Nomenclature: A2B receptor

Family: Adenosine receptors

Annotation status:  image of a green circle Annotated and expert reviewed. Please contact us if you can help with updates. 

Contents

Gene and Protein Information
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 332 17p12-p11.2 ADORA2B adenosine A2b receptor 54
Mouse 7 332 11 B2 Adora2b adenosine A2b receptor 45
Rat 7 332 10q23 Adora2b adenosine A2B receptor 60
Previous and Unofficial Names
A2b
adenosine A2B receptor
adenosine receptor A2b
A2b
AA2BR
A2BR
A2BAR
Database Links
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
GPCRDB
GeneCards
GenitoUrinary Development Molecular Anatomy Project
HomoloGene
Human Protein Reference Database
InterPro
KEGG Gene
OMIM
PharmGKB Gene
PhosphoSitePlus
Protein Ontology (PRO)
RefSeq Nucleotide
RefSeq Protein
TreeFam
UniGene Hs.
UniProtKB
Wikipedia
Natural/Endogenous Ligands
adenosine
Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
Bay60-6583 Hs Agonist 8.0 – 8.52 pKi 17
pKi 8.0 – 8.52 (Ki 1x10-8 – 3x10-9 M) [17]
2-hexynyl-NECA Hs Full agonist 6.6 pKi 63
pKi 6.6 [63]
Bay60-6583 Mm Agonist 6.48 pKi 41
pKi 6.48 (Ki 3.3x10-7 M) [41]
NECA Hs Full agonist 5.7 – 6.9 pKi 5,8,30,43,61,63,70
pKi 5.7 – 6.9 [5,8,30,43,61,63,70]
NECA Mm Agonist 5.72 pKi 44
pKi 5.72 (Ki 1.9x10-6 M) [44]
adenosine Rn Agonist 5.29 pKi 70
pKi 5.29 (Ki 5.1x10-6 M) [70]
Cl-IB-MECA Hs Agonist <5.0 pKi 42
pKi <5.0 (Ki >1x10-5 M) [42]
Cl-IB-MECA Mm Agonist <5.0 pKi 42
pKi <5.0 (Ki >1x10-5 M) [42]
TCPA Hs Agonist <5.0 pKi 6
pKi <5.0 (Ki >1x10-5 M) [6]
regadenoson Hs Agonist <5.0 pKi 29
pKi <5.0 (Ki >1x10-5 M) [29]
MRS3558 Hs Agonist <5.0 pKi 29
pKi <5.0 (Ki >1x10-5 M) [29]
CGS 21680 Rn Agonist <5.0 pKi 42
pKi <5.0 (Ki >1x10-5 M) [42]
adenosine Hs Agonist 4.82 pKi 23-24,70
pKi 4.82 (Ki 1.5x10-5 M) [23-24,70]
2-chloroadenosine Hs Full agonist 4.6 – 5.0 pKi 5,10,43
pKi 4.6 – 5.0 [5,10,43]
(R)-PIA Mm Agonist 4.72 pKi 9
pKi 4.72 (Ki 1.9x10-5 M) [9]
AB-NECA Hs Full agonist 4.7 pKi 43
pKi 4.7 [43]
(S)-PIA Hs Full agonist 4.2 – 5.2 pKi 43,63
pKi 4.2 – 5.2 [43,63]
(R)-PIA Hs Full agonist 3.8 – 5.5 pKi 5,10,30,43,63
pKi 3.8 – 5.5 [5,10,30,43,63]
IB-MECA Hs Full agonist 4.3 – 4.9 pKi 29,43
pKi 4.3 – 4.9 [29,43]
cyclopentyladenosine Hs Full agonist 4.5 – 4.7 pKi 29,43
pKi 4.5 – 4.7 [29,43]
CCPA Hs Full agonist 4.4 – 4.7 pKi 29,43
pKi 4.4 – 4.7 [29,43]
HEMADO Hs Agonist <4.52 pKi 40,67
pKi <4.52 (Ki >3x10-5 M) [40,67]
GS9667 Hs Agonist <4.3 pKi 19
pKi <4.3 (Ki >5x10-5 M) [19]
CGS 21680 Hs Full agonist 3.4 – 5.0 pKi 5,29,43
pKi 3.4 – 5.0 [5,29,43]
N(6)-cyclohexyladenosine Hs Agonist 3.8 pKi 10
pKi 3.8 (Ki 1.6x10-4 M) [10]
binodenoson Hs Agonist 3.37 pKi 29
pKi 3.37 (Ki 4.3x10-4 M) [29]
View species-specific agonist tables
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
XAC Hs Antagonist 7.9 pA2 1
pA2 7.9 [1]
CGS 15943 Hs Antagonist 7.8 pA2 1
pA2 7.8 [1]
[3H]OSIP339391 Hs Antagonist 9.8 pKd 61
pKd 9.8 [61]
[3H]MRS1754 Hs Antagonist 9.8 pKd 30
pKd 9.8 (Kd 1.58x10-10 M) [30]
[3H]PSB603 Mm Antagonist 9.5 pKd 7
pKd 9.5 [7]
PSB603 Mm Antagonist 9.45 pKd 7
pKd 9.45 (Kd 3.51x10-10 M) [7]
[3H]PSB603 Hs Antagonist 9.4 pKd 7
pKd 9.4 [7]
PSB603 Hs Antagonist 9.39 pKd 7
pKd 9.39 (Kd 4.03x10-10 M) [7]
[125I]ABOPX Hs Antagonist 7.4 pKd 43
pKd 7.4 [43]
[3H]DPCPX Hs Antagonist 7.4 pKd 61
pKd 7.4 [61]
[3H]ZM 241385 Hs Antagonist 6.5 – 7.9 pKd 21,31,61
pKd 6.5 – 7.9 [21,31,61]
PSB-0788 Hs Antagonist 9.4 pKi 7
pKi 9.4 [7]
OSIP339391 Hs Antagonist 9.3 pKi 61
pKi 9.3 [61]
PSB603 Hs Antagonist 9.26 pKi 7
pKi 9.26 (Ki 5.53x10-10 M) [7]
MRS1706 ? Antagonist 8.86 pKi 38
pKi 8.86 [38]
MRS1754 Hs Antagonist 8.8 pKi 30,38
pKi 8.8 [30,38]
ATL802 Hs Antagonist 8.63 pKi 38
pKi 8.63 (Ki 2.36x10-9 M) [38]
MRS1754 Mm Antagonist 8.47 pKi 2
pKi 8.47 (Ki 3.39x10-9 M) [2]
AS101 Hs Antagonist 8.4 pKi 63
pKi 8.4 [63]
AS99 Hs Antagonist 8.4 pKi 63
pKi 8.4 [63]
MRE 2029F20 Hs Antagonist 8.26 – 8.5 pKi 3,63
pKi 8.26 – 8.5 [3,63]
AS100 Hs Antagonist 8.2 pKi 63
pKi 8.2 [63]
AS70 Hs Antagonist 8.1 pKi 63
pKi 8.1 [63]
ATL802 Mm Antagonist 8.07 pKi 38
pKi 8.07 (Ki 8.58x10-9 M) [38]
CGS 15943 Mm Antagonist 8.04 pKi 2
pKi 8.04 (Ki 9.07x10-9 M) [2]
AS96 Hs Antagonist 8.0 pKi 63
pKi 8.0 [63]
DEPX Hs Antagonist 7.9 pKi 43
pKi 7.9 [43]
XAC Hs Antagonist 6.9 – 8.8 pKi 5,30-31,39,43,61
pKi 6.9 – 8.8 [5,30-31,39,43,61]
MRS1754 Rn Antagonist 7.78 – 7.89 pKi 22,38
pKi 7.78 – 7.89 (Ki 1.66x10-8 – 1.28x10-8 M) [22,38]
AS94 Hs Antagonist 7.8 pKi 63
pKi 7.8 [63]
LAS38096 Hs Antagonist 7.77 pKi 15,65
pKi 7.77 (Ki 1.7x10-8 M) [15,65]
AS95 Hs Antagonist 7.7 pKi 63
pKi 7.7 [63]
AS16 Hs Antagonist 7.7 pKi 63
pKi 7.7 [63]
CVT-6883 Hs Antagonist 7.66 pKi 18
pKi 7.66 (Ki 2.2x10-8 M) [18]
AS74 Hs Antagonist 7.6 pKi 63
pKi 7.6 [63]
ZM-241385 Hs Antagonist 6.8 – 8.2 pKi 5,30,43,61
pKi 6.8 – 8.2 [5,30,43,61]
I-ABOPX Hs Antagonist 7.4 pKi 43
pKi 7.4 [43]
BW-A1433 Hs Antagonist 7.3 pKi 43
pKi 7.3 [43]
CPX Hs Antagonist 7.3 pKi 30,43
pKi 7.3 [30,43]
XCC Hs Antagonist 7.3 pKi 30
pKi 7.3 [30]
PSB1115 Hs Antagonist 7.27 pKi 27
pKi 7.27 (Ki 5.34x10-8 M) [27]
vipadenant Hs Antagonist 7.2 pKi 26
pKi 7.2 (Ki 6.3x10-8 M) [26]
DPCPX Hs Antagonist 6.9 – 7.3 pKi 37,52,61,68
pKi 6.9 – 7.3 [37,52,61,68]
DPCPX Mm Antagonist 7.06 pKi 2
pKi 7.06 (Ki 8.62x10-8 M) [2]
tonapofylline Hs Antagonist 7.05 pKi 35
pKi 7.05 (Ki 9x10-8 M) [35]
CGS 15943 Hs Antagonist 6.0 – 8.1 pKi 2,30-31,39,53,61
pKi 6.0 – 8.1 [2,30-31,39,53,61]
PSB36 Hs Antagonist 6.73 pKi 36
pKi 6.73 (Ki 1.87x10-7 M) [36]
DPCPX Rn Antagonist 6.7 – 6.73 pKi 22,37
pKi 6.7 – 6.73 (Ki 2x10-7 – 1.86x10-7 M) [22,37]
rolofylline Hs Antagonist 6.53 pKi 35
pKi 6.53 (Ki 2.96x10-7 M) [35]
LUF5981 Hs Antagonist <6.52 pKi 33
pKi <6.52 (Ki >3x10-7 M) [33]
MRS1220 Hs Antagonist 6.5 pKi 61
pKi 6.5 [61]
ST-1535 Hs Antagonist 6.45 pKi 47
pKi 6.45 (Ki 3.523x10-7 M) [47]
DAX Hs Antagonist 6.4 pKi 30
pKi 6.4 [30]
IPDX Hs Antagonist 6.3 pKi 21
pKi 6.3 [21]
SLV320 Rn Antagonist 6.3 pKi 32
pKi 6.3 (Ki 5.01x10-7 M) [32]
SCH 58261 Hs Antagonist 6.0 – 6.5 pKi 5,29
pKi 6.0 – 6.5 [5,29]
KF26777 Hs Antagonist 6.21 pKi 55
pKi 6.21 (Ki 6.2x10-7 M) [55]
FK-453 Hs Antagonist 6.01 pKi 29
pKi 6.01 (Ki 9.8x10-7 M) [29]
preladenant Hs Antagonist <6.0 pKi 48
pKi <6.0 (Ki >1x10-6 M) [48]
alloxazine Hs Antagonist 5.7 – 6.3 pKi 30-31
pKi 5.7 – 6.3 [30-31]
MRE 3008F20 Hs Antagonist 5.7 – 5.8 pKi 29,63-64
pKi 5.7 – 5.8 [29,63-64]
PSB-11 Mm Antagonist 5.68 pKi 49
pKi 5.68 (Ki 2.1x10-6 M) [49]
PSB-10 Mm Antagonist 5.68 pKi 49
pKi 5.68 (Ki 2.1x10-6 M) [49]
SLV320 Hs Antagonist 5.4 pKi 32
pKi 5.4 (Ki 3.981x10-6 M) [32]
MSX-2 Hs Antagonist 5.0 – 5.54 pKi 57,59
pKi 5.0 – 5.54 (Ki 1x10-5 – 2.9x10-6 M) [57,59]
theophylline Mm Antagonist 5.25 pKi 2
pKi 5.25 (Ki 5.63x10-6 M) [2]
CSC Rn Antagonist 5.09 pKi 12
pKi 5.09 (Ki 8.2x10-6 M) [12]
MRS1191 Hs Antagonist <5.0 pKi 42
pKi <5.0 (Ki >1x10-5 M) [42]
istradefylline Hs Antagonist <5.0 pKi 25
pKi <5.0 (Ki >1x10-5 M) [25]
MRS1523 Hs Antagonist <5.0 pKi 42
pKi <5.0 (Ki >1x10-5 M) [42]
MRS1523 Mm Antagonist <5.0 pKi 42
pKi <5.0 (Ki >1x10-5 M) [42]
SCH442416 Hs Antagonist <5.0 pKi 29
pKi <5.0 (Ki >1x10-5 M) [29]
caffeine Mm Antagonist 4.89 pKi 9
pKi 4.89 (Ki 1.3x10-5 M) [9]
caffeine Hs Antagonist 4.47 – 4.98 pKi 4,7,37
pKi 4.47 – 4.98 (Ki 3.38x10-5 – 1.04x10-5 M) [4,7,37]
theophylline Hs Antagonist 4.13 – 5.04 pKi 4,21,37,63
pKi 4.13 – 5.04 (Ki 7.4x10-5 – 9.07x10-6 M) [4,21,37,63]
caffeine Rn Antagonist 4.52 pKi 9
pKi 4.52 (Ki 3x10-5 M) [9]
View species-specific antagonist tables
Antagonist Comments
pKi values for istradefylline relating to human targets are derived from unpublished data (Müller et al).
Primary Transduction Mechanisms
Transducer Effector/Response
Gs family Adenylate cyclase stimulation
References:  20,43
Secondary Transduction Mechanisms
Transducer Effector/Response
Gq/G11 family Phospholipase C stimulation
References:  20,43
Tissue Distribution
Low levels found in the brain, heart, kidney and lung.
Species:  Human
Technique:  Northern blotting.
References:  56
Jejunum, ileum, colon.
Species:  Human
Technique:  RT-PCR.
References:  11
Bronchial smooth muscle cells.
Species:  Human
Technique:  RT-PCR.
References:  72
Large intestine, cecum, urinary bladder.
Species:  Human
Technique:  Northern blotting.
References:  60
Bone marrow-derived mast cells.
Species:  Mouse
Technique:  in situ hybridisation.
References:  45
Kidney: cortical tubular structures.
Species:  Mouse
Technique:  RNAse protection and RT-PCR.
References:  66
Hypophyseal pars tuberalis.
Species:  Rat
Technique:  in situ hybridisation.
References:  60
Kidney: cortical tubular structures.
Species:  Rat
Technique:  RNAse protection and RT-PCR.
References:  66
Expression Datasets

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays
Measurement of cAMP levels in HEK 293 cells transfected with the human A2B receptor.
Species:  Human
Tissue:  HEK 293 cells.
Response measured:  Stimulation of cAMP accumulation.
References:  43
Measurement of IP3 levels in HEK 293 cells transfected with the human A2B receptor.
Species:  Human
Tissue:  HEK 293 cells.
Response measured:  PTX-insensitive increase in IP3 levels.
References:  43
Measurement of cAMP levels in COS-6M cells transfected with the rat A2B receptor.
Species:  Rat
Tissue:  COS-6M cells.
Response measured:  Stimulation of cAMP accumulation.
References:  60
Measurement of cAMP levels in CHO cells transfected with the human A2B receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Stimulation of cAMP accumulation.
References:  8,54
Measurement of extracellular-regulated kinase 1/2 (ERK1/2) phosphorylation in CHO cells transfected with the human A1 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Phosphorylation of ERK1/2.
References:  58
Measurement of IL-6 and MCP-1 expression in human bronchial smooth muscle cells endogenously expressing the A2B receptor.
Species:  Human
Tissue:  Bronchial smooth muscle cells.
Response measured:  IL-6 and MCP-1 production via cAMP accumulation.
References:  72
Measurement of Il-8 production by the HMC-1 mast cell line endogenously expressing the A2B receptor.
Species:  Human
Tissue:  HMC-1 mast cell line.
Response measured:  Il-8 production.
References:  20,46
Measurement of NF-κB activity in CHO cells transfected with the human A2B receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Inhibition of NF-κB activity via cAMP.
References: 
Physiological Functions
Regulation of coronary flow.
Species:  Mouse
Tissue:  Heart.
References:  62
Vasodilation.
Species:  Human
Tissue:  Small coronary arteries.
References:  34
Vasoconstriction.
Species:  Human
Tissue:  Chorionic vessels.
References:  13
Inhibition of macrophage proliferation.
Species:  Mouse
Tissue:  Bone marrow-derived macrophages.
References:  69
Cytokine production.
Species:  Mouse
Tissue:  Macrophages.
References:  51
Cytokine production.
Species:  Human
Tissue:  Bronchial smooth muscle cells.
References:  72
Inhibition of cell proliferation.
Species:  Human
Tissue:  Glomerular mesangial cells.
References:  14
Inhibition of cell proliferation.
Species:  Rat
Tissue:  Glomerular mesangial cells.
References:  14
Coronary vasodilation.
Species:  Rat
Tissue:  Heart.
References:  28
Regulation of cerebral blood flow (vasodilation).
Species:  Rat
Tissue:  Cerebral cortex.
References:  50
Physiological Consequences of Altering Gene Expression
A2B receptor knock-out mice show increased leukocyte adhesion to vascular endothelium and increased inflammation.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  71
A2B receptor KO mice show increased vascular leakiness.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  16
Phenotypes, Alleles and Disease Models Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Adora2btm1Till Adora2btm1Till/Adora2btm1Till
B6.129P2-Adora2b
MGI:99403  MP:0009858 abnormal cellular extravasation PMID: 17200408 
Adora2btm1Kra Adora2btm1Kra/Adora2btm1Kra
involves: 129/Sv * C57BL/6J
MGI:99403  MP:0008713 abnormal cytokine level PMID: 16823489 
Adora2btm1Dgen Adora2btm1Dgen/Adora2btm1Dgen
B6.129P2-Adora2b
MGI:99403  MP:0002376 abnormal dendritic cell physiology PMID: 18559975 
Adora2btm1Kra Adora2btm1Kra/Adora2btm1Kra
involves: 129/Sv * C57BL/6J
MGI:99403  MP:0001845 abnormal inflammatory response PMID: 16823489 
Adora2btm1Kra Adora2btm1Kra/Adora2btm1Kra
involves: 129/Sv * C57BL/6J
MGI:99403  MP:0008751 abnormal interleukin level PMID: 16823489 
Adora2btm1Kra Adora2btm1Kra/Adora2btm1Kra
involves: 129/Sv * C57BL/6J
MGI:99403  MP:0003628 abnormal leukocyte adhesion PMID: 16823489 
Adora2btm1Kra Adora2btm1Kra/Adora2btm1Kra
involves: 129/Sv * C57BL/6J
MGI:99403  MP:0003156 abnormal leukocyte migration PMID: 16823489 
Adora2btm1Kra Adora2btm1Kra/Adora2btm1Kra
involves: 129/Sv * C57BL/6J
MGI:99403  MP:0003627 abnormal leukocyte tethering or rolling PMID: 16823489 
Adora2btm1Dgen Adora2btm1Dgen/Adora2btm1Dgen
B6.129P2-Adora2b
MGI:99403  MP:0001379 abnormal penile erection function PMID: 18340377 
Adora2btm1Dgen Adora2btm1Dgen/Adora2btm1Dgen
B6.129P2-Adora2b
MGI:99403  MP:0005164 abnormal response to injury PMID: 18056839 
Adora2btm1Kra Adora2btm1Kra/Adora2btm1Kra
involves: 129/Sv * C57BL/6J
MGI:99403  MP:0008752 abnormal tumor necrosis factor level PMID: 16823489 
Adora2btm1Dgen Adora2btm1Dgen/Adora2btm1Dgen
involves: 129P2/OlaHsd
MGI:99403  MP:0000343 altered response to myocardial infarction PMID: 17353435 
Adora2btm1Till Adora2btm1Till/Adora2btm1Till
B6.129P2-Adora2b
MGI:99403  MP:0005534 decreased body temperature PMID: 17200408 
Adora2btm1Kra Adora2btm1Kra/Adora2btm1Kra
involves: 129/Sv * C57BL/6J
MGI:99403  MP:0008661 decreased interleukin-10 secretion PMID: 16823489 
Adora2btm1Dgen Adora2btm1Dgen/Adora2btm1Dgen
B6.129P2-Adora2b
MGI:99403  MP:0008661 decreased interleukin-10 secretion PMID: 17525287 
Adora2btm1Till Adora2btm1Till/Adora2btm1Till
B6.129P2-Adora2b
MGI:99403  MP:0008874 decreased physiological sensitivity to xenobiotic PMID: 17200408 
Adora2btm1Kra Adora2btm1Kra/Adora2btm1Kra
involves: 129/Sv * C57BL/6J
MGI:99403  MP:0008596 increased circulating interleukin-6 level PMID: 16823489 
Adora2btm1Till Adora2btm1Till/Adora2btm1Till
B6.129P2-Adora2b
MGI:99403  MP:0008705 increased interleukin-6 secretion PMID: 17200408 
Adora2btm1Till Adora2btm1Till/Adora2btm1Till
B6.129P2-Adora2b
MGI:99403  MP:0009763 increased sensitivity to induced morbidity/mortality PMID: 17200408 
Adora2btm1Till Adora2btm1Till/Adora2btm1Till
B6.129P2-Adora2b
MGI:99403  MP:0005596 increased susceptibility to type I hypersensitivity reaction PMID: 17200408 
Adora2btm1Dgen Adora2btm1Dgen/Adora2btm1Dgen
B6.129P2-Adora2b
MGI:99403  MP:0003070 increased vascular permeability PMID: 18056839 
General Comments
For a review of the effects of adenosine receptor knockout on nervous system function see reference [24].
Available Assays
DiscoveRx PathHunter® CHO-K1 ADORA2B β-Arrestin Cell Line (Cat no. 93-0272C2) more info

REFERENCES

1. Alexander SP, Cooper J, Shine J, Hill SJ. (1996) Characterization of the human brain putative A2B adenosine receptor expressed in Chinese hamster ovary (CHO.A2B4) cells. Br. J. Pharmacol.119 (6): 1286-90. [PMID:8937736]

2. Auchampach JA, Kreckler LM, Wan TC, Maas JE, van der Hoeven D, Gizewski E, Narayanan J, Maas GE. (2009) Characterization of the A2B adenosine receptor from mouse, rabbit, and dog. J. Pharmacol. Exp. Ther.329 (1): 2-13. [PMID:19141710]

3. Baraldi PG, Tabrizi MA, Preti D, Bovero A, Romagnoli R, Fruttarolo F, Zaid NA, Moorman AR, Varani K, Gessi S et al.. (2004) Design, synthesis, and biological evaluation of new 8-heterocyclic xanthine derivatives as highly potent and selective human A2B adenosine receptor antagonists. J. Med. Chem.47 (6): 1434-47. [PMID:14998332]

4. Bertarelli DC, Diekmann M, Hayallah AM, Rüsing D, Iqbal J, Preiss B, Verspohl EJ, Müller CE. (2006) Characterization of human and rodent native and recombinant adenosine A(2B) receptors by radioligand binding studies. Purinergic Signal.2 (3): 559-71. [PMID:18404493]

5. Beukers MW, den Dulk H, van Tilburg EW, Brouwer J, Ijzerman AP. (2000) Why are A(2B) receptors low-affinity adenosine receptors? Mutation of Asn273 to Tyr increases affinity of human A(2B) receptor for 2-(1-Hexynyl)adenosine. Mol Pharmacol58: 1349-1356. [PMID:11093773]

6. Beukers MW, Klaassen CH, De Grip WJ, Verzijl D, Timmerman H, Leurs R. (1997) Heterologous expression of rat epitope-tagged histamine H2 receptors in insect Sf9 cells. Br J Pharmacol122: 867-874. [PMID:9384502]

7. Borrmann T, Hinz S, Bertarelli DC, Li W, Florin NC, Scheiff AB, Müller CE. (2009) 1-alkyl-8-(piperazine-1-sulfonyl)phenylxanthines: development and characterization of adenosine A2B receptor antagonists and a new radioligand with subnanomolar affinity and subtype specificity. J. Med. Chem.52 (13): 3994-4006. [PMID:19569717]

8. Bosch MP, Campos F, Niubó I, Rosell G, Díaz JL, Brea J, Loza MI, Guerrero A. (2004) Synthesis and biological activity of new potential agonists for the human adenosine A2A receptor. J Med Chem47: 4041-4053. [PMID:15267242]

9. Brackett LE, Daly JW. (1994) Functional characterization of the A2b adenosine receptor in NIH 3T3 fibroblasts. Biochem. Pharmacol.47 (5): 801-14. [PMID:8135856]

10. Bruns RF. (1980) Adenosine receptor activation in human fibroblasts: nucleoside agonists and antagonists. Can. J. Physiol. Pharmacol.58 (6): 673-91. [PMID:6253037]

11. Christofi FL, Zhang H, Yu JG, Guzman J, Xue J, Kim M, Wang YZ, Cooke HJ. (2001) Differential gene expression of adenosine A1, A2a, A2b, and A3 receptors in the human enteric nervous system. J Comp Neurol439: 46-64. [PMID:11579381]

12. Daly JW, Jacobson KA. (1995) Adenosine receptors: selective agonists and antagonists. in Adenosine and adenine nucleotides: from molecular biology to integrative physiology. Edited by Belardinelli L, Pelleg A Kluwer Academic Publishers. 157-166 [ISBN:0792331907]

13. Donoso MV, López R, Miranda R, Briones R, Huidobro-Toro JP. (2005) A2B adenosine receptor mediates human chorionic vasoconstriction and signals through arachidonic acid cascade. Am J Physiol Heart Circ Physiol288: H2439-H2449. [PMID:15637124]

14. Dubey RK, Gillespie DG, Mi Z, Jackson EK. (2005) Adenosine inhibits PDGF-induced growth of human glomerular mesangial cells via A(2B) receptors. Hypertension46: 628-634. [PMID:16103269]

15. Eastwood P, Gonzalez J, Paredes S, Nueda A, Domenech T, Alberti J, Vidal B. (2010) Discovery of N-(5,6-diarylpyridin-2-yl)amide derivatives as potent and selective A(2B) adenosine receptor antagonists. Bioorg. Med. Chem. Lett.20 (5): 1697-700. [PMID:20137946]

16. Eckle T, Faigle M, Grenz A, Laucher S, Thompson LF, Eltzschig HK. (2008) A2B adenosine receptor dampens hypoxia-induced vascular leak. Blood111 (4): 2024-35. [PMID:18056839]

17. Eckle T, Krahn T, Grenz A, Köhler D, Mittelbronn M, Ledent C, Jacobson MA, Osswald H, Thompson LF, Unertl K et al.. (2007) Cardioprotection by ecto-5'-nucleotidase (CD73) and A2B adenosine receptors. Circulation115 (12): 1581-90. [PMID:17353435]

18. Elzein E, Kalla RV, Li X, Perry T, Gimbel A, Zeng D, Lustig D, Leung K, Zablocki J. (2008) Discovery of a novel A2B adenosine receptor antagonist as a clinical candidate for chronic inflammatory airway diseases. J. Med. Chem.51 (7): 2267-78. [PMID:18321039]

19. Elzein E, Zablocki J. (2008) A1 adenosine receptor agonists and their potential therapeutic applications. Expert Opin Investig Drugs17 (12): 1901-10. [PMID:19012505]

20. Feoktistov I, Biaggioni I. (1995) Adenosine A2b receptors evoke interleukin-8 secretion in human mast cells. An enprofylline-sensitive mechanism with implications for asthma. J Clin Invest96: 1979-1986. [PMID:7560091]

21. Feoktistov I, Garland EM, Goldstein AE, Zeng D, Belardinelli L, Wells JN, Biaggioni I. (2001) Inhibition of human mast cell activation with the novel selective adenosine A(2B) receptor antagonist 3-isobutyl-8-pyrrolidinoxanthine (IPDX)(2). Biochem Pharmacol62: 1163-1173. [PMID:11705449]

22. Fozard JR, Baur F, Wolber C. (2003) Antagonist pharmacology of adenosine A2B receptors from rat, guinea pig and dog. Eur. J. Pharmacol.475 (1-3): 79-84. [PMID:12954362]

23. Fredholm BB. (1995) Adenosine, adenosine receptors and the actions of caffeine. Pharmacol. Toxicol.76: 93-101. [PMID:7746802]

24. Fredholm BB, Chen JF, Masino SA, Vaugeois JM. (2005) Actions of adenosine at its receptors in the CNS: insights from knockouts and drugs. Annu Rev Pharmacol Toxicol45: 385-412. [PMID:15822182]

25. Fredholm BB, IJzerman AP, Jacobson KA, Linden J, Müller CE. (2011) International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors--an update. Pharmacol. Rev.63 (1): 1-34. [PMID:21303899]

26. Gillespie RJ, Bamford SJ, Botting R, Comer M, Denny S, Gaur S, Griffin M, Jordan AM, Knight AR, Lerpiniere J et al.. (2009) Antagonists of the human A(2A) adenosine receptor. 4. Design, synthesis, and preclinical evaluation of 7-aryltriazolo[4,5-d]pyrimidines. J. Med. Chem.52 (1): 33-47. [PMID:19072055]

27. Hayallah AM, Sandoval-Ramírez J, Reith U, Schobert U, Preiss B, Schumacher B, Daly JW, Müller CE. (2002) 1,8-disubstituted xanthine derivatives: synthesis of potent A2B-selective adenosine receptor antagonists. J. Med. Chem.45 (7): 1500-10. [PMID:11906291]

28. Hinschen AK, Rose'Meyer RB, Headrick JP. (2003) Adenosine receptor subtypes mediating coronary vasodilation in rat hearts. J Cardiovasc Pharmacol41: 73-80. [PMID:12500024]

29. Jacobson KA, Gao ZG. (2006) Adenosine receptors as therapeutic targets. Nat Rev Drug Discov5 (3): 247-64. [PMID:16518376]

30. Ji X, Kim YC, Ahern DG, Linden J, Jacobson KA. (2001) [3H]MRS 1754, a selective antagonist radioligand for A(2B) adenosine receptors. Biochem Pharmacol61: 657-663. [PMID:11266650]

31. Ji XD, Jacobson KA. (1999) Use of the triazolotriazine [3H]ZM 241385 as a radioligand at recombinant human A2B adenosine receptors. Drug Des. Discov.16: 217-226. [PMID:10624567]

32. Kalk P, Eggert B, Relle K, Godes M, Heiden S, Sharkovska Y, Fischer Y, Ziegler D, Bielenberg GW, Hocher B. (2007) The adenosine A1 receptor antagonist SLV320 reduces myocardial fibrosis in rats with 5/6 nephrectomy without affecting blood pressure. Br. J. Pharmacol.151 (7): 1025-32. [PMID:17558436]

33. Kase H, Aoyama S, Ichimura M, Ikeda K, Ishii A, Kanda T, Koga K, Koike N, Kurokawa M, Kuwana Y et al.. (2003) Progress in pursuit of therapeutic A2A antagonists: the adenosine A2A receptor selective antagonist KW6002: research and development toward a novel nondopaminergic therapy for Parkinson's disease. Neurology61 (11 Suppl 6): S97-100. [PMID:14663020]

34. Kemp BK, Cocks TM. (1999) Adenosine mediates relaxation of human small resistance-like coronary arteries via A2B receptors. Br J Pharmacol126: 1796-1800. [PMID:10372822]

35. Kiesman WF, Zhao J, Conlon PR, Dowling JE, Petter RC, Lutterodt F, Jin X, Smits G, Fure M, Jayaraj A et al.. (2006) Potent and orally bioavailable 8-bicyclo[2.2.2]octylxanthines as adenosine A1 receptor antagonists. J. Med. Chem.49 (24): 7119-31. [PMID:17125264]

36. Kiesman WF, Zhao J, Conlon PR, Petter RC, Jin X, Smits G, Lutterodt F, Sullivan GW, Linden J. (2006) Norbornyllactone-substituted xanthines as adenosine A(1) receptor antagonists. Bioorg. Med. Chem.14 (11): 3654-61. [PMID:16458010]

37. Kim SA, Marshall MA, Melman N, Kim HS, Müller CE, Linden J, Jacobson KA. (2002) Structure-activity relationships at human and rat A2B adenosine receptors of xanthine derivatives substituted at the 1-, 3-, 7-, and 8-positions. J. Med. Chem.45 (11): 2131-8. [PMID:12014951]

38. Kim YC, Ji X, Melman N, Linden J, Jacobson KA. (2000) Anilide derivatives of an 8-phenylxanthine carboxylic congener are highly potent and selective antagonists at human A(2B) adenosine receptors. J. Med. Chem.43 (6): 1165-72. [PMID:10737749]

39. Klotz K-N, Hessling J, Hegler J, Owman C, Kull B, Fredholm BB, Lohse MJ. (1998) Comparative pharmacology of human adenosine receptor subtypes characterization of stably transfected receptors in CHO cells. Naunyn Schmiedebergs Arch. Pharmacol.357: 1-9. [PMID:9459566]

40. Klotz KN, Falgner N, Kachler S, Lambertucci C, Vittori S, Volpini R, Cristalli G. (2007) [3H]HEMADO--a novel tritiated agonist selective for the human adenosine A3 receptor. Eur. J. Pharmacol.556 (1-3): 14-8. [PMID:17126322]

41. Kuno A, Critz SD, Cui L, Solodushko V, Yang XM, Krahn T, Albrecht B, Philipp S, Cohen MV, Downey JM. (2007) Protein kinase C protects preconditioned rabbit hearts by increasing sensitivity of adenosine A2b-dependent signaling during early reperfusion. J. Mol. Cell. Cardiol.43 (3): 262-71. [PMID:17632123]

42. Liang BT Urso R Sambraski E, Jacobson KA. (2010) Adenosine A3 receptors in muscle protection. in Adenosine Receptors from Cell Biology to Pharmacology Edited by Borea P Springer. 257-280 [ISBN:9789048131440]

43. Linden J, Thai T, Figler H, Jin X, Robeva AS. (1999) Characterization of human A(2B) adenosine receptors: radioligand binding, western blotting, and coupling to G(q) in human embryonic kidney 293 cells and HMC-1 mast cells. Mol. Pharmacol.56: 705-713. [PMID:10496952]

44. Müller CE, Stein B. (1996) Adenosine receptor antagonists: structures and potential therapeutic applications. Curr Pharm Des2: 501-530.

45. Marquardt DL, Walker LL, Heinemann S. (1994) Cloning of two adenosine receptor subtypes from mouse bone marrow-derived mast cells. J. Immunol.152: 4508-4515. [PMID:8157966]

46. Meade CJ, Worrall L, Hayes D, Protin U. (2002) Induction of interleukin 8 release from the HMC-1 mast cell line: synergy between stem cell factor and activators of the adenosine A(2b) receptor. Biochem Pharmacol64: 317-325. [PMID:12123753]

47. Minetti P, Tinti MO, Carminati P, Castorina M, Di Cesare MA, Di Serio S, Gallo G, Ghirardi O, Giorgi F, Giorgi L et al.. (2005) 2-n-Butyl-9-methyl-8-[1,2,3]triazol-2-yl-9H-purin-6-ylamine and analogues as A2A adenosine receptor antagonists. Design, synthesis, and pharmacological characterization. J. Med. Chem.48 (22): 6887-96. [PMID:16250647]

48. Müller CE, Ferré S. (2007) Blocking striatal adenosine A2A receptors: a new strategy for basal ganglia disorders. Recent Pat CNS Drug Discov2 (1): 1-21. [PMID:18221214]

49. Müller CE, Thorand M, Qurishi R, Diekmann M, Jacobson KA, Padgett WL, Daly JW. (2002) Imidazo[2,1-i]purin-5-ones and related tricyclic water-soluble purine derivatives: potent A(2A)- and A(3)-adenosine receptor antagonists. J. Med. Chem.45 (16): 3440-50. [PMID:12139454]

50. Ngai AC, Coyne EF, Meno JR, West GA, Winn HR. (2001) Receptor subtypes mediating adenosine-induced dilation of cerebral arterioles. Am J Physiol Heart Circ Physiol280: H2329-H2335. [PMID:11299238]

51. Németh ZH, Lutz CS, Csóka B, Deitch EA, Leibovich SJ, Gause WC, Tone M, Pacher P, Vizi ES, Haskó G. (2005) Adenosine augments IL-10 production by macrophages through an A2B receptor-mediated posttranscriptional mechanism. J Immunol175: 8260-8270. [PMID:16339566]

52. Obiefuna PC, Batra VK, Nadeem A, Borron P, Wilson CN, Mustafa SJ. (2005) A novel A1 adenosine receptor antagonist, L-97-1 [3-[2-(4-aminophenyl)-ethyl]-8-benzyl-7-{2-ethyl-(2-hydroxy-ethyl)-amino]-ethyl}-1-propyl-3,7-dihydro-purine-2,6-dione], reduces allergic responses to house dust mite in an allergic rabbit model of asthma. J Pharmacol Exp Ther315: 329-336. [PMID:16020631]

53. Ongini E, Dionisotti S, Gessi S, Irenius E, Fredholm BB. (1999) Comparison of CGS 15943, ZM 241385 and SCH 58261 as antagonists at human adenosine receptors. Naunyn Schmiedebergs Arch. Pharmacol.359: 7-10. [PMID:9933143]

54. Pierce KD, Furlong TJ, Selbie LA, Shine J. (1992) Molecular cloning and expression of an adenosine A2b receptors from human brain. Biochem. Biophys. Res. Commun.187: 86-93. [PMID:1325798]

55. Saki M, Tsumuki H, Nonaka H, Shimada J, Ichimura M. (2002) KF26777 (2-(4-bromophenyl)-7,8-dihydro-4-propyl-1H-imidazo[2,1-i]purin-5(4H)-one dihydrochloride), a new potent and selective adenosine A3 receptor antagonist. Eur. J. Pharmacol.444 (3): 133-41. [PMID:12063073]

56. Salvatore CA, Jacobson MA, Taylor HE, Linden J, Johnson RG. (1993) Molecular cloning and characterization of the human A3 adenosine receptor. Proc. Natl. Acad. Sci. U.S.A.90: 10365-10369. [PMID:8234299]

57. Sauer R, Maurinsh J, Reith U, Fülle F, Klotz KN, Müller CE. (2000) Water-soluble phosphate prodrugs of 1-propargyl-8-styrylxanthine derivatives, A(2A)-selective adenosine receptor antagonists. J. Med. Chem.43 (3): 440-8. [PMID:10669571]

58. Schulte G, Fredholm BB. (2000) Human adenosine A(1), A(2A), A(2B), and A(3) receptors expressed in Chinese hamster ovary cells all mediate the phosphorylation of extracellular-regulated kinase 1/2. Mol Pharmacol58: 477-482. [PMID:10953039]

59. Solinas M, Ferré S, Antoniou K, Quarta D, Justinova Z, Hockemeyer J, Pappas LA, Segal PN, Wertheim C, Müller CE et al.. (2005) Involvement of adenosine A1 receptors in the discriminative-stimulus effects of caffeine in rats. Psychopharmacology (Berl.)179 (3): 576-86. [PMID:15696333]

60. Stehle JH, Rivkees SA, Lee JJ, Weaver DR, Deeds JD, Reppert SM. (1992) Molecular cloning and expression of the cDNA for a novel A2-adenosine receptor subtype. Mol. Endocrinol.6: 384-393. [PMID:1584214]

61. Stewart M, Steinig AG, Ma C, Song JP, McKibben B, Castelhano AL, MacLennan SJ. (2004) [3H]OSIP339391, a selective, novel, and high affinity antagonist radioligand for adenosine A2B receptors. Biochem Pharmacol68: 305-312. [PMID:15194002]

62. Talukder MA, Morrison RR, Ledent C, Mustafa SJ. (2003) Endogenous adenosine increases coronary flow by activation of both A2A and A2B receptors in mice. J Cardiovasc Pharmacol41: 562-570. [PMID:12658057]

63. Varani K, Gessi S, Merighi S, Vincenzi F, Cattabriga E, Benini A, Klotz KN, Baraldi PG, Tabrizi MA, Lennan SM, Leung E, Borea PA. (2005) Pharmacological characterization of novel adenosine ligands in recombinant and native human A2B receptors. Biochem Pharmacol70: 1601-1612. [PMID:16219300]

64. Varani K, Merighi S, Gessi S, Klotz KN, Leung E, Baraldi PG, Cacciari B, Romagnoli R, Spalluto G, Borea PA. (2000) [(3)H]MRE 3008F20: a novel antagonist radioligand for the pharmacological and biochemical characterization of human A(3) adenosine receptors. Mol Pharmacol57: 968-975. [PMID:10779381]

65. Vidal B, Nueda A, Esteve C, Domenech T, Benito S, Reinoso RF, Pont M, Calbet M, López R, Cadavid MI et al.. (2007) Discovery and characterization of 4'-(2-furyl)-N-pyridin-3-yl-4,5'-bipyrimidin-2'-amine (LAS38096), a potent, selective, and efficacious A2B adenosine receptor antagonist. J. Med. Chem.50 (11): 2732-6. [PMID:17469811]

66. Vitzthum H, Weiss B, Bachleitner W, Krämer BK, Kurtz A. (2004) Gene expression of adenosine receptors along the nephron. Kidney Int65: 1180-1190. [PMID:15086457]

67. Volpini R, Costanzi S, Lambertucci C, Taffi S, Vittori S, Klotz KN, Cristalli G. (2002) N(6)-alkyl-2-alkynyl derivatives of adenosine as potent and selective agonists at the human adenosine A(3) receptor and a starting point for searching A(2B) ligands. J Med Chem45: 3271-3279. [PMID:12109910]

68. Weyler S, Fülle F, Diekmann M, Schumacher B, Hinz S, Klotz KN, Müller CE. (2006) Improving potency, selectivity, and water solubility of adenosine A1 receptor antagonists: xanthines modified at position 3 and related pyrimido[1,2,3-cd]purinediones. ChemMedChem1 (8): 891-902. [PMID:16902942]

69. Xaus J, Valledor AF, Cardó M, Marquès L, Beleta J, Palacios JM, Celada A. (1999) Adenosine inhibits macrophage colony-stimulating factor-dependent proliferation of macrophages through the induction of p27kip-1 expression. J Immunol163: 4140-4149. [PMID:10510349]

70. Yan L, Burbiel JC, Maass A, Müller CE. (2003) Adenosine receptor agonists: from basic medicinal chemistry to clinical development. Expert Opin Emerg Drugs8 (2): 537-76. [PMID:14662005]

71. Yang D, Zhang Y, Nguyen HG, Koupenova M, Chauhan AK, Makitalo M, Jones MR, St Hilaire C, Seldin DC, Toselli P et al.. (2006) The A2B adenosine receptor protects against inflammation and excessive vascular adhesion. J. Clin. Invest.116 (7): 1913-23. [PMID:16823489]

72. Zhong H, Belardinelli L, Maa T, Feoktistov I, Biaggioni I, Zeng D. (2004) A(2B) adenosine receptors increase cytokine release by bronchial smooth muscle cells. Am J Respir Cell Mol Biol30: 118-125. [PMID:12855406]

To cite this database page, please use the following:

Adriaan P. Ijzerman, Bertil B. Fredholm, Kenneth A. Jacobson, Joel Linden, Christa E. Müeller.
Adenosine receptors: A2B receptor. Last modified on 09/05/2014. Accessed on 25/10/2014. IUPHAR database (IUPHAR-DB), http://www.iuphar-db.org/DATABASE/ObjectDisplayForward?objectId=20.

Contact us | Print | Back to top | Help
Copyright © 2014 IUPHAR