Nomenclature: M5 receptor

Family: Acetylcholine receptors (muscarinic)

Annotation status:  image of a green circle Annotated and expert reviewed. Please contact us if you can help with updates. 

Contents

Gene and Protein Information
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 532 15q26 CHRM5 cholinergic receptor, muscarinic 5 5
Mouse 7 532 2 E3 Chrm5 cholinergic receptor, muscarinic 5 32
Rat 7 531 3q34 Chrm5 cholinergic receptor, muscarinic 5 5,25,31,41
Previous and Unofficial Names
m5
acetylcholine receptor, muscarinic 5
cholinergic receptor, muscarinic 5
muscarinic acetylcholine receptor M5
muscarinic acetylcholine receptor 5
M5R
Database Links
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
GPCRDB
GeneCards
GenitoUrinary Development Molecular Anatomy Project
HomoloGene
Human Protein Reference Database
InterPro
KEGG Gene
OMIM
PharmGKB Gene
PhosphoSitePlus
Protein Ontology (PRO)
RefSeq Nucleotide
RefSeq Protein
TreeFam
UniGene Hs.
UniProtKB
Wikipedia
Natural/Endogenous Ligands
acetylcholine
Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
NNC 11-1585 Hs Full agonist 8.3 pKi 14
pKi 8.3 [14]
NNC 11-1607 Hs Full agonist 8.2 pKi 14
pKi 8.2 [14]
NNC 11-1314 Hs Full agonist 7.8 pKi 14
pKi 7.8 [14]
sabcomeline Hs Partial agonist 7.1 pKi 54
pKi 7.1 [54]
xanomeline Hs Partial agonist 6.7 – 7.4 pKi 21,48,54
pKi 6.7 – 7.4 [21,48,54]
acetylcholine Hs Full agonist 6.1 pKi 12
pKi 6.1 [12]
milameline Hs Partial agonist 5.4 pKi 54
pKi 5.4 [54]
pilocarpine Hs Partial agonist 5.0 pKi 21
pKi 5.0 [21]
McN-A-343 Hs Partial agonist 4.9 pKi 37
pKi 4.9 [37]
carbachol Hs Full agonist 4.9 pKi 54
pKi 4.9 [54]
(+)-aceclidine Hs Full agonist 5.5 pEC50 16
pEC50 5.5 [16]
(-)-aceclidine Hs Partial agonist 5.1 pEC50 16
pEC50 5.1 [16]
Agonist Comments
Please consult references [8,28,37,46] for further details of the activity of some of the ligands in this list.
Oxotremorine has also been found to be a partial agonist at the M5 receptor [37,46] (no binding data available).
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
[3H]N-methyl scopolamine Hs Antagonist 8.1 – 9.7 pKd 11-12,22,24,26,46
pKd 8.1 – 9.7 (Kd 2x10-10 – 7.94x10-9 M) [11-12,22,24,26,46]
biperiden Hs Antagonist 8.2 pKd 4
pKd 8.2 (Kd 6.3x10-9 M) [4]
atropine Hs Antagonist 9.3 – 9.7 pKi 9,22
pKi 9.3 – 9.7 [9,22]
atropine Rn Antagonist 9.4 pKi 25
pKi 9.4 [25]
4-DAMP Hs Antagonist 9.0 pKi 15
pKi 9.0 [15]
4-DAMP Rn Antagonist 8.9 pKi 25
pKi 8.9 [25]
ipratropium Hs Antagonist 8.8 pKi 22
pKi 8.8 [22]
silahexocyclium Hs Antagonist 8.7 pKi 9
pKi 8.7 [9]
darifenacin Hs Antagonist 8.6 pKi 22
pKi 8.6 [22]
hexocyclium Hs Antagonist 8.4 pKi 9
pKi 8.4 [9]
HHSiD Rn Antagonist 7.4 pKi 25
pKi 7.4 [25]
pirenzepine Rn Antagonist 7.1 pKi 25
pKi 7.1 [25]
hexahydrodifenidol Hs Antagonist 7.1 pKi 9
pKi 7.1 [9]
HHSiD Hs Antagonist 6.8 – 7.2 pKi 9,18
pKi 6.8 – 7.2 [9,18]
methoctramine Hs Antagonist 6.3 – 7.2 pKi 9,18
pKi 6.3 – 7.2 [9,18]
pirenzepine Hs Antagonist 6.2 – 6.9 pKi 9,18,24
pKi 6.2 – 6.9 [9,18,24]
AFDX384 Hs Antagonist 6.3 pKi 15
pKi 6.3 [15]
p-F-HHSiD Hs Antagonist 6.3 pKi 18
pKi 6.3 [18]
MT3 Hs Antagonist <6.0 pKi 24
pKi <6.0 [24]
himbacine Hs Antagonist 5.4 – 6.5 pKi 24,35
pKi 5.4 – 6.5 [24,35]
otenzepad Rn Antagonist 5.7 pKi 25
pKi 5.7 [25]
VU0255035 Hs Antagonist 5.6 pKi 38
pKi 5.6 [38]
otenzepad Hs Antagonist 5.3 – 5.6 pKi 9,18
pKi 5.3 – 5.6 [9,18]
lithocholylcholine Hs Antagonist 5.2 pKi 12
pKi 5.2 [12]
glycopyrrolate Hs Antagonist 9.7 pIC50 39
pIC50 9.7 (IC50 2x10-10 M) [39]
View species-specific antagonist tables
Antagonist Comments
Biperiden is an approved drug antagonist of muscarinic acetylcholine receptors. We have tagged the M1 subtype as the drug's primary target as affinity is 10-fold higher at this receptor subtype [4].
Allosteric Modulators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
N-chloromethyl-brucine Hs Negative 4.4 pKd 29
pKd 4.4 [29]
N-benzyl brucine Hs Neutral 3.7 pKd 29
pKd 3.7 [29]
N-benzyl brucine Hs Negative 3.7 pKd 29
pKd 3.7 [29]
strychnine Hs Negative 3.6 pKd 27
pKd 3.6 [27]
brucine Hs Negative 2.9 pKd 29
pKd 2.9 [29]
brucine N-oxide Hs Negative 2.3 pKd 29
pKd 2.3 [29]
brucine N-oxide Hs Positive 2.3 pKd 29
pKd 2.3 [29]
VU0238429 Hs Positive - - 6
[6]
Primary Transduction Mechanisms
Transducer Effector/Response
Gq/G11 family Phospholipase C stimulation
References:  7
Tissue Distribution
Ciliary muscle.
Species:  Human
Technique:  In situ hybridisation and Northern blotting.
References:  61
Esophageal smooth muscle.
Species:  Human
Technique:  Radioligand binding.
References:  36
Vestibular system.
Species:  Human
Technique:  RT-PCR.
References:  44
Bladder.
Species:  Human
Technique:  RT-PCR.
References:  42
Vestibular system.
Species:  Rat
Technique:  RT-PCR.
References:  44
CNS: basal forebrain, parabigeminal nucleus.
Species:  Rat
Technique:  in situ hybridisation.
References:  43
CNS: cerebral cortex, hippocampus, corpus striatum, olfactory tubercle, midbrain, pons-medulla, cerebellum.
Species:  Rat
Technique:  Immunoprecipitation.
References:  58
CNS: substantia nigra, pars compacta and vental tegmental area.
Species:  Rat
Technique:  in situ hybridisation.
References:  50
Expression Datasets

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays
Measurement of PI hydrolysis in CHO cells transfected with the human M5 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Stimulation of PI hydrolysis.
References:  14
Measurement of IP1 levels in murine fibroblast cells (B82) transfected with the rat M5 receptor.
Species:  Rat
Tissue:  B82 cells.
Response measured:  Stimulation of IP1 accumulation.
References:  25
Measurement of PLC activity and Ca2+ levels in murine L cells transfected with the rat M5 receptor.
Species:  Rat
Tissue:  Murine L cells.
Response measured:  Stimulation of PLC activity and Ca2+ mobilisation.
References:  30
Measurement of the levels of IPs in CHO cells transfected with the human M5 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Stimulation of IPs accumulation.
References:  49
Measurement of IP1 levels in CHO cells transfected with the human M5 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Stimulation of IP1 accumulation.
References:  37
Measurement of Ca2+ levels in Sf9 cells transfected with the rat M5 receptor.
Species:  Rat
Tissue:  Sf9 cells.
Response measured:  Ca2+ mobilisation.
References:  23
Measurement of NO synthetase activity in CHO cells transfected with the M5 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Activation of nitric oxide synthetase.
References:  47
Measurement of ERK1/2 activity.
Species:  Human
Tissue: 
Response measured:  Increase in ERK1/2 activity.
References:  55
Physiological Functions
Modulation of dopaminergic neurotransmission.
Species:  Rat
Tissue:  In vivo (nucleus accumbens/striatum).
References:  34
Stimulation of gastric acid secretion.
Species:  Mouse
Tissue:  In vivo (stomach).
References:  1
Vasodilation.
Species:  Human
Tissue:  Intracortical arterioles.
References:  17
Physiological Consequences of Altering Gene Expression
Striatal slices from M5 receptor knockout mice exhibit a decrease in agonist-induced potentiation of dopamine release.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  57,60
M5 receptor knockout mice exhibit impaired gastric acid secretion.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  1
M5 receptor knockout mice exhibit a lack of agonist-induced cerebral blood vessel dilation, as seen in wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  57
M5 receptor knockout mice exhibit a reduction in the reinforcing effects and withdrawal symptoms of morphine.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  3
M5 receptor knockout mice exhibit a reduction in the reinforcing effects and withdrawal symptoms of cocaine.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  19,40
M5 receptor knockout mice exhibit an increase in antagonist-induced locomotion.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  13
M5 receptor knockout mice exhibit an abolished late phase activation of dopaminergic neurons.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  20,59
M5 receptor knockout mice exhibit an increase in D2 receptor expression in some brain areas, a decrease in amphetamine-induced locomotion and an increase in latent inhibition.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  45
M5 muscarinic receptor knockout mice show significantly reduced cerebral blood flow and exhibit impairments in hippocampus-dependent learning and hippocampal neuronal plasticity.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  2
Phenotypes, Alleles and Disease Models Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Chrm5tm1Jwe Chrm5tm1Jwe/Chrm5tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:109248  MP:0001905 abnormal dopamine level PMID: 11707605 
Chrm5tm1Minm Chrm5tm1Minm/Chrm5tm1Minm
B6.129X1-Chrm5
MGI:109248  MP:0002503 abnormal histamine physiology PMID: 15691866 
Chrm5tm1Jabe Chrm5tm1Jabe/Chrm5tm1Jabe
involves: C57BL/6
MGI:109248  MP:0010149 abnormal synaptic dopamine release PMID: 20664521 
Chrm5tm1Jwe Chrm5tm1Jwe/Chrm5tm1Jwe
B6.129S6-Chrm5
MGI:109248  MP:0010149 abnormal synaptic dopamine release PMID: 20664521 
Chrm5tm1Jwe Chrm5tm1Jwe/Chrm5tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:109248  MP:0001613 abnormal vasodilation PMID: 11707605 
Chrm5tm1Yeo Chrm5tm1Yeo/Chrm5tm1Yeo
involves: 129X1/SvJ * CD-1
MGI:109248  MP:0001529 abnormal vocalization PMID: 18382674 
Chrm5tm1Minm Chrm5tm1Minm/Chrm5tm1Minm
B6.129X1-Chrm5
MGI:109248  MP:0000505 decreased digestive secretion PMID: 15691866 
Chrm1tm1Kano|Chrm5tm1Minm Chrm1tm1Kano/Chrm1tm1Kano,Chrm5tm1Minm/Chrm5tm1Minm
involves: 129X1/SvJ * C57BL/6
MGI:109248  MGI:88396  MP:0000505 decreased digestive secretion PMID: 15691866 
Chrm5tm1Yeo Chrm5tm1Yeo/Chrm5tm1Yeo
Not Specified
MGI:109248  MP:0000623 decreased salivation PMID: 11900778 
Chrm5tm1Yeo Chrm5tm1Yeo/Chrm5tm1Yeo
Not Specified
MGI:109248  MP:0005111 hyperdipsia PMID: 11900778 
Chrm5tm1Yeo Chrm5tm1Yeo/Chrm5tm1Yeo
involves: 129X1/SvJ * CD-1
MGI:109248  MP:0009750 impaired behavioral response to addictive substance PMID: 18382674 
General Comments
For reviews on muscarinic receptor knockout mice see [10,33,51-53].
For a review specifically on M5 receptor knockout mice see [56].
Available Assays
DiscoveRx PathHunter® CHO-K1 CHRM5 β-Arrestin Cell Line (Cat no. 93-0519C2)
PathHunter® eXpress CHRM5 CHO-K1 β-Arrestin GPCR Assay (Cat no. 93-0519E2CP0M)
more info

REFERENCES

1. Aihara T, Nakamura Y, Taketo MM, Matsui M, Okabe S. (2005) Cholinergically stimulated gastric acid secretion is mediated by M(3) and M(5) but not M(1) muscarinic acetylcholine receptors in mice. Am J Physiol Gastrointest Liver Physiol288: G1199-G1207. [PMID:15691866]

2. Araya R, Noguchi T, Yuhki M, Kitamura N, Higuchi M, Saido TC, Seki K, Itohara S, Kawano M, Tanemura K, Takashima A, Yamada K, Kondoh Y, Kanno I, Wess J, Yamada M. (2006) Loss of M5 muscarinic acetylcholine receptors leads to cerebrovascular and neuronal abnormalities and cognitive deficits in mice. Neurobiol Dis24: 334-344. [PMID:16956767]

3. Basile AS, Fedorova I, Zapata A, Liu X, Shippenberg T, Duttaroy A, Yamada M, Wess J. (2002) Deletion of the M5 muscarinic acetylcholine receptor attenuates morphine reinforcement and withdrawal but not morphine analgesia. Proc Natl Acad Sci U S A99: 11452-11457. [PMID:12154229]

4. Bolden C, Cusack B, Richelson E. (1992) Antagonism by antimuscarinic and neuroleptic compounds at the five cloned human muscarinic cholinergic receptors expressed in Chinese hamster ovary cells. J. Pharmacol. Exp. Ther.260 (2): 576-80. [PMID:1346637]

5. Bonner TI, Young AC, Brann MR, Buckley NJ. (1988) Cloning and expression of the human and rat m5 muscarinic acetylcholine receptor genes. Neuron1: 403-410. [PMID:3272174]

6. Bridges TM, Marlo JE, Niswender CM, Jones CK, Jadhav SB, Gentry PR, Plumley HC, Weaver CD, Conn PJ, Lindsley CW. (2009) Discovery of the first highly M5-preferring muscarinic acetylcholine receptor ligand, an M5 positive allosteric modulator derived from a series of 5-trifluoromethoxy N-benzyl isatins. J. Med. Chem.52 (11): 3445-8. [PMID:19438238]

7. Bräuner-Osborne H, Brann MR. (1996) Pharmacology of muscarinic acetylcholine receptor subtypes (m1-m5): high throughput assays in mammalian cells. Eur J Pharmacol295: 93-102. [PMID:8925880]

8. Bräuner-Osborne H, Ebert B, Brann MR, Falch E, Krogsgaard-Larsen P. (1996) Functional partial agonism at cloned human muscarinic acetylcholine receptors. Eur J Pharmacol313: 145-150. [PMID:8905341]

9. Buckley NJ, Bonner TI, Buckley CM, Brann MR. (1989) Antagonist binding properties of five cloned muscarinic receptors expressed in CHO-K1 cells. Mol Pharmacol35: 469-476. [PMID:2704370]

10. Bymaster FP, McKinzie DL, Felder CC, Wess J. (2003) Use of M1-M5 muscarinic receptor knockout mice as novel tools to delineate the physiological roles of the muscarinic cholinergic system. Neurochem Res28: 437-442. [PMID:12675128]

11. Cembala TM, Sherwin JD, Tidmarsh MD, Appadu BL, Lambert DG. (1998) Interaction of neuromuscular blocking drugs with recombinant human m1-m5 muscarinic receptors expressed in Chinese hamster ovary cells. Br J Pharmacol125: 1088-1094. [PMID:9846649]

12. Cheng K, Khurana S, Chen Y, Kennedy RH, Zimniak P, Raufman JP. (2002) Lithocholylcholine, a bile acid/acetylcholine hybrid, is a muscarinic receptor antagonist. J Pharmacol Exp Ther303: 29-35. [PMID:12235229]

13. Chintoh A, Fulton J, Koziel N, Aziz M, Sud M, Yeomans JS. (2003) Role of cholinergic receptors in locomotion induced by scopolamine and oxotremorine-M. Pharmacol Biochem Behav76: 53-61. [PMID:13679217]

14. Christopoulos A, Grant MK, Ayoubzadeh N, Kim ON, Sauerberg P, Jeppesen L, El-Fakahany EE. (2001) Synthesis and pharmacological evaluation of dimeric muscarinic acetylcholine receptor agonists. J Pharmacol Exp Ther298: 1260-1268. [PMID:11504829]

15. Dörje F, Wess J, Lambrecht G, Tacke R, Mutschler E, Brann MR. (1991) Antagonist binding profiles of five cloned human muscarinic receptor subtypes. J. Pharmacol. Exp. Ther.256 (2): 727-33. [PMID:1994002]

16. Ehlert FJ, Griffin MT, Glidden PF. (1996) The interaction of the enantiomers of aceclidine with subtypes of the muscarinic receptor. J Pharmacol Exp Ther279: 1335-1344. [PMID:8968358]

17. Elhusseiny A, Hamel E. (2000) Muscarinic--but not nicotinic--acetylcholine receptors mediate a nitric oxide-dependent dilation in brain cortical arterioles: a possible role for the M5 receptor subtype. J Cereb Blood Flow Metab20: 298-305. [PMID:10698067]

18. Esqueda EE, Gerstin EH, Griffin MT, Ehlert FJ. (1996) Stimulation of cyclic AMP accumulation and phosphoinositide hydrolysis by M3 muscarinic receptors in the rat peripheral lung. Biochem Pharmacol52: 643-658. [PMID:8759038]

19. Fink-Jensen A, Fedorova I, Wörtwein G, Woldbye DP, Rasmussen T, Thomsen M, Bolwig TG, Knitowski KM, McKinzie DL, Yamada M, Wess J, Basile A. (2003) Role for M5 muscarinic acetylcholine receptors in cocaine addiction. J Neurosci Res74: 91-96. [PMID:13130510]

20. Forster GL, Yeomans JS, Takeuchi J, Blaha CD. (2002) M5 muscarinic receptors are required for prolonged accumbal dopamine release after electrical stimulation of the pons in mice. J Neurosci22: RC190-RC190. [PMID:11756520]

21. Grant MK, El-Fakahany EE. (2005) Persistent binding and functional antagonism by xanomeline at the muscarinic M5 receptor. J Pharmacol Exp Ther315: 313-319. [PMID:16002459]

22. Hirose H, Aoki I, Kimura T, Fujikawa T, Numazawa T, Sasaki K, Sato A, Hasegawa T, Nishikibe M, Mitsuya M, Ohtake N, Mase T, Noguchi K. (2001) Pharmacological properties of (2R)-N-[1-(6-aminopyridin-2-ylmethyl)piperidin-4-yl]-2-[(1R)-3,3-difluorocyclopentyl]-2-hydroxy-2-phenylacetamide: a novel mucarinic antagonist with M(2)-sparing antagonistic activity. J Pharmacol Exp Ther297: 790-797. [PMID:11303071]

23. Hu Y, Rajan L, Schilling WP. (1994) Ca2+ signaling in Sf9 insect cells and the functional expression of a rat brain M5 muscarinic receptor. Am J Physiol266: C1736-C1743. [PMID:8023903]

24. Jolkkonen M, Van Giersbergen PLM, Hellman U, Wernstedt C, Karlsson E. (1994) A toxin from the green mamba Dendroaspis angusticeps; amino acid sequence and selectivity for muscarinic m4 receptors. FEBS Lett.352: 91-94. [PMID:7925952]

25. Kashihara K, Varga EV, Waite SL, Roeske WR, Yamamura HI. (1992) Cloning of the rat M3, M4 and M5 muscarinic acetylcholine receptor genes by the polymerase chain reaction (PCR) and the pharmacological characterization of the expressed genes. Life Sci51: 955-971. [PMID:1325587]

26. Khattar SK, Bora RS, Priyadarsiny P, Gupta D, Khanna A, Narayanan KL, Babu V, Chugh A, Saini KS. (2006) High level stable expression of pharmacologically active human M1-M5 muscarinic receptor subtypes in mammalian cells. Biotechnol Lett28: 121-129. [PMID:16369696]

27. Lazareno S, Birdsall NJM. (1995) Detection, quantitation and verification of allosteric interactions of agents with labelled and unlabelled ligands at G protein-coupled receptors, interactions of strychnine and acetylcholine at muscarinic receptors. Mol. Pharmacol.48: 362-378. [PMID:7651370]

28. Lazareno S, Farries T, Birdsall NJM. (1993) Pharmacological characterization of guanine nucleotide exchange reactions in membranes from CHO cells stably transfected with human muscarinic receptors M1 - M4. Life Sci.52: 449-456. [PMID:8441327]

29. Lazareno S, Gharagozloo P, Kuonen D, Popham A, Birdsall NJM. (1998) Subtype selective positive cooperative interactions between brucine analogues and acetylcholine at muscarinic receptors, radioligand binding studies. Mol. Pharmacol.53: 573-589. [PMID:9495826]

30. Liao CF, Schilling WP, Birnbaumer M, Birnbaumer L. (1990) Cellular responses to stimulation of the M5 muscarinic acetylcholine receptor as seen in murine L cells. J Biol Chem265: 11273-11284. [PMID:2162842]

31. Liao CF, Themmen AP, Joho R, Barberis C, Birnbaumer M, Birnbaumer L. (1989) Molecular cloning and expression of a fifth muscarinic acetylcholine receptor. J Biol Chem264: 7328-7337. [PMID:2540186]

32. Matsui M, Araki Y, Karasawa H, Matsubara N, Taketo MM, Seldin MF. (1999) Mapping of five subtype genes for muscarinic acetylcholine receptor to mouse chromosomes. Genes Genet Syst74: 15-21. [PMID:10549128]

33. Matsui M, Yamada S, Oki T, Manabe T, Taketo MM, Ehlert FJ. (2004) Functional analysis of muscarinic acetylcholine receptors using knockout mice. Life Sci75: 2971-2981. [PMID:15474550]

34. Miller AD, Blaha CD. (2005) Midbrain muscarinic receptor mechanisms underlying regulation of mesoaccumbens and nigrostriatal dopaminergic transmission in the rat. Eur J Neurosci21: 1837-1846. [PMID:15869479]

35. Miller JH, Aagaard PJ, Gibson VA, McKinney M. (1992) Binding and functional selectivity of himbacine for cloned and neuronal muscarinic receptors. J Pharmacol Exp Ther263: 663-667. [PMID:1331410]

36. Preiksaitis HG, Krysiak PS, Chrones T, Rajgopal V, Laurier LG. (2000) Pharmacological and molecular characterization of muscarinic receptor subtypes in human esophageal smooth muscle. J Pharmacol Exp Ther295: 879-888. [PMID:11082420]

37. Richards MH, Van Giersbergen PL. (1995) Human muscarinic receptors expressed in A9L and CHO cells, activation by full and partial agonists. Br. J. Pharmacol.114: 1242-1249. [PMID:7620715]

38. Sheffler DJ, Williams R, Bridges TM, Xiang Z, Kane AS, Byun NE, Jadhav S, Mock MM, Zheng F, Lewis LM et al.. (2009) A novel selective muscarinic acetylcholine receptor subtype 1 antagonist reduces seizures without impairing hippocampus-dependent learning. Mol. Pharmacol.76 (2): 356-68. [PMID:19407080]

39. Stocks MJ, Alcaraz L, Bailey A, Bowers K, Donald D, Edwards H, Hunt F, Kindon N, Pairaudeau G, Theaker J et al.. (2010) The discovery of new spirocyclic muscarinic M3 antagonists. Bioorg. Med. Chem. Lett.20 (24): 7458-61. [PMID:21036043]

40. Thomsen M, Woldbye DP, Wörtwein G, Fink-Jensen A, Wess J, Caine SB. (2005) Reduced cocaine self-administration in muscarinic M5 acetylcholine receptor-deficient mice. J Neurosci25: 8141-8149. [PMID:16148222]

41. Tseng J, Erbe CB, Kwitek AE, Jacob HJ, Popper P, Wackym PA. (2002) Radiation hybrid mapping of five muscarinic acetylcholine receptor subtype genes in Rattus norvegicus. Hear Res174: 86-92. [PMID:12433399]

42. Tyagi S, Tyagi P, Van-le S, Yoshimura N, Chancellor MB, de Miguel F. (2006) Qualitative and quantitative expression profile of muscarinic receptors in human urothelium and detrusor. J Urol176: 1673-1678. [PMID:16952712]

43. Vilaro MT, Palacios JM, Mengod G. (1994) Multiplicity of muscarinic autoreceptor subtypes? Comparison of the distribution of cholinergic cells and cells containing mRNA for five subtypes of muscarinic receptors in the brain. Brain Res. Mol. Brain Res.21: 30-46. [PMID:8164520]

44. Wackym PA, Chen CT, Ishiyama A, Pettis RM, López IA, Hoffman L. (1996) Muscarinic acetylcholine receptor subtype mRNAs in the human and rat vestibular periphery. Cell Biol Int20: 187-192. [PMID:8673067]

45. Wang H, Ng K, Hayes D, Gao X, Forster G, Blaha C, Yeomans J. (2004) Decreased amphetamine-induced locomotion and improved latent inhibition in mice mutant for the M5 muscarinic receptor gene found in the human 15q schizophrenia region. Neuropsychopharmacology29: 2126-2139. [PMID:15213703]

46. Wang SZ, El-Fakahany EE. (1993) Application of transfected cell lines in studies of functional receptor subtype selectivity of muscarinic agonists. J Pharmacol Exp Ther266: 237-243. [PMID:7687290]

47. Wang SZ, Lee SY, Zhu SZ, El-Fakahany EE. (1996) Differential coupling of m1, m3, and m5 muscarinic receptors to activation of neuronal nitric oxide synthase. Pharmacology53: 271-280. [PMID:8990485]

48. Watson J, Brough S, Coldwell MC, Gager T, Ho M, Hunter AJ, Jerman J, Middlemiss DN, Riley GJ, Brown AM. (1998) Functional effects of the muscarinic receptor agonist, xanomeline, at 5-HT1 and 5-HT2 receptors. Br J Pharmacol125: 1413-1420. [PMID:9884068]

49. Watson N, Daniels DV, Ford APDW, Eglen RM, Hegde SS. (1999) Comparative pharmacology of recombinant human M3 and M5 muscarinic receptors expressed in CHO-K1 cells. Br. J. Pharmacol.127: 590-596. [PMID:10385263]

50. Weiner DM, Levey AI, Brann MR. (1990) Expression of muscarinic acetylcholine and dopamine receptor mRNAs in rat basal ganglia. Proc. Natl. Acad. Sci. U.S.A.87: 7050-7054. [PMID:2402490]

51. Wess J. (2003) Novel insights into muscarinic acetylcholine receptor function using gene targeting technology. Trends Pharmacol Sci24: 414-420. [PMID:12915051]

52. Wess J. (2004) Muscarinic acetylcholine receptor knockout mice: novel phenotypes and clinical implications. Annu Rev Pharmacol Toxicol44: 423-450. [PMID:14744253]

53. Wess J, Duttaroy A, Zhang W, Gomeza J, Cui Y, Miyakawa T, Bymaster FP, McKinzie L, Felder CC, Lamping KG, Faraci FM, Deng C, Yamada M. (2003) M1-M5 muscarinic receptor knockout mice as novel tools to study the physiological roles of the muscarinic cholinergic system. Receptors Channels9: 279-290. [PMID:12893539]

54. Wood MD, Murkitt KL, Ho M, Watson JM, Brown F, Hunter AJ, Middlemiss DN. (1999) Functional comparison of muscarinic partial agonists at muscarinic receptor subtypes hM1, hM2, hM3, hM4 and hM5 using microphysiometry. Br J Pharmacol126: 1620-1624. [PMID:10323594]

55. Wotta DR, Wattenberg EV, Langason RB, El-Fakahany EE. (1998) M1, M3 and M5 muscarinic receptors stimulate mitogen-activated protein kinase. Pharmacology56: 175-186. [PMID:9566019]

56. Yamada M, Basile AS, Fedorova I, Zhang W, Duttaroy A, Cui Y, Lamping KG, Faraci FM, Deng CX, Wess J. (2003) Novel insights into M5 muscarinic acetylcholine receptor function by the use of gene targeting technology. Life Sci74: 345-353. [PMID:14607263]

57. Yamada M, Lamping KG, Duttaroy A, Zhang W, Cui Y, Bymaster FP, McKinzie DL, Felder CC, Deng CX, Faraci FM, Wess J. (2001) Cholinergic dilation of cerebral blood vessels is abolished in M(5) muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci U S A98: 14096-14101. [PMID:11707605]

58. Yasuda RP, Ciesla W, Flores LR, Wall SJ, Li M, Satkus SA, Weisstein JS, Spagnola BV, Wolfe BB. (1993) Development of antisera selective for m4 and m5 muscarinic cholinergic receptors: distribution of m4 and m5 receptors in rat brain. Mol Pharmacol43: 149-157. [PMID:8429821]

59. Yeomans J, Forster G, Blaha C. (2001) M5 muscarinic receptors are needed for slow activation of dopamine neurons and for rewarding brain stimulation. Life Sci68: 2449-2456. [PMID:11392612]

60. Zhang W, Yamada M, Gomeza J, Basile AS, Wess J. (2002) Multiple muscarinic acetylcholine receptor subtypes modulate striatal dopamine release, as studied with M1-M5 muscarinic receptor knock-out mice. J Neurosci22: 6347-6352. [PMID:12151512]

61. Zhang X, Hernandez MR, Yang H, Erickson K. (1995) Expression of muscarinic receptor subtype mRNA in the human ciliary muscle. Invest Ophthalmol Vis Sci36: 1645-1657. [PMID:7541396]

To cite this database page, please use the following:

Nigel J. M. Birdsall, David A. Brown, Noel J. Buckley, Arthur Christopoulos, Richard M. Eglen, Frederick Ehlert, Rudolf Hammer, Heinz J. Kilbinger, Günter Lambrecht, Fred Mitchelson, Ernst Mutschler, Neil M. Nathanson, Roy D. Schwarz, Andrew B. Tobin, Jurgen Wess.
Acetylcholine receptors (muscarinic): M5 receptor. Last modified on 26/05/2014. Accessed on 25/10/2014. IUPHAR database (IUPHAR-DB), http://www.iuphar-db.org/DATABASE/ObjectDisplayForward?objectId=17.

Contact us | Print | Back to top | Help
Copyright © 2014 IUPHAR