database
InterPro
KEGG Gene
OMIM
PharmGKB Gene
PhosphoSitePlus
Protein Ontology (PRO)
RefSeq Nucleotide
RefSeq Protein
TreeFam
UniGene Hs.
UniProtKB
Wikipedia
Natural/Endogenous Ligands
(-)-adrenaline
(-)-noradrenaline
Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
[125I]HEAT Hs Full agonist 10.2 pKd 56
pKd 10.2 [56]
alfuzosin Hs Agonist 8.55 pKi 28
pKi 8.55 (Ki 2.8x10-9 M) [28]
(-)-adrenaline Hs Full agonist 6.5 pKi 56
pKi 6.5 [56]
oxymetazoline Hs Full agonist 6.5 pKi 43,56
pKi 6.5 [43,56]
(-)-noradrenaline Hs Full agonist 6.2 pKi 56
pKi 6.2 [56]
(+)-adrenaline Hs Full agonist 5.1 pKi 56
pKi 5.1 [56]
NS-49 Hs Partial agonist 5.1 pKi 43
pKi 5.1 [43]
methoxamine Hs Full agonist 4.0 pKi 56
pKi 4.0 [56]
phenylephrine Hs Full agonist 6.3 – 7.5 pIC50 20,39
pIC50 6.3 – 7.5 [20,39]
Agonist Comments
Non catecholamine agonists, such as methoxamine and amidephrine, have both low affinity and low intrinsic activity at the α1B- adrenoceptor [39]. Much data has been generated using the hamster α1B-adrenoceptor, since this was the first α1B- homolog to be cloned. There is no evidence for any significant species differences in agonist and antagonist affinity between hamster, rat and human receptors.

Alfuzosin is an approved drug which is an agonist of several α1-adrenoceptors.
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
[125I]BE-2254 Hs Inverse agonist 9.9 pKd 38,54
pKd 9.9 [38,54]
(+)-cyclazosin Hs Inverse agonist 9.9 pKi 22
pKi 9.9 [22]
prazosin Hs Inverse agonist 9.6 – 9.9 pKi 20,56,65
pKi 9.6 – 9.9 [20,56,65]
tamsulosin Hs Inverse agonist 9.5 – 9.7 pKi 20,56,65
pKi 9.5 – 9.7 [20,56,65]
NAN 190 Hs Antagonist 9.2 pKi 67
pKi 9.2 [67]
spiperone Hs Inverse agonist 9.2 pKi 67
pKi 9.2 [67]
doxazosin Hs Antagonist 9.09 pKi 27
pKi 9.09 (Ki 8.13x10-10 M) [27]
WB 4101 Hs Antagonist 8.5 – 9.0 pKi 20,56
pKi 8.5 – 9.0 [20,56]
terazosin Hs Antagonist 8.57 pKi 36
pKi 8.57 (Ki 2.68x10-9 M) [36]
rho-TIA Hs Antagonist 8.4 pKi 12
pKi 8.4 [12]
L-765314 Rn Antagonist 8.3 pKi 46
pKi 8.3 [46]
A-119637 Hs Antagonist 8.3 pKi 6
pKi 8.3 [6]
ketanserin Hs Antagonist 8.2 pKi 67
pKi 8.2 [67]
clozapine Hs Antagonist 8.2 pKi 67
pKi 8.2 [67]
A-123189 Hs Antagonist 8.0 pKi 6
pKi 8.0 [6]
ritanserin Hs Antagonist 8.0 pKi 67
pKi 8.0 [67]
risperidone Hs Antagonist 8.0 pKi 67
pKi 8.0 [67]
Rec 15/2739 Hs Antagonist 7.8 pKi 20
pKi 7.8 [20]
L-765314 Hs Antagonist 7.7 pKi 46
pKi 7.7 [46]
silodosin Hs Antagonist 7.7 pKi 56
pKi 7.7 [56]
spiroxatrine Hs Antagonist 7.6 pKi 67
pKi 7.6 [67]
cyproheptadine Hs Antagonist 7.6 pKi 67
pKi 7.6 [67]
phentolamine Hs Antagonist 7.5 pKi 56
pKi 7.5 [56]
5-methylurapidil Hs Antagonist 7.2 – 7.7 pKi 20,56,67
pKi 7.2 – 7.7 [20,56,67]
indoramin Hs Antagonist 7.4 pKi 20
pKi 7.4 [20]
mianserin Hs Antagonist 7.4 pKi 67
pKi 7.4 [67]
BMY-7378 Hs Antagonist 7.0 – 7.5 pKi 6,67
pKi 7.0 – 7.5 [6,67]
S(+)-niguldipine Hs Antagonist 6.7 – 7.7 pKi 20,56
pKi 6.7 – 7.7 [20,56]
Ro-70-0004 Hs Antagonist 7.1 pKi 65
pKi 7.1 [65]
View species-specific antagonist tables
Antagonist Comments
(+) Cyclazosin shows α1B- selectivity in radioligand binding assays with recombinant receptors; however, a lack of functional selectivity in isolated tissue preparations has been reported [58]. A 19 amino acid peptide, rho-TIA, has been reported to produce non-competitive blockade of α1B-adrenoceptor mediated inositol phosphate formation at concentrations having little effect on this response in cells expressing the other α1 subtypes. Higher concentrations produce nearly complete blockade of the α1B- response, and competitive inhibition of the α1A- and α1D- mediated response [12].
Doxazosin is selective for α1-adrenoceptors.
Allosteric Modulators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
lorazepam Rn Positive 3.77 pKi 64
pKi 3.77 (Ki 1.7x10-4 M) [64]
midazolam Rn Positive 3.74 pKi 64
pKi 3.74 (Ki 1.83x10-4 M) [64]
rho-TIA Rn Negative 9.1 pIC50 34
pIC50 9.1 (IC50 8x10-10 M) [34]
Allosteric Modulator Comments
ρ-conopeptide TIA is a negative allosteric regulator at the hamster α1B-AR (pKi 7.6, [49]).
Additionally, conopeptide σ-TIA displaces radioligand binding to recombinant α1B-AR in a non-competitive manner [12,25].
Primary Transduction Mechanisms
Transducer Effector/Response
Gq/G11 family Phospholipase C stimulation
Calcium channel
Other - See Comments
Comments:  The α1B-adrenoceptor is coupled to calcium release and inositol phosphate production less efficiently than the α1A but more efficiently than the α1D.
References:  25,38
Secondary Transduction Mechanisms
Transducer Effector/Response
Phospholipase D stimulation
Other - See Comments
Comments:  α1- adrenoceptors (all subtypes) can also activate protein Kinase C, mitogen activated protein kinases.
References:  25,38
Tissue Distribution
Prostate cancer cell lines DU145, PC3 and TRAMP.
Species:  Human
Technique:  Radioligand binding.
References:  55
Uterus, cervix & umbilical vein.
Species:  Human
Technique:  RT-PCR, tissue contraction.
References:  18-19
Lymphocytes & saphenous vein.
Species:  Human
Technique:  In situ hybridisation.
References:  60,66
Coronary endothelial cells.
Species:  Human
Technique:  PCR, radioligand binding.
References:  30
Osteoblasts & SaM-1 cell line.
Species:  Human
Technique:  RT-PCR, antagonist (chloroethyclonidine) effects.
References:  29,32
α1B-adrenoceptors are either absent or scarce on human prostatic stromal smooth muscle, proximal urethra or corpus cavernosa. α1B-adrenoceptors are found in the human spleen and kidney, and with other subtypes in human somatic arteries and veins.
Species:  Human
Technique:  RT-PCR, RNase protection assay.
References:  38,48
Cerebral cortex, cerebellum, amygdaloid, hypothalamus, midbrain, pontine, spinal cord, olfactory, periaqueductal grey, NG2 oligodendrocytes.
Species:  Mouse
Technique:  In situ hybridisation, GFP-tagged transgenic mouse.
References:  42,44
Testes & spermatocytes.
Species:  Mouse
Technique:  In situ hybridisation.
References:  37
Prefrontal cortex, contralateral hind limb, somatosensory cortex, secondary motor cortex, ipsilateral laminae I-III spinal cord.
Species:  Rat
Technique:  In situ hybridisation.
References:  41,53
High expression levels of α1B-adrenoceptor was found in the medial layer of the aorta and caudal, femoral, iliac, renal, superior mesenteric and mesenteric resistance arteries.
Species:  Rat
Technique:  Immunohistochemistry.
References:  47
Taste buds.
Species:  Rat
Technique:  RT-PCR
References:  73
In the rat brain, highest levels of α1B- adrenoceptor protein are found in regions involved in stress and neuroendocrine function. Intense labeling was found in hypothalamic paraventricular nuclei, supraoptic nucleus, median eminence and arcuate nucleus. Immunoreactivity was also found in layer V of the frontal cortex, thalamus, hippocampus, diagonal band of Broca and caudate-putamen. Some midbrain and hindbrain regions important for motor function were also immunoreactive.
Species:  Rat
Technique:  Immunohistochemistry.
References:  1,14
Expression Datasets

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays
Isolated longitudinal strip of rat spleen.
Species:  Rat
Tissue:  Spleen
Response measured:  Contraction
References:  58
Isolated first order venules.
Species:  Human
Tissue:  Vasculature
Response measured:  Vasculature
References:  23
Nerve growth factor augments neuronal responsiveness to norepinephrine by increasing α1B-AR expression.
Species:  Rat
Tissue:  Primary dorsal root ganglion cells.
Response measured:  Neuronal responsiveness.
References:  72
Sphingosine-1-phosphate or lysophosphatidic acid induced α1B-AR desensitization and phosphorylation through PI3K and PKC and EGFR translocation.
Species:  Rat
Tissue:  Transfected Rat-1 fibroblasts.
Response measured:  Phosphorylation and desensitization.
References:  8-9
During renal impairment, α1B-AR mediated adrenergic-induced renal vasoconstriction but not during normal renal function.
Species:  Rat
Tissue:  Kidney.
Response measured:  Vasconstriction.
References:  31
T130A mutation in transmembrane domain III has reduced binding affinity for prazosin and tamsulosin.
Species:  Human
Tissue:  HEK 293 cells transfected with human α1B-AR cDNA.
Response measured:  Binding affinity.
References:  59
Insulin induces phosphorylation and desensitization; insulin-like growth factor-1 induces α1B-AR desensitization, phosphorylation and internalization through a PTX-sensitive pathway and the EGF receptor. Estrogen also desensitizes α1B-AR through the PI3K and PKC pathways.
Species:  Human
Tissue:  Transfected Rat-1 cells & DDT1MF2 cells.
Response measured:  Desensitization and internalization.
References:  7,21,24,40
α1B- and α1D-ARs form heterodimers with enhanced inositol phosphate release. Also forms heterodimers with α1A-AR. Heterodimer formation is observed for human AND rat receptors.
Species:  Human
Tissue:  Transfected HEK 293 & DDT(1)MF-2 cells.
Response measured:  Heterodimer formation.
References:  26,62
Physiological Functions
Contraction of mesenteric resistance arteries.
Species:  Rat
Tissue:  Vasculature.
References:  47
α1B-adrenoceptors appear to be involved in the regulation of cardiac growth and contractile function.
Species:  Mouse
Tissue:  Heart.
References:  11
Contraction of mammary artery and saphenous vein (with α1A).
Species:  Human
Tissue:  Vasculature
References:  23
Adrenaline induced stimulation of hydroxyl radical formation in isolated hepatocytes.
Species:  Rat
Tissue:  Liver.
References:  10
CNS Stimulation by d-amphetamine, cocaine and morphine.
Species:  Mouse
Tissue:  Brain.
References:  17
Growth of vascular adventitia following balloon injury.
Species:  Rat
Tissue:  Aorta.
References:  71
Contraction of umbilical vein.
Species:  Human
Tissue:  Vasculature.
References:  19
α1B-AR activation initiates a PLC-dependent biphasic change in pinealocyte membrane potential.
Species:  Rat
Tissue:  Primary pinealocytes.
References: 
Increased replication of human osteoblasts.
Species:  Human
Tissue:  Bone.
References:  29
Diabetes increases α1B-AR mRNA in non-pregnant rats.
Species:  Rat
Tissue:  Uterus.
References:  57
Physiological Consequences of Altering Gene Expression
α1B- knockout mice have elevated glycogen stores in both fed and fasted state and are hyperinsulinemic when fasted. They are more sensitive to obesity induced by a high fat diet.
Species:  Mouse
Tissue: 
Technique:  Transgenesis.
References:  13
Mice with myocyte-targeted α1B-ARs develop spontaneous ventricular arrhythmias and repolarization defects with age
Species:  Mouse
Tissue:  Heart.
Technique:  Gene over-expression.
References:  51
α1B-AR knockout mice display reduced neointimal growth, adventitial thickening and lumen loss. α1B-AR mediates vascular remodeling trophic effects after injury.
Species:  Mouse
Tissue:  Carotid artery.
Technique:  Gene knockout.
References:  70
Mice with constitutively active mutation (CAM) have decreased inotropic response to phenylephrine (decreased cardiac function).
Species:  Mouse
Tissue:  Heart.
Technique:  Gene over-expression, Langendorff isolated perfused heart assay.
References:  52
Mice with constitutively active mutation (CAM) have increased apoptosis, NMDA receptors, but decreased GABA-A receptor (neurodegenerative profile).
Species:  Mouse
Tissue:  Brain.
Technique:  Gene over-expression and microarry analysis.
References:  68
Mice with constitutively active mutation (CAM) have cardiac gene expression profile consistent with maladaptive hypertrophy (a gene expression profile of inflammation, hypertrophy, Src related signaling).
Species:  Mouse
Tissue:  Heart.
Technique:  Gene over-expression and microarray analysis.
References:  69
Mice with constitutively active mutation (CAM) have increased spontaneous interictal epileptogenicity and EEG /behavioral seizures (epilepsy).
Species:  Mouse
Tissue:  Brain.
Technique:  Gene over-expression.
References:  33
Mice with constitutively active mutation (CAM) have progressive synucleinopathy that is rescued by long-term terazosin treatment (abnormal aggregated alpha-synuclein inclusion bodies & Purkinje cell loss).
Species:  Mouse
Tissue:  Brain.
Technique:  Gene over-expression.
References:  45
Mice with constitutively active mutation (CAM) have progressive apoptotic parkinsonian-like neurodegeneration with multiple system atrophy (granulovacular apoptotic neurodegeneration, movement disorder, dopaminergic degeneration).
Species:  Mouse
Tissue:  Heart.
Technique:  Gene over-expression.
References:  75
α1B-AR knockout mice exhibit altered locomoter and rewarding effects of psychostimulants and opiates; mediates dopamine release (hyperactivity and rewarding behavior of cocaine, morphine, amphetamine).
Species:  Mouse
Tissue:  Brain.
Technique:  Gene knockouts.
References:  3,15,63
α1B-AR knockout mice display attenuated pressor and positive inotropic effects after transient bilateral carotid occlusion and denervated aortic baroreceptor surgery. α1B-AR regulates sympathetic neuroeffector junction and baroreceptor activation.
Species:  Mouse
Tissue:  Mesenteric vasculature.
Technique:  Gene knockout.
References:  61
α1B-AR knockout mice display compensatory changes in α1-AR subtypes; liver from α1B-AR knockout animals displays increased α1A-AR expression.
Species:  Mouse
Tissue:  Liver, hepatocytes.
Technique:  Gene knockout.
References:  16
α1B-AR knockout mice display impaired glucose homeostasis (hyperinsulinemia and insulin resistance).
Species:  Mouse
Tissue:  Blood, liver.
Technique:  Gene knockout.
References:  5
Mice with constitutively active mutation (CAM) have hypotension, autonomic failure and cardiac hypertrophy (lower basal and phenylephrine-induced blood pressure, cardiac hypertrophy, cardiac dysfunction, reduced plasma catecholamines and cortisol, weight loss).
Species:  Mouse
Tissue:  Brain & heart.
Technique:  Gene over-expression.
References:  74
α1B-AR knockout mice display reduced fertility and spermatogenesis (hypofertile, low testosterone, high leutinizing hormone).
Species:  Mouse
Tissue:  Testes.
Technique:  Gene knockouts.
References:  37
α1B-AR knockout mice are protected against methamphetamine induced degeneration (methamphetamine toxicity) of the nigro-striatal neuronal pathway in CNS and show an enhanced reactivity to new situations.
Species:  Mouse
Tissue:  Brain- nigro-striatal projection.
Technique:  Gene knockout.
References:  4
Phenotypes, Alleles and Disease Models Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd
MGI:104774  MP:0004184 abnormal baroreceptor physiology PMID: 15466664 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0002972 abnormal cardiac muscle contractility PMID: 14519431 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0000304 abnormal cardiac stroke volume PMID: 12782680 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0001544 abnormal cardiovascular system physiology PMID: 12782680 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0002332 abnormal exercise endurance PMID: 12782680 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * C57BL/6J
MGI:104774  MP:0002078 abnormal glucose homeostasis PMID: 14581480 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd
MGI:104774  MP:0003921 abnormal heart left ventricle morphology PMID: 15466664 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0005406 abnormal heart size PMID: 12782680 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * C57BL/6J
MGI:104774  MP:0001449 abnormal learning/ memory PMID: 11222061 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0004215 abnormal myocardial fiber physiology PMID: 14519431 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * C57BL/6J
MGI:104774  MP:0003562 abnormal pancreatic beta cell physiology PMID: 14581480 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * C57BL/6J
MGI:104774  MP:0003461 abnormal response to novel object PMID: 11222061 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129/Sv * C57BL/6J
MGI:104774  MP:0002216 abnormal seminiferous tubule morphology PMID: 17951539 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129/Sv * C57BL/6J
MGI:104774  MP:0002784 abnormal Sertoli cell morphology PMID: 17951539 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * C57BL/6J
MGI:104774  MP:0001463 abnormal spatial learning PMID: 11222061 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd
MGI:104774  MP:0000230 abnormal systemic arterial blood pressure PMID: 9326654 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129/Sv * C57BL/6J
MGI:104774  MP:0002782 abnormal testicular secretion PMID: 17951539 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129/Sv * C57BL/6J
MGI:104774  MP:0001155 arrest of spermatogenesis PMID: 17951539 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0006138 congestive heart failure PMID: 12782680 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd
MGI:104774  MP:0005140 decreased cardiac muscle contractility PMID: 15466664  9326654 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0003393 decreased cardiac output PMID: 12782680 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * C57BL/6J
MGI:104774  MP:0002702 decreased circulating free fatty acid level PMID: 14581480 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129/Sv * C57BL/6J
MGI:104774  MP:0002780 decreased circulating testosterone level PMID: 17951539 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd
MGI:104774  MP:0001417 decreased exploration in new environment PMID: 11115730 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * C57BL/6J
MGI:104774  MP:0005439 decreased glycogen level PMID: 14581480 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd
MGI:104774  MP:0005333 decreased heart rate PMID: 15466664 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0005333 decreased heart rate PMID: 12782680 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0002834 decreased heart weight PMID: 12782680 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129/Sv * C57BL/6J
MGI:104774  MP:0001935 decreased litter size PMID: 17951539 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129/Sv * C57BL/6J
MGI:104774  MP:0004901 decreased male germ cell number PMID: 17951539 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd
MGI:104774  MP:0002843 decreased systemic arterial blood pressure PMID: 15466664 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd
MGI:104774  MP:0006264 decreased systemic arterial systolic blood pressure PMID: 15466664 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129/Sv * C57BL/6J
MGI:104774  MP:0004852 decreased testis weight PMID: 17951539 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd
MGI:104774  MP:0003026 decreased vasoconstriction PMID: 15466664 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0003068 enlarged kidney PMID: 12782680 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * C57BL/6J
MGI:104774  MP:0001559 hyperglycemia PMID: 14581480 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * C57BL/6J
MGI:104774  MP:0009750 impaired behavioral response to addictive substance PMID: 11923452 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * C57BL/6J
MGI:104774  MP:0009712 impaired conditioned place preference behavior PMID: 11923452 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * C57BL/6J
MGI:104774  MP:0005293 impaired glucose tolerance PMID: 14581480 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd
MGI:104774  MP:0004000 impaired passive avoidance behavior PMID: 11115730 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0005599 increased cardiac muscle contractility PMID: 12782680 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * C57BL/6J
MGI:104774  MP:0002079 increased circulating insulin level PMID: 14581480 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * C57BL/6J
MGI:104774  MP:0005669 increased circulating leptin level PMID: 14581480 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129/Sv * C57BL/6J
MGI:104774  MP:0001751 increased circulating luteinizing hormone level PMID: 17951539 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * C57BL/6J
MGI:104774  MP:0001415 increased exploration in new environment PMID: 11222061 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * C57BL/6J
MGI:104774  MP:0005440 increased glycogen level PMID: 14581480 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0003823 increased left ventricular developed pressure PMID: 14519431 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * C57BL/6J
MGI:104774  MP:0005458 increased percent body fat PMID: 14581480 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0004485 increased response of heart to induced stress PMID: 12782680 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0009763 increased sensitivity to induced morbidity/mortality PMID: 12782680 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * C57BL/6J
MGI:104774  MP:0005658 increased susceptibility to diet-induced obesity PMID: 14581480 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * C57BL/6J
MGI:104774  MP:0005331 insulin resistance PMID: 14581480 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129/Sv * C57BL/6J
MGI:104774  MP:0008280 male germ cell apoptosis PMID: 17951539 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129/Sv * C57BL/6J
MGI:104774  MP:0001925 male infertility PMID: 17951539 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129/Sv * C57BL/6J
MGI:104774  MP:0001922 reduced male fertility PMID: 17951539 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0002188 small heart PMID: 12782680 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
B6.129-Adra1b Adra1a
MGI:104773  MGI:104774  MP:0002188 small heart PMID: 12782680 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
involves: 129P2/OlaHsd * 129X1/SvJ * C57BL/6 * FVB/N
MGI:104773  MGI:104774  MP:0004565 small myocardial fiber PMID: 12782680 
Adra1atm1Pcs|Adra1btm1Cta Adra1atm1Pcs/Adra1atm1Pcs,Adra1btm1Cta/Adra1btm1Cta
B6.129-Adra1b Adra1a
MGI:104773  MGI:104774  MP:0004565 small myocardial fiber PMID: 12782680 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129/Sv * C57BL/6J
MGI:104774  MP:0001157 small seminal vesicle PMID: 17951539 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129/Sv * C57BL/6J
MGI:104774  MP:0001153 small seminiferous tubules PMID: 17951539 
Adra1btm1Cta Adra1btm1Cta/Adra1btm1Cta
involves: 129/Sv * C57BL/6J
MGI:104774  MP:0001147 small testis PMID: 17951539 
Available Assays
DiscoveRx PathHunter® CHO-K1 ADRA1B β-Arrestin Cell Line (Cat no. 93-0274C2)
PathHunter® eXpress ADRA1B CHO-K1 β-Arrestin GPCR Assay (Cat no. 93-0274E2CP0M)
more info

REFERENCES

1. Acosta-Martinez M, Fiber JM, Brown RD, Etgen AM. (1999) Localization of alpha1B-adrenergic receptor in female rat brain regions involved in stress and neuroendocrine function. Neurochemistry International35: 383-391. [PMID:10517699]

2. Alonso-Llamazares A, Zamanillo D, Casanova E, Ovalle S, Calvo P, Chinchetru MA. (1995) Molecular cloning of alpha 1d-adrenergic receptor and tissue distribution of three alpha 1-adrenergic receptor subtypes in mouse. J Neurochem65: 2387-2392. [PMID:7595531]

3. Auclair A, Drouin C, Cotecchia S, Glowinski J, Tassin JP. (2004) 5-HT2A and alpha1b-adrenergic receptors entirely mediate dopamine release, locomotor response and behavioural sensitization to opiates and psychostimulants. Eur. J. Neurosci.20 (11): 3073-84. [PMID:15579162]

4. Battaglia G, Fornai F, Busceti CL, Lembo G, Nicoletti F, De Blasi A. (2003) Alpha-1B adrenergic receptor knockout mice are protected against methamphetamine toxicity. Journal of Neurochemistry86: 413-421. [PMID:12871582]

5. Burcelin R, Uldry M, Foretz M, Perrin C, Dacosta A, Nenniger-Tosato M, Seydoux J, Cotecchia S, Thorens B. (2004) Impaired glucose homeostasis in mice lacking the alpha1b-adrenergic receptor subtype. J. Biol. Chem.279 (2): 1108-15. [PMID:14581480]

6. Carroll WA, Sippy KB, Esbenshade TA, Buckner SA, Hancock AA, Meyer MD. (2001) Two novel and potent 3-[(o-methoxyphenyl)piperazinylethyl]-5-phenylthien. Bioorganic & Medicinal Chemistry Letters11: 1119-1121. [PMID:11354357]

7. Casas-González P, García-Sáinz JA. (2006) Role of epidermal growth factor receptor transactivation in alpha1B-adrenoceptor phosphorylation. Eur. J. Pharmacol.542 (1-3): 31-6. [PMID:16828079]

8. Casas-González P, Ruiz-Martínez A, García-Sáinz JA. (2003) Lysophosphatidic acid induces alpha1B-adrenergic receptor phosphorylation through G beta gamma, phosphoinositide 3-kinase, protein kinase C and epidermal growth factor receptor transactivation. Biochim. Biophys. Acta1633 (2): 75-83. [PMID:12880866]

9. Castillo-Badillo JA, Molina-Muñoz T, Romero-Ávila MT, Vázquez-Macías A, Rivera R, Chun J, García-Sáinz JA. (2012) Sphingosine 1-phosphate-mediated α1B-adrenoceptor desensitization and phosphorylation. Direct and paracrine/autocrine actions. Biochim. Biophys. Acta1823 (2): 245-54. [PMID:22019450]

10. Castrejon-Sosa M, Villalobos-Molina R, Guinzberg R, Pina E. (2002) Adrenaline (via alpha(1B)-adrenoceptors) and ethanol stimulate OH* radical production in isolated rat hepatocytes. Life Sciences71: 2469-2474. [PMID:12270752]

11. Chalothorn D, McCune DF, Edelmann SE, Tobita K, Keller BB, Lasley RD, Perez DM, Tanoue A, Tsujimoto G, Post GR, Piascik MT. (2003) Differential cardiovascular regulatory activities of the alpha 1B- and alpha 1D-adrenoceptor subtypes. Journal of Pharmacology & Experimental Therapeutics305: 1045-1053. [PMID:12649302]

12. Chen Z, Rogge G, Hague C, Alewood D, Colless B, Lewis RJ, Minneman KP. (2004) Subtype-selective noncompetitive or competitive inhibition of human alpha1-adrenergic receptors by rho-TIA. Journal of Biological Chemistry279: 35326-35333. [PMID:15194691]

13. Cotecchia S, Bjorklof K, Rossier O, Stanasila L, Greasley P, Fanelli F. (2002) The alpha1b-adrenergic receptor subtype: molecular properties and physiological implications. Journal of Receptor & Signal Transduction Research22: 1-16. [PMID:12503605]

14. Day HE, Campeau S, Watson SJ, Akil H. (1997) Distribution of alpha-1a, alpha-1b and alpha-1d adrenergic receptor mRNA in the rat brain and spinal cord. J Chem Neuroanat13: 115-139. [PMID:9285356]

15. DeBoy JM, Jarboe BR. (1991) A response to "Can cytology proficiency testing programs discriminate between competent and incompetent practitioners?". QRB Qual Rev Bull17 (7): 206. [PMID:1923452]

16. Deighan C, Woollhead AM, Colston JF, McGrath JC. (2004) Hepatocytes from alpha1B-adrenoceptor knockout mice reveal compensatory adrenoceptor subtype substitution. Br. J. Pharmacol.142 (6): 1031-7. [PMID:15210583]

17. Drouin C, Darracq L, Trovero F, Blanc G, Glowinski J, Cotecchia S, Tassin JP. (2002) Alpha1b-adrenergic receptors control locomotor and rewarding effects of psychostimulants and opiates. Journal of Neuroscience22: 2873-2884. [PMID:11923452]

18. Ducza E, Kormányos Z, Resch BE, Falkay G. (2005) Correlation between the alterations in the mRNA expressions of the alpha1-adrenoceptor and estrogen receptor subtypes in the pregnant human uterus and cervix. Eur. J. Pharmacol.528 (1-3): 183-7. [PMID:16325176]

19. Errasti AE, Werneck de Avellar MC, Daray FM, Tramontano J, Luciani LI, Lina Bard MJ, MarA3stica E, Rothlin RP. (2003) Human umbilical vein vasoconstriction induced by epinephrine acting on alpha1B-adrenoceptor subtype. American Journal of Obstetrics & Gynecology189: 1472-1480. [PMID:14634588]

20. Ford APDW, Daniels DV, Chang DJ, Gever JR, Jasper JR, Lesnick JD, Clarke DE. (1997) Pharmacological pleiotropism of the human recombinant α1A-adrenoceptor: implications for α1-adrenoceptor classification. Br. J. Pharmacol.121: 1127-1135. [PMID:9249248]

21. García-Sáinz JA, Romero-Avila MT, Molina-Muñoz T, Medina Ldel C. (2004) Insulin induces alpha1B-adrenergic receptor phosphorylation and desensitization. Life Sci.75 (16): 1937-47. [PMID:15306161]

22. Giardina D, Crucianelli M, Romanelli R, Leonardi A, Poggesi E, Melchiorre C. (1996) Synthesis and biological profile of the enantiomers of [4-(4-amino-6,7-dimethoxyquinazolin-2-yl)-cis-octahydroquinoxalin-1-yl]furan-2-ylmethanone (cyclazosin) a potent competitive alpha-1B adrenoceptor antagonist. J Med Chem39: 4602-4607. [PMID:8917649]

23. Giessler C, Wangemann T, Silber RE, Dhein S, Brodde OE. (2002) Noradrenaline-induced contraction of human saphenous vein and human internal mammary artery: involvement of different alpha-adrenoceptor subtypes. Naunyn-Schmiedebergs Archives of Pharmacology366: 104-109. [PMID:12122495]

24. González-Arenas A, Aguilar-Maldonado B, Avendaño-Vázquez SE, García-Sáinz JA. (2006) Estrogens cross-talk to alpha1b-adrenergic receptors. Mol. Pharmacol.70 (1): 154-62. [PMID:16638969]

25. Hague C, Chen Z, Uberti M, Minneman KP. (2003) alpha1- adrenergic receptor subtypes: non-identical triplets with different dancing partners. Life Sci74: 411-418. [PMID:14609720]

26. Hague C, Lee SE, Chen Z, Prinster SC, Hall RA, Minneman KP. (2006) Heterodimers of alpha1B- and alpha1D-adrenergic receptors form a single functional entity. Mol. Pharmacol.69 (1): 45-55. [PMID:16195468]

27. Hancock AA, Buckner SA, Brune ME, Katwala S, Milicic I, Ireland LM, Morse PA, Knepper SM, Meyer MD,Chapple CR et al.. (1998) Pharmacological characterization of A-131701, a novel R 1 -adrenoceptor antagonist selective for R 1A - and R 1D - compared to R 1B -adrenoceptors. Drug Development Research44: 140-162.

28. Hieble JP, Bondinell WE, Ruffolo Jr RR. (1995) Alpha- and beta-adrenoceptors: from the gene to the clinic. 1. Molecular biology and adrenoceptor subclassification. J. Med. Chem.38 (18): 3415-44. [PMID:7658428]

29. Huang HH, Brennan TC, Muir MM, Mason RS. (2009) Functional alpha1- and beta2-adrenergic receptors in human osteoblasts. J. Cell. Physiol.220 (1): 267-75. [PMID:19334040]

30. Jensen BC, Swigart PM, Montgomery MD, Simpson PC. (2010) Functional alpha-1B adrenergic receptors on human epicardial coronary artery endothelial cells. Naunyn Schmiedebergs Arch. Pharmacol.382 (5-6): 475-82. [PMID:20857090]

31. Khan MA, Sattar MA, Abdullah NA, Johns EJ. (2008) Alpha1B-adrenoceptors mediate adrenergically-induced renal vasoconstrictions in rats with renal impairment. Acta Pharmacol. Sin.29 (2): 193-203. [PMID:18215348]

32. Kodama D, Togari A. (2010) Modulation of potassium channels via the α1B-adrenergic receptor in human osteoblasts. Neurosci. Lett.485 (2): 102-6. [PMID:20813157]

33. Kunieda T, Zuscik MJ, Boongird A, Perez DM, Lüders HO, Najm IM. (2002) Systemic overexpression of the alpha 1B-adrenergic receptor in mice: an animal model of epilepsy. Epilepsia43 (11): 1324-9. [PMID:12423381]

34. Lima V, Mueller A, Kamikihara SY, Raymundi V, Alewood D, Lewis RJ, Chen Z, Minneman KP, Pupo AS. (2005) Differential antagonism by conotoxin rho-TIA of contractions mediated by distinct alpha1-adrenoceptor subtypes in rat vas deferens, spleen and aorta. Eur. J. Pharmacol.508 (1-3): 183-92. [PMID:15680270]

35. Lomasney JW, Cotecchia S, Lorenz W, Leung WY, Schwinn DA, Yang-Feng TL, Brownstein M, Lefkowitz RJ, Caron MG. (1991) Molecular cloning and expression of the cDNA for the alpha 1A-adrenergic receptor. The gene for which is located on human chromosome 5. J. Biol. Chem.266 (10): 6365-9. [PMID:1706716]

36. Meyer MD, Altenbach RJ, Basha FZ, Carroll WA, Drizin I, Elmore SW, Ehrlich PP, Lebold SA, Tietje K, Sippy KB et al.. (1997) Synthesis and pharmacological characterization of 3-[2-((3aR,9bR)-cis-6-methoxy-2,3,3a,4,5,9b-hexahydro-1H-benz[e] isoindol-2-yl)ethyl]pyrido-[3',4':4,5]thieno[3,2-d]pyrimidine-2,4 (1H,3H)-dione (A-131701): a uroselective alpha 1A adrenoceptor antagonist for the symptomatic treatment of benign prostatic hyperplasia. J. Med. Chem.40 (20): 3141-3. [PMID:9379432]

37. Mhaouty-Kodja S, Lozach A, Habert R, Tanneux M, Guigon C, Brailly-Tabard S, Maltier JP, Legrand-Maltier C. (2007) Fertility and spermatogenesis are altered in {alpha}1b-adrenergic receptor knockout male mice. J. Endocrinol.195 (2): 281-92. [PMID:17951539]

38. Michelotti GA, Price DT, Schwinn DA. (2000) alpha-1 Adrenergic receptor regulation: basic science and clinical implications. Pharmacol & Ther88: 281-309. [PMID:11337028]

39. Minneman KP, Theroux TL, Hollinger S, Han C, Esbenshade TA. (1994) Selectivity of agonists for cloned α1-adrenergic receptor subtypes. Mol. Pharmacol.46: 929-936. [PMID:7969082]

40. Molina-Muñoz T, Romero-Avila MT, Avendaño-Vázquez SE, García-Sáinz JA. (2008) Phosphorylation, desensitization and internalization of human alpha1B-adrenoceptors induced by insulin-like growth factor-I. Eur. J. Pharmacol.578 (1): 1-10. [PMID:17915215]

41. Nalepa I, Vetulani J, Borghi V, Kowalska M, Przewłocka B, Pavone F. (2005) Formalin hindpaw injection induces changes in the [3H]prazosin binding to alpha1-adrenoceptors in specific regions of the mouse brain and spinal cord. J Neural Transm112 (10): 1309-19. [PMID:15719155]

42. Nicholson R, Dixon AK, Spanswick D, Lee K. (2005) Noradrenergic receptor mRNA expression in adult rat superficial dorsal horn and dorsal root ganglion neurons. Neurosci. Lett.380 (3): 316-21. [PMID:15862909]

43. Obika K, Shibata K, Horie K, Foglar R, Kimura K, Tsujimoto G. (1995) NS-49, a novel alpha-1a adrenoceptor selective agonist characterization using recombinant human alpha-1 adrenoceptors. Europ J Pharmacol291: 327-334. [PMID:8719417]

44. Papay R, Gaivin R, McCune DF, Rorabaugh BR, Macklin WB, McGrath JC, Perez DM. (2004) Mouse alpha1B-adrenergic receptor is expressed in neurons and NG2 oligodendrocytes. J. Comp. Neurol.478 (1): 1-10. [PMID:15334645]

45. Papay R, Zuscik MJ, Ross SA, Yun J, McCune DF, Gonzalez-Cabrera P, Gaivin R, Drazba J, Perez DM. (2002) Mice expressing the alpha(1B)-adrenergic receptor induces a synucleinopathy with excessive tyrosine nitration but decreased phosphorylation. J. Neurochem.83 (3): 623-34. [PMID:12390524]

46. Patane MA, Scott AL, Broten TP, Chang RS, Ransom RW, DiSalvo J, Forray C, Bock MG. (1998) 4-Amino-2-[4-[1-(benzyloxycarbonyl)-2(S)- [[(1,1-dimethylethyl)amino]carbonyl]-piperazinyl]-6, 7-dimethoxyquinazoline (L-765,314): a potent and selective alpha1b adrenergic receptor antagonist. Journal of Medicinal Chemistry41: 1205-1208. [PMID:9548811]

47. Piascik MT, Hrometz SL, Edelmann SE, Guarino RD, Hadley RW, Brown RD. (1997) Immunocytochemical localization of the alpha-1b adrenergic receptor and the contribution of this and the other subtypes to vascular smooth muscle contraction: analysis with selective ligands and antisense oligonucleotides. J. Pharmacol. Exp. Ther.283: 854-868. [PMID:9353407]

48. Price DT, Lefkowitz RJ, Caron MG, Berkowitz D, Schwinn DA. (1994) Localization of mRNA for three distinct alpha-1 adrenergic receptor subtypes in human tissues: implications for human alpha-adrenergic physiology. Mol Pharmacol45: 171-175. [PMID:8114668]

49. Ragnarsson L, Wang CI, Andersson Å, Fajarningsih D, Monks T, Brust A, Rosengren KJ, Lewis RJ. (2013) Conopeptide ρ-TIA defines a new allosteric site on the extracellular surface of the α1B-adrenoceptor. J. Biol. Chem.288 (3): 1814-27. [PMID:23184947]

50. Ramarao CS, Denker JM, Perez DM, Gaivin RJ, Riek RP, Graham RM. (1992) Genomic organization and expression of the human alpha 1B-adrenergic receptor. J Biol. Chem.267: 21936-21945. [PMID:1328250]

51. Rivard K, Trépanier-Boulay V, Rindt H, Fiset C. (2009) Electrical remodeling in a transgenic mouse model of alpha1B-adrenergic receptor overexpression. Am. J. Physiol. Heart Circ. Physiol.296 (3): H704-18. [PMID:19112097]

52. Ross SA, Rorabaugh BR, Chalothorn D, Yun J, Gonzalez-Cabrera PJ, McCune DF, Piascik MT, Perez DM. (2003) The alpha(1B)-adrenergic receptor decreases the inotropic response in the mouse Langendorff heart model. Cardiovasc. Res.60 (3): 598-607. [PMID:14659805]

53. Santana N, Mengod G, Artigas F. (2012) Expression of α1-adrenergic receptors in rat prefrontal cortex: cellular co-localization with 5-HT2A receptors. Int. J. Neuropsychopharmacol., : 1-13 [Epub ahead of print]. [PMID:23195622]

54. Schwinn DA, Johnston GI, Page SO, Mosley MJ, Wilson KH, Worman NP, Campbell S, Fidock MD, Furness LM, Parry-Smith DJ et al.. (1995) Cloning and pharmacological characterization of human alpha-1 adrenergic receptors: sequence corrections and direct comparison with other species homologues. J. Pharmacol. Exp. Ther.272 (1): 134-42. [PMID:7815325]

55. Shi T, Gaivin RJ, McCune DF, Gupta M, Perez DM. (2007) Dominance of the alpha1B-adrenergic receptor and its subcellular localization in human and TRAMP prostate cancer cell lines. J. Recept. Signal Transduct. Res.27 (1): 27-45. [PMID:17365508]

56. Shibata K, Foglar R, Horie K, Obika K, Sakamoto A, Ogawa S, Tsujimoto G. (1995) KMD-3213, a novel, potent, alpha 1a-adrenoceptor-selective antagonist: characterization using recombinant human alpha 1-adrenoceptors and native tissues. Mol. Pharmacol.48: 250-258. [PMID:7651358]

57. Spiegl G, Zupkó I, Minorics R, Csík G, Csonka D, Falkay G. (2009) Effects of experimentally induced diabetes mellitus on pharmacologically and electrically elicited myometrial contractility. Clin. Exp. Pharmacol. Physiol.36 (9): 884-91. [PMID:19298542]

58. Stam WB, Van der Graaf PH, Saxena PR. (1998) Functional characterisation of the pharmacological profile of the putative alpha1B-adrenoceptor antagonist, (+)-cyclazosin. European Journal of Pharmacology361: 79-83. [PMID:9851544]

59. Takahashi K, Hossain M, Ahmed M, Bhuiyan MA, Ohnuki T, Nagatomo T. (2007) Asp125 and Thr130 in transmembrane domain 3 are major sites of alpha1b-adrenergic receptor antagonist binding. Biol. Pharm. Bull.30 (10): 1891-4. [PMID:17917257]

60. Tayebati SK, Bronzetti E, Morra Di Cella S, Mulatero P, Ricci A, Rossodivita I, Schena M, Schiavone D, Veglio F, Amenta F. (2000) In situ hybridization and immunocytochemistry of alpha1-adrenoceptors in human peripheral blood lymphocytes. J Auton Pharmacol20 (5-6): 305-12. [PMID:11350496]

61. Townsend SA, Jung AS, Hoe YS, Lefkowitz RY, Khan SA, Lemmon CA, Harrison RW, Lee K, Barouch LA, Cotecchia S et al.. (2004) Critical role for the alpha-1B adrenergic receptor at the sympathetic neuroeffector junction. Hypertension44 (5): 776-82. [PMID:15466664]

62. Uberti MA, Hall RA, Minneman KP. (2003) Subtype-specific dimerization of alpha 1-adrenoceptors: effects on receptor expression and pharmacological properties. Mol. Pharmacol.64 (6): 1379-90. [PMID:14645668]

63. Villégier AS, Drouin C, Bizot JC, Marien M, Glowinski J, Colpaërt F, Tassin JP. (2003) Stimulation of postsynaptic alpha1b- and alpha2-adrenergic receptors amplifies dopamine-mediated locomotor activity in both rats and mice. Synapse50 (4): 277-84. [PMID:14556232]

64. Waugh DJ, Gaivin RJ, Damron DS, Murray PA, Perez DM. (1999) Binding, partial agonism, and potentiation of alpha(1)-adrenergic receptor function by benzodiazepines: A potential site of allosteric modulation. Journal of Pharmacology & Experimental Therapeutics291: 1164-1171. [PMID:10565838]

65. Williams TJ, Blue DR, Daniels DV, Davis B, Elworthy T, Gever JR, Kava MS, Morgans D, Padilla F, Tassa S, Vimont RL, Chapple CR, Chess-Williams R, Eglen RM, Clarke DE, Ford AP. (1999) In vitroalpha1-adrenoceptor pharmacology of Ro 70-0004 and RS-100329, novel alpha1A-adrenoceptor selective antagonists. Br. J. Pharmacol.127: 252-258. [PMID:10369480]

66. Yan M, Sun J, Bird PI, Liu DL, Grigg M, Lim YL. (2001) Alpha1A- and alpha1B-adrenoceptors are the major subtypes in human saphenous vein. Life Sci.68 (10): 1191-8. [PMID:11228103]

67. Yoshio R, Taniguchi T, Itoh H, Muramatsu I. (2001) Affinity of serotonin receptor antagonists and agonists to recombinant and native alpha1-adrenoceptor subtypes. Jpn J Pharmacol86: 189-195. [PMID:11459121]

68. Yun J, Gaivin RJ, McCune DF, Boongird A, Papay RS, Ying Z, Gonzalez-Cabrera PJ, Najm I, Perez DM. (2003) Gene expression profile of neurodegeneration induced by alpha1B-adrenergic receptor overactivity: NMDA/GABAA dysregulation and apoptosis. Brain126 (Pt 12): 2667-81. [PMID:12937073]

69. Yun J, Zuscik MJ, Gonzalez-Cabrera P, McCune DF, Ross SA, Gaivin R, Piascik MT, Perez DM. (2003) Gene expression profiling of alpha(1b)-adrenergic receptor-induced cardiac hypertrophy by oligonucleotide arrays. Cardiovasc. Res.57 (2): 443-55. [PMID:12566117]

70. Zhang H, Cotecchia S, Thomas SA, Tanoue A, Tsujimoto G, Faber JE. (2004) Gene deletion of dopamine beta-hydroxylase and alpha1-adrenoceptors demonstrates involvement of catecholamines in vascular remodeling. Am. J. Physiol. Heart Circ. Physiol.287 (5): H2106-14. [PMID:15231500]

71. Zhang H, Faber JE. (2001) Trophic effect of norepinephrine on arterial intima-media and adventitia is augmented by injury and mediated by different alpha1-adrenoceptor subtypes. Circulation Research89: 815-822. [PMID:11679412]

72. Zhang Q, Tan Y. (2011) Nerve growth factor augments neuronal responsiveness to noradrenaline in cultured dorsal root ganglion neurons of rats. Neuroscience193: 72-9. [PMID:21784134]

73. Zhang Y, Kolli T, Hivley R, Jaber L, Zhao FI, Yan J, Herness S. (2010) Characterization of the expression pattern of adrenergic receptors in rat taste buds. Neuroscience169 (3): 1421-37. [PMID:20478367]

74. Zuscik MJ, Chalothorn D, Hellard D, Deighan C, McGee A, Daly CJ, Waugh DJ, Ross SA, Gaivin RJ, Morehead AJ et al.. (2001) Hypotension, autonomic failure, and cardiac hypertrophy in transgenic mice overexpressing the alpha 1B-adrenergic receptor. J. Biol. Chem.276 (17): 13738-43. [PMID:11278430]

75. Zuscik MJ, Sands S, Ross SA, Waugh DJ, Gaivin RJ, Morilak D, Perez DM. (2000) Overexpression of the alpha1B-adrenergic receptor causes apoptotic neurodegeneration: multiple system atrophy. Nat. Med.6 (12): 1388-94. [PMID:11100125]

To cite this database page, please use the following:

Dianne Perez, Richard A. Bond, David B. Bylund, Douglas C. Eikenburg, J. Paul Hieble, Rebecca Hills, Kenneth P. Minneman, Sergio Parra.
Adrenoceptors: α1B-adrenoceptor. Last modified on 07/05/2014. Accessed on 21/10/2014. IUPHAR database (IUPHAR-DB), http://www.iuphar-db.org/DATABASE/ObjectDisplayForward?objectId=23.

Contact us | Print | Back to top | Help
Copyright © 2014 IUPHAR