Nomenclature: M3 receptor

Family: Acetylcholine receptors (muscarinic)

Annotation status:  image of a green circle Annotated and expert reviewed. Please contact us if you can help with updates. 

Contents

Gene and Protein Information
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 590 1q41-q44 CHRM3 cholinergic receptor, muscarinic 3 29
Mouse 7 589 13 A1 Chrm3 cholinergic receptor, muscarinic 3, cardiac 58
Rat 7 589 17q12.1 Chrm3 cholinergic receptor, muscarinic 3 39,87
Previous and Unofficial Names
Names References
m3
HM4 68-69
acetylcholine receptor, muscarinic 3
cholinergic receptor, muscarinic 3
cholinergic receptor, muscarinic 3, cardiac
muscarinic acetylcholine receptor M3
M3R
Chrm-3
muscarinic acetylcholine receptor 3
Database Links
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
GPCRDB
GeneCards
GenitoUrinary Development Molecular Anatomy Project
HomoloGene
Human Protein Reference Database
InterPro
KEGG Gene
OMIM
Orphanet Gene
PharmGKB Gene
PhosphoSitePlus
Protein Ontology (PRO)
RefSeq Nucleotide
RefSeq Protein
TreeFam
UniGene Hs.
UniProtKB
Wikipedia
Selected 3D Structures
Image of receptor 3D structure from RCSB PDB
Description:  Structure of the M3 Muscarinic Acetylcholine Receptor
PDB Id:  4DAJ
Ligand:  tiotropium
Resolution:  3.4Å
Species:  Rat
References:  44
Natural/Endogenous Ligands
acetylcholine
Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
NNC 11-1585 Hs Full agonist 8.3 pKi 18
pKi 8.3 [18]
pentylthio-TZTP Hs Full agonist 8.1 pKi 37
pKi 8.1 [37]
NNC 11-1607 Hs Full agonist 8.1 pKi 18
pKi 8.1 [18]
NNC 11-1314 Hs Full agonist 7.1 – 7.7 pKi 18
pKi 7.1 – 7.7 [18]
xanomeline Hs Partial agonist 7.2 – 7.4 pKi 94,102
pKi 7.2 – 7.4 [94,102]
sabcomeline Hs Partial agonist 7.0 pKi 102
pKi 7.0 [102]
arecaidine propargyl ester Hs Full agonist 5.7 pKi 37
pKi 5.7 [37]
acetylcholine Rn Full agonist 5.6 pKi 17
pKi 5.6 [17]
arecoline Hs Full agonist 5.4 pKi 37
pKi 5.4 [37]
oxotremorine Hs Full agonist 5.3 pKi 37
pKi 5.3 [37]
McN-A-343 Hs Partial agonist 5.0 – 5.3 pKi 77
pKi 5.0 – 5.3 [77]
pilocarpine Hs Partial agonist 5.1 pKi 37
pKi 5.1 [37]
oxotremorine-M Hs Full agonist 5.1 pKi 37
pKi 5.1 [37]
milameline Hs Partial agonist 5.1 pKi 102
pKi 5.1 [102]
acetylcholine Hs Full agonist 4.5 – 5.4 pKi 17,37,48
pKi 4.5 – 5.4 [17,37,48]
methylfurmethide Hs Full agonist 4.6 pKi 37
pKi 4.6 [37]
bethanechol Hs Full agonist 4.2 pKi 37
pKi 4.2 [37]
carbachol Hs Full agonist 4.0 – 4.4 pKi 17,37,102
pKi 4.0 – 4.4 [17,37,102]
carbachol Rn Full agonist 4.2 pKi 17
pKi 4.2 [17]
furmethide Hs Full agonist 4.1 pKi 37
pKi 4.1 [37]
methacholine Rn Agonist 6.92 pEC50 67
pEC50 6.92 (EC50 1.2x10-7 M) [67]
pEC50 6.92 (EC50 1.2x10-7 M) [67]
(+)-aceclidine Hs Full agonist 5.7 pEC50 25
pEC50 5.7 [25]
(-)-aceclidine Hs Partial agonist 5.1 pEC50 25
pEC50 5.1 [25]
View species-specific agonist tables
Agonist Comments
Please consult references [11,26,50,77,92,100] for further details of the activity of some of the ligands in this list.
McN-A-343 has been found to be a partial agonist at the M3 receptor [77,92]. However, in reference [50] it was found to be inactive in a study of GTPase activation.
Oxotremorine has been found to be a full agonist [26,77,92] and a partial agonist [50,77] at the M3 receptor.
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
[3H]QNB Hs Antagonist 10.4 pKd 69
pKd 10.4 (Kd 3.98x10-11 M) [69]
[3H]N-methyl scopolamine Rn Antagonist 10.0 pKd 17,92
pKd 10.0 [17,92]
[3H]darifenacin Hs Antagonist 9.5 pKd 81
pKd 9.5 (Kd 3.16x10-10 M) [81]
[3H]N-methyl scopolamine Hs Antagonist 8.6 – 10.4 pKd 16-17,35-38,40,48
pKd 8.6 – 10.4 (Kd 3.98x10-11 – 2.51x10-9 M) [16-17,35-38,40,48]
biperiden Hs Antagonist 8.41 pKd 8
pKd 8.41 (Kd 3.9x10-9 M) [8]
tiotropium Hs Antagonist 11.1 pKi 21
pKi 11.1 [21]
N-methyl scopolamine Hs Antagonist 10.4 pKi 21
pKi 10.4 [21]
umeclidinium Hs Antagonist 10.22 pKi 45
pKi 10.22 (Ki 6x10-11 M) [45]
propantheline Hs Antagonist 10.0 pKi 36
pKi 10.0 [36]
clidinium Hs Antagonist 9.6 pKi 21
pKi 9.6 [21]
ipratropium Hs Antagonist 9.3 – 9.8 pKi 21,35
pKi 9.3 – 9.8 [21,35]
scopolamine Hs Antagonist 9.4 pKi 36
pKi 9.4 [36]
atropine Hs Antagonist 8.9 – 9.8 pKi 12,21,35-36,69,81
pKi 8.9 – 9.8 [12,21,35-36,69,81]
4-DAMP Hs Antagonist 9.3 pKi 23
pKi 9.3 [23]
4-DAMP Rn Antagonist 9.2 pKi 39
pKi 9.2 [39]
darifenacin Hs Antagonist 9.1 pKi 35
pKi 9.1 [35]
dicyclomine Hs Antagonist 9.03 pKi 3
pKi 9.03 (Ki 9.3x10-10 M) [3]
atropine Rn Antagonist 8.7 – 9.3 pKi 17,39
pKi 8.7 – 9.3 [17,39]
silahexocyclium Hs Antagonist 8.9 pKi 12
pKi 8.9 [12]
hexocyclium Hs Antagonist 8.9 pKi 12
pKi 8.9 [12]
oxybutynin Hs Antagonist 8.82 pKi 20
pKi 8.82 (Ki 1.51x10-9 M) [20]
p-F-HHSiD Rn Antagonist 8.0 pKi 39
pKi 8.0 [39]
HHSiD Hs Antagonist 7.7 – 8.0 pKi 12,27
pKi 7.7 – 8.0 [12,27]
hexahydrodifenidol Hs Antagonist 7.8 pKi 12
pKi 7.8 [12]
p-F-HHSiD Hs Antagonist 7.3 – 7.9 pKi 27,36
pKi 7.3 – 7.9 [27,36]
tropicamide Hs Antagonist 7.52 pKi 4
pKi 7.52 (Ki 3x10-8 M) [4]
AFDX384 Hs Antagonist 7.2 pKi 23
pKi 7.2 [23]
himbacine Hs Antagonist 6.9 – 7.2 pKi 38,62
pKi 6.9 – 7.2 [38,62]
pirenzepine Rn Antagonist 6.7 pKi 39
pKi 6.7 [39]
methoctramine Hs Antagonist 6.3 – 6.9 pKi 12,27,81
pKi 6.3 – 6.9 [12,27,81]
guanylpirenzepine Rn Antagonist 6.2 pKi 91
pKi 6.2 [91]
pirenzepine Hs Antagonist 5.6 – 6.7 pKi 12,27,36,38,69
pKi 5.6 – 6.7 [12,27,36,38,69]
otenzepad Hs Antagonist 6.1 pKi 12,27
pKi 6.1 [12,27]
VU0255035 Hs Antagonist 6.1 pKi 79
pKi 6.1 [79]
lithocholylcholine Hs Antagonist 6.0 pKi 17
pKi 6.0 [17]
lithocholylcholine Rn Antagonist 6.0 pKi 17
pKi 6.0 [17]
otenzepad Rn Antagonist 6.0 pKi 39
pKi 6.0 [39]
MT3 Hs Antagonist <6.0 pKi 38
pKi <6.0 [38]
aclidinium Hs Antagonist 9.77 pIC50 73
pIC50 9.77 (IC50 1.7x10-10 M) [73]
glycopyrrolate Hs Antagonist 9.6 pIC50 84
pIC50 9.6 (IC50 2.51x10-10 M) [84]
Description: Assay uses glycopyrronium bromide
solifenacin Hs Antagonist 6.88 pIC50 72
pIC50 6.88 (IC50 1.308x10-7 M) [72]
View species-specific antagonist tables
Antagonist Comments
Biperiden is an approved drug antagonist of muscarinic acetylcholine receptors. We have tagged the M1 subtype as the drug's primary target as affinity is 10-fold higher at this receptor subtype [8].
Allosteric Modulators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
alcuronium Hs Negative 5.8 pKd 37
pKd 5.8 [37]
vincamine Hs Neutral 5.7 pKd 37
pKd 5.7 [37]
WIN 51,708 Hs Negative 5.5 pKd 53
pKd 5.5 [53]
eburnamonine Hs Neutral 5.2 pKd 37
pKd 5.2 [37]
WIN 62,577 Hs Positive 5.1 pKd 53
pKd 5.1 [53]
Gö 7874 Hs Negative 5.1 pKd 52
pKd 5.1 [52]
strychnine Hs Negative 4.2 – 5.7 pKd 37,48
pKd 4.2 – 5.7 [37,48]
thiochrome Hs Neutral 4.4 pKd 49
pKd 4.4 [49]
brucine Hs Negative 3.6 – 4.0 pKd 37,51
pKd 3.6 – 4.0 [37,51]
N-benzyl brucine Hs Negative 3.8 pKd 51
pKd 3.8 [51]
N-benzyl brucine Hs Positive 3.8 pKd 51
pKd 3.8 [51]
N-chloromethyl-brucine Hs Negative 3.3 pKd 51
pKd 3.3 [51]
N-chloromethyl-brucine Hs Positive 3.3 pKd 51
pKd 3.3 [51]
brucine N-oxide Hs Neutral 2.5 pKd 51
pKd 2.5 [51]
brucine N-oxide Hs Positive 2.5 pKd 51
pKd 2.5 [51]
WIN 62,577 Hs Positive - - 6
[6]
N-chloromethyl-brucine Hs Positive - - 6
[6]
Primary Transduction Mechanisms
Transducer Effector/Response
Gq/G11 family Phospholipase C stimulation
References:  10,68
Tissue Distribution
Esophageal smooth muscle.
Species:  Human
Technique:  Radioligand binding.
References:  74
Bladder.
Species:  Human
Technique:  RT-PCR.
References:  88
Lung.
Species:  Human
Technique:  Radioligand binding.
References:  57
Ciliary muscle.
Species:  Human
Technique:  In situ hybridisation and Northern blotting.
References:  108
CNS: cerebral cortex, corpus striatum, hippocampus, thalamus, hypothalamus, midbrain, pons-medulla.
Species:  Mouse
Technique:  Radioligand binding.
References:  64
Salivary gland: striated and interlobular duct cells.
Species:  Rat
Technique:  Immunohistochemistry.
References:  80
Vestibular system.
Species:  Rat
Technique:  RT-PCR.
References:  90
CNS: basal forebrain, parabigeminal nucleus, pedunculopontine and laterodorsal tegmental nuclei, cranial nerve nuclei.
Species:  Rat
Technique:  in situ hybridisation.
References:  89
CNS: cerebral cortex, hippocampu, corpus striatum, olfactory tubercle, midbrain, pons-medulla, cerebellum.
Species:  Rat
Technique:  Immunoprecipitation.
References:  105
CNS: pons.
Species:  Rat
Technique:  Radioligand binding.
References:  5
Heart: intrinsic neurons.
Species:  Rat
Technique:  in situ hybridisation.
References:  34
Intestinal smooth muscle.
Species:  Rat
Technique:  Radioligand binding.
References:  15
Gastric smooth muscle.
Species:  Rat
Technique:  RT-PCR.
References:  56
CNS: hippocampus.
Species:  Rat
Technique:  immunocytochemistry.
References:  55
CNS: limbic cortical regions, striatum, hippocampus, anterior thalamic nuclei, superior colliculus, pontine nuclei.
Species:  Rat
Technique:  immunocytochemistry.
References:  54
Expression Datasets

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays
Measurement of PI hydrolysis in CHO cells transfected with the human M3 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Stimulation of PI hydrolysis.
References:  18
Measurement of IP3 levels in CHO cells transfected with the rat M3 receptor.
Species:  Rat
Tissue:  CHO cells.
Response measured:  Stimulation of IP3 accumulation.
References:  17
Measurement of IP1 levels in murine fibroblast cells (B82) transfected with the rat M3 receptor.
Species:  Rat
Tissue:  B82 cells.
Response measured:  Stimulation of IP1 accumulation.
References:  39
Measurement of cAMP and Ca2+ levels in rat parotid cells endogenously expressing the M3 receptor.
Species:  Rat
Tissue:  Parotid cells.
Response measured:  Inhibition of cAMP accumulation and stimulation of Ca2+ mobilisation.
References:  65
Measurement of IP levels in CHO cells transfected with the human M3 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Stimulation of IP accumulation.
References:  77,95
Measurement of IP levels in human right atrial slices.
Species:  Human
Tissue:  Atrial slices.
Response measured:  Stimulation of IP formation.
References:  101
Measurement of IP levels in isolated rat ventricular cardiomyocytes.
Species:  Rat
Tissue:  Isolated ventricular cardiomyocytes.
Response measured:  Stimulation of IP formation.
References:  75
Measurement of neuronal nitric oxide synthetase activity in CHO cells transfected with the M3 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Increase in NO synthetase activity.
References:  93
Measurement of ERK1/2 activity in COS-7 cells transfected with the human M3 receptor.
Species:  Human
Tissue:  COS-7 cells.
Response measured:  Increase in ERK1/2 activity.
References:  78
Measurement of ERK1/2 activity in CHO cells transfected with the human M3 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Increase in ERK1/2 activity.
References:  13
Measurement of ERK1/2 activity in human SK-N-BE2(C) cells endogenously expressing the M3 receptor.
Species:  Human
Tissue:  SK-N-BE2(C) cells.
Response measured:  Increase in ERK1/2 activity.
References:  42
Measurement of the effects of a ligand on the level, or rate, of binding of GTPγ35S to membranes.
Species:  Human
Tissue:  CHO cells.
Response measured:  The binding of GTPγ35S to G proteins coupled to the receptor.
References:  7,47-50,52-53
Measurement of the effects of a ligand on the rate of hydrolysis of GTP by G proteins in membranes.
Species:  Human
Tissue:  CHO cell membranes.
Response measured:  Generation of 32Pi from [γ-32P]GTP.
References:  50
Physiological Functions
Vasodilation.
Species:  Rat
Tissue:  Thoracic aortic rings.
References:  41
Vasodilation
Species:  Mouse
Tissue:  Thoracic aortic rings.
References:  41
Stimulation of pancreatic insulin and glucagon release.
Species:  Mouse
Tissue:  In vivo.
References:  22
Bronchoconstriction.
Species:  Rat
Tissue:  Isolated lung.
References:  71
Modulation of salivary gland function.
Species:  Rat
Tissue:  In vivo.
References:  86
Modulation of excitatory transmission.
Species:  Rat
Tissue:  Mesencephalic slices.
References:  33
Gastric acid secretion.
Species:  Rat
Tissue:  Gastric parietal cells.
References:  70
Modulation of insulin secretion.
Species:  Rat
Tissue:  Isolated pancreatic islets.
References:  76
Vasodilation.
Species:  Rat
Tissue:  Pulmonary artery.
References:  61
Stimulation of urination.
Species:  Rat
Tissue:  In vivo.
References:  43
Contraction.
Species:  Human
Tissue:  Urinary bladder detrusor muscle.
References:  19
Contraction.
Species:  Rat
Tissue:  Urinary bladder detrusor muscle.
References:  66
Contraction.
Species:  Human
Tissue:  Esophageal smooth muscle.
References:  74
Contraction.
Species:  Rat
Tissue:  Ileum.
References:  15
Physiological Consequences of Altering Gene Expression
M3 receptor knockout mice express an increase in basal and total energy expenditure.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  30
M3 receptor knockout mice exhibit impaired gastric acid secretion.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  1-2
Striatal slices from M3 receptor knockout mice exhibit an increase in muscarinic agonist-induced potentiation of dopamine release.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  107
M3 receptor knockout mice show reduced adiposity and serum insulin and leptin levels, and exhibit reduced food intake.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  104
Lung slices from M3 receptor knockout mice exhibit reduced agonist-induced bronchoconstriction compared to wild-type mice.
This bronchoconstriction is completely abolished in M2/M3 double knockout mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  85
M3 receptor knockout mice exhibit abolished agonist-induced or vagally-stimulated bronchoconstriction in vivo.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  28
Isolated coronary arteries and aortic rings from M3 receptor knockout mice exhibit a reduction in agonist-induced dilation compared to wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  46
M3 receptor knockout mice exhibit alterations in paradoxical sleep.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  32
M3 receptor knockout mice exhibit growth retardation, increased pupil size and reduced salivary secretion.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  59
M3 receptor knockout mice exhibit abolished agonist-induced PLC activation and insulin secretion from pancreatic islets.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  106
M3 receptor knockout mice exhibit altered ventilatory pattern and chemosensitivity.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  9
M3 receptor knockout mice exhibit impaired salivation.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  63
M3 receptor knockout mice exhibit abolished agonist-induced pancreatic insulin and glucagon release as seen in wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  22
M3 receptor knockout mice exhibit reduced gastric pepsinogen secretion.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  103
Thoracic aortic rings from M3 receptor knockout mice exhibit reduced agonist-induced relaxation compared to those from wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  41
Transgenic mice overexpressing the M3 receptor in pancreatic β-cells exhibit increased glucose tolerance and insulin release. They are resistant to diet-induced glucose intolerance and hyperglycemia.
Species:  Mouse
Tissue: 
Technique:  Transgenesis.
References:  31
Mice that selectively lack the M3 receptor in pancreatic β-cells exhibit decreased glucose tolerance and impaired insulin release.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  31
Smooth muscle preparations (gallbladder, urinary bladder, stomach fundus, trachea, ileum) from M3 receptor knockout mice exhibit reduced agonist-induced contractions compared to wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  24,59,82-83
Smooth muscle preparations (gallbladder, urinary bladder, stomach fundus, trachea) from M3 receptor knockout mice exhibit reduced agonist-induced contractions compared to wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  59,82-83
Phenotypes, Alleles and Disease Models Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:88398  MP:0004994 abnormal brain wave pattern PMID: 16110248 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac
MGI:88398  MP:0001663 abnormal digestive system physiology PMID: 11959688 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:88398  MP:0003194 abnormal frequency of paradoxical sleep PMID: 16110248 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:88398  MP:0005085 abnormal gallbladder physiology PMID: 11961069 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0002078 abnormal glucose homeostasis PMID: 11242080 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
B6.129X1-Chrm3
MGI:88398  MP:0002503 abnormal histamine physiology PMID: 15691866 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ
MGI:88398  MP:0002945 abnormal inhibitory postsynaptic currents PMID: 12859343 
Chrm1tm1Kano|Chrm3tm1Mmt Chrm1tm1Kano/Chrm1tm1Kano,Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88396  MGI:88398  MP:0002945 abnormal inhibitory postsynaptic currents PMID: 12859343 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac
MGI:88398  MP:0002133 abnormal respiratory system physiology PMID: 11959688 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ
MGI:88398  MP:0005310 abnormal salivary gland physiology PMID: 15146045 
Chrm1tm1Kano|Chrm3tm1Mmt Chrm1tm1Kano/Chrm1tm1Kano,Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88396  MGI:88398  MP:0005310 abnormal salivary gland physiology PMID: 15146045 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88398  MP:0000538 abnormal urinary bladder morphology PMID: 10944224 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac
MGI:88398  MP:0010386 abnormal urinary bladder physiology PMID: 11959688 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:88398  MP:0001945 bronchoconstriction PMID: 14645675 
Chrm2tm1Jwe|Chrm3tm1Jwe Chrm2tm1Jwe/Chrm2tm1Jwe,Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S4/SvJae * 129S6/SvEvTac * CF-1
MGI:88397  MGI:88398  MP:0001945 bronchoconstriction PMID: 14645675 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88398  MP:0001265 decreased body size PMID: 10944224 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0005534 decreased body temperature PMID: 11242080 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88398  MP:0001262 decreased body weight PMID: 10944224 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0001262 decreased body weight PMID: 11242080  15220195 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
129S6/SvEvTac-Chrm3
MGI:88398  MP:0001262 decreased body weight PMID: 11242080 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac
MGI:88398  MP:0001262 decreased body weight PMID: 11959688 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0002696 decreased circulating glucagon level PMID: 15220195 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0005560 decreased circulating glucose level PMID: 15220195 
Chrm3tm2.1Jwe|Tg(Alb-cre)21Mgn Chrm3tm2.1Jwe/Chrm3tm2.1Jwe,Tg(Alb-cre)21Mgn/0
involves: 129S6/SvEvTac * C57BL/6 * DBA * FVB/N
MGI:2176226  MGI:88398  MP:0005560 decreased circulating glucose level PMID: 19752163 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0002727 decreased circulating insulin level PMID: 11242080  15220195 
Chrm3+|Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3+
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0002727 decreased circulating insulin level PMID: 15220195 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0005668 decreased circulating leptin level PMID: 11242080 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0002644 decreased circulating triglyceride level PMID: 11242080 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
B6.129X1-Chrm3
MGI:88398  MP:0000505 decreased digestive secretion PMID: 15691866 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0003910 decreased eating behavior PMID: 11242080 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0002711 decreased glucagon secretion PMID: 15220195 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0009283 decreased gonadal fat pad weight PMID: 11242080 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
129S6/SvEvTac-Chrm3
MGI:88398  MP:0009283 decreased gonadal fat pad weight PMID: 11242080 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0003059 decreased insulin secretion PMID: 15220195 
Chrm3tm2Jwe|Tg(Ins2-cre)25Mgn Chrm3tm2Jwe/Chrm3tm2Jwe,Tg(Ins2-cre)25Mgn/0
involves: 129S6/SvEvTac * C57BL/6 * DBA
MGI:2176225  MGI:88398  MP:0003059 decreased insulin secretion PMID: 16753580 
Chrm3+|Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3+
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0003059 decreased insulin secretion PMID: 15220195 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ
MGI:88398  MP:0000623 decreased salivation PMID: 15146045 
Chrm1tm1Kano|Chrm3tm1Mmt Chrm1tm1Kano/Chrm1tm1Kano,Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88396  MGI:88398  MP:0000623 decreased salivation PMID: 15146045 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88398  MP:0000623 decreased salivation PMID: 10944224 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:88398  MP:0005591 decreased vasodilation PMID: 15130910 
Chrm2tm1Minm|Chrm3tm1Mmt Chrm2tm1Minm/Chrm2tm1Minm,Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88397  MGI:88398  MP:0000539 distended urinary bladder PMID: 12486155 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88398  MP:0000539 distended urinary bladder PMID: 10944224 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88398  MP:0000519 hydronephrosis PMID: 10944224 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:88398  MP:0009454 impaired contextual conditioning behavior PMID: 20439723 
Chrm3tm1Abt Chrm3tm1Abt/Chrm3tm1Abt
involves: 129X1/SvJ * C57BL/6
MGI:88398  MP:0009454 impaired contextual conditioning behavior PMID: 20439723 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88398  MP:0000741 impaired contractility of detrusor smooth muscle PMID: 10944224 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ
MGI:88398  MP:0000742 impaired contractility of ileal smooth muscle PMID: 12486155 
Chrm2tm1Minm|Chrm3tm1Mmt Chrm2tm1Minm/Chrm2tm1Minm,Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88397  MGI:88398  MP:0000742 impaired contractility of ileal smooth muscle PMID: 12486155 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88398  MP:0000742 impaired contractility of ileal smooth muscle PMID: 10944224 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:88398  MP:0009456 impaired cued conditioning behavior PMID: 20439723 
Chrm3tm1Abt Chrm3tm1Abt/Chrm3tm1Abt
involves: 129X1/SvJ * C57BL/6
MGI:88398  MP:0009456 impaired cued conditioning behavior PMID: 20439723 
Chrm3tm2Jwe|Tg(Ins2-cre)25Mgn Chrm3tm2Jwe/Chrm3tm2Jwe,Tg(Ins2-cre)25Mgn/0
involves: 129S6/SvEvTac * C57BL/6 * DBA
MGI:2176225  MGI:88398  MP:0005293 impaired glucose tolerance PMID: 16753580 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ
MGI:88398  MP:0000740 impaired smooth muscle contractility PMID: 12486155 
Chrm2tm1Minm|Chrm3tm1Mmt Chrm2tm1Minm/Chrm2tm1Minm,Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88397  MGI:88398  MP:0000740 impaired smooth muscle contractility PMID: 12486155 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:88398  MP:0000740 impaired smooth muscle contractility PMID: 11961069 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac
MGI:88398  MP:0000740 impaired smooth muscle contractility PMID: 11959688 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0005292 improved glucose tolerance PMID: 15220195 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ
MGI:88398  MP:0003911 increased drinking behavior PMID: 15146045 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0002891 increased insulin sensitivity PMID: 11242080 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ
MGI:88398  MP:0002546 mydriasis PMID: 12486155 
Chrm2tm1Minm|Chrm3tm1Mmt Chrm2tm1Minm/Chrm2tm1Minm,Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88397  MGI:88398  MP:0002546 mydriasis PMID: 12486155 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88398  MP:0002546 mydriasis PMID: 10944224 
Chrm2tm1Minm|Chrm3tm1Mmt Chrm2tm1Minm/Chrm2tm1Minm,Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88397  MGI:88398  MP:0001732 postnatal growth retardation PMID: 12486155 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0001263 weight loss PMID: 11242080 
Clinically-Relevant Mutations and Pathophysiology
Disease:  Eagle-Barrett syndrome
OMIM:  100100
Orphanet:  2970
References:  96
Mutations not determined
General Comments
For reviews on muscarinic receptor knockout mice see [14,60,97-99].
Available Assays
DiscoveRx PathHunter® eXpress CHRM3 U2OS β-Arrestin GPCR Assay (Cat no. 93-0860E3CP0M)
PathHunter® U2OS CHRM3 β-Arrestin Cell Line (Cat no. 93-0860C3)
more info

REFERENCES

1. Aihara T, Fujishita T, Kanatani K, Furutani K, Nakamura E, Taketo MM, Matsui M, Chen D, Okabe S. (2003) Impaired gastric secretion and lack of trophic responses to hypergastrinemia in M3 muscarinic receptor knockout mice. Gastroenterology125: 1774-1784. [PMID:14724830]

2. Aihara T, Nakamura Y, Taketo MM, Matsui M, Okabe S. (2005) Cholinergically stimulated gastric acid secretion is mediated by M(3) and M(5) but not M(1) muscarinic acetylcholine receptors in mice. Am J Physiol Gastrointest Liver Physiol288: G1199-G1207. [PMID:15691866]

3. Auerbach SS, DrugMatrix® and ToxFX® Coordinator National Toxicology Program. DrugMatrix in vitro pharmacology data. , .

4. Auerbach SS, DrugMatrix® and ToxFX® Coordinator National Toxicology Program. National Toxicoligy Program: Dept of Health and Human Services. Accessed on 02/05/2014. Modified on 02/05/2014. DrugMatrix, https://ntp.niehs.nih.gov/drugmatrix/index.html

5. Baghdoyan HA. (1997) Location and quantification of muscarinic receptor subtypes in rat pons: implications for REM sleep generation. Am J Physiol273: R896-R904. [PMID:9321865]

6. Birdsall NJ, Lazareno S. (2005) Allosterism at muscarinic receptors: ligands and mechanisms. Mini Rev Med Chem5: 523-543. [PMID:15974931]

7. Birdsall NJM, Farries T, Gharagozloo P, Kobayashi S, Lazareno S, Sugimoto M. (1999) Subtype selective positive cooperative interactions between brucine analogues and acetylcholine at muscarinic receptors: functional studies. Mol. Pharmacol.55: 778-786. [PMID:10101037]

8. Bolden C, Cusack B, Richelson E. (1992) Antagonism by antimuscarinic and neuroleptic compounds at the five cloned human muscarinic cholinergic receptors expressed in Chinese hamster ovary cells. J. Pharmacol. Exp. Ther.260 (2): 576-80. [PMID:1346637]

9. Boudinot E, Yamada M, Wess J, Champagnat J, Foutz AS. (2004) Ventilatory pattern and chemosensitivity in M1 and M3 muscarinic receptor knockout mice. Respir Physiol Neurobiol139: 237-245. [PMID:15122990]

10. Bräuner-Osborne H, Brann MR. (1996) Pharmacology of muscarinic acetylcholine receptor subtypes (m1-m5): high throughput assays in mammalian cells. Eur J Pharmacol295: 93-102. [PMID:8925880]

11. Bräuner-Osborne H, Ebert B, Brann MR, Falch E, Krogsgaard-Larsen P. (1996) Functional partial agonism at cloned human muscarinic acetylcholine receptors. Eur J Pharmacol313: 145-150. [PMID:8905341]

12. Buckley NJ, Bonner TI, Buckley CM, Brann MR. (1989) Antagonist binding properties of five cloned muscarinic receptors expressed in CHO-K1 cells. Mol Pharmacol35: 469-476. [PMID:2704370]

13. Budd DC, Rae A, Tobin AB. (1999) Activation of the mitogen-activated protein kinase pathway by a Gq/11-coupled muscarinic receptor is independent of receptor internalization. J Biol Chem274: 12355-12360. [PMID:10212206]

14. Bymaster FP, McKinzie DL, Felder CC, Wess J. (2003) Use of M1-M5 muscarinic receptor knockout mice as novel tools to delineate the physiological roles of the muscarinic cholinergic system. Neurochem Res28: 437-442. [PMID:12675128]

15. Candell LM, Yun SH, Tran LL, Ehlert FJ. (1990) Differential coupling of subtypes of the muscarinic receptor to adenylate cyclase and phosphoinositide hydrolysis in the longitudinal muscle of the rat ileum. Mol Pharmacol38: 689-697. [PMID:2172776]

16. Cembala TM, Sherwin JD, Tidmarsh MD, Appadu BL, Lambert DG. (1998) Interaction of neuromuscular blocking drugs with recombinant human m1-m5 muscarinic receptors expressed in Chinese hamster ovary cells. Br J Pharmacol125: 1088-1094. [PMID:9846649]

17. Cheng K, Khurana S, Chen Y, Kennedy RH, Zimniak P, Raufman JP. (2002) Lithocholylcholine, a bile acid/acetylcholine hybrid, is a muscarinic receptor antagonist. J Pharmacol Exp Ther303: 29-35. [PMID:12235229]

18. Christopoulos A, Grant MK, Ayoubzadeh N, Kim ON, Sauerberg P, Jeppesen L, El-Fakahany EE. (2001) Synthesis and pharmacological evaluation of dimeric muscarinic acetylcholine receptor agonists. J Pharmacol Exp Ther298: 1260-1268. [PMID:11504829]

19. D'Agostino G, Bolognesi ML, Lucchelli A, Vicini D, Balestra B, Spelta V, Melchiorre C, Tonini M. (2000) Prejunctional muscarinic inhibitory control of acetylcholine release in the human isolated detrusor: involvement of the M4 subtype. Br. J. Pharmacol.129: 493-500. [PMID:10711347]

20. Del Bello F, Barocelli E, Bertoni S, Bonifazi A, Camalli M, Campi G, Giannella M, Matucci R, Nesi M, Pigini M et al.. (2012) 1,4-dioxane, a suitable scaffold for the development of novel M₃ muscarinic receptor antagonists. J. Med. Chem.55 (4): 1783-7. [PMID:22243489]

21. Dowling MR, Charlton SJ. (2006) Quantifying the association and dissociation rates of unlabelled antagonists at the muscarinic M(3) receptor. Br J Pharmacol148: 927-937. [PMID:16847442]

22. Duttaroy A, Zimliki CL, Gautam D, Cui Y, Mears D, Wess J. (2004) Muscarinic stimulation of pancreatic insulin and glucagon release is abolished in m3 muscarinic acetylcholine receptor-deficient mice. Diabetes53: 1714-1720. [PMID:15220195]

23. Dörje F, Wess J, Lambrecht G, Tacke R, Mutschler E, Brann MR. (1991) Antagonist binding profiles of five cloned human muscarinic receptor subtypes. J. Pharmacol. Exp. Ther.256 (2): 727-33. [PMID:1994002]

24. Ehlert FJ, Griffin MT, Abe DM, Vo TH, Taketo MM, Manabe T, Matsui M. (2005) The M2 muscarinic receptor mediates contraction through indirect mechanisms in mouse urinary bladder. J Pharmacol Exp Ther313: 368-378. [PMID:15608083]

25. Ehlert FJ, Griffin MT, Glidden PF. (1996) The interaction of the enantiomers of aceclidine with subtypes of the muscarinic receptor. J Pharmacol Exp Ther279: 1335-1344. [PMID:8968358]

26. Ehlert FJ, Griffin MT, Sawyer GW, Bailon R. (1999) A simple method for estimation of agonist activity at receptor subtypes: comparison of native and cloned M3 muscarinic receptors in guinea pig ileum and transfected cells. J Pharmacol Exp Ther289: 981-992. [PMID:10215678]

27. Esqueda EE, Gerstin EH, Griffin MT, Ehlert FJ. (1996) Stimulation of cyclic AMP accumulation and phosphoinositide hydrolysis by M3 muscarinic receptors in the rat peripheral lung. Biochem Pharmacol52: 643-658. [PMID:8759038]

28. Fisher JT, Vincent SG, Gomeza J, Yamada M, Wess J. (2004) Loss of vagally mediated bradycardia and bronchoconstriction in mice lacking M2 or M3 muscarinic acetylcholine receptors. FASEB J18: 711-713. [PMID:14977875]

29. Forsythe SM, Kogut PC, McConville JF, Fu Y, McCauley JA, Halayko AJ, Liu HW, Kao A, Fernandes DJ, Bellam S, Fuchs E, Sinha S, Bell GI, Camoretti-Mercado B, Solway J. (2002) Structure and transcription of the human m3 muscarinic receptor gene. Am J Respir Cell Mol Biol26: 298-305. [PMID:11867338]

30. Gautam D, Gavrilova O, Jeon J, Pack S, Jou W, Cui Y, Li JH, Wess J. (2006) Beneficial metabolic effects of M(3) muscarinic acetylcholine receptor deficiency. Cell Metab4: 363-375. [PMID:17084710]

31. Gautam D, Han SJ, Hamdan FF, Jeon J, Li B, Li JH, Cui Y, Mears D, Lu H, Deng C, Heard T, Wess J. (2006) A critical role for beta cell M3 muscarinic acetylcholine receptors in regulating insulin release and blood glucose homeostasis in vivo. Cell Metab3: 449-461. [PMID:16753580]

32. Goutagny R, Comte JC, Salvert D, Gomeza J, Yamada M, Wess J, Luppi PH, Fort P. (2005) Paradoxical sleep in mice lacking M3 and M2/M4 muscarinic receptors. Neuropsychobiology52: 140-146. [PMID:16110248]

33. Grillner P, Bonci A, Svensson TH, Bernardi G, Mercuri NB. (1999) Presynaptic muscarinic (M3) receptors reduce excitatory transmission in dopamine neurons of the rat mesencephalon. Neuroscience91: 557-565. [PMID:10366013]

34. Hassall CJ, Stanford SC, Burnstock G, Buckley NJ. (1993) Co-expression of four muscarinic receptor genes by the intrinsic neurons of the rat and guinea-pig heart. Neuroscience56: 1041-1048. [PMID:8284034]

35. Hirose H, Aoki I, Kimura T, Fujikawa T, Numazawa T, Sasaki K, Sato A, Hasegawa T, Nishikibe M, Mitsuya M, Ohtake N, Mase T, Noguchi K. (2001) Pharmacological properties of (2R)-N-[1-(6-aminopyridin-2-ylmethyl)piperidin-4-yl]-2-[(1R)-3,3-difluorocyclopentyl]-2-hydroxy-2-phenylacetamide: a novel mucarinic antagonist with M(2)-sparing antagonistic activity. J Pharmacol Exp Ther297: 790-797. [PMID:11303071]

36. Huang F, Buchwald P, Browne CE, Farag HH, Wu WM, Ji F, Hochhaus G, Bodor N. (2001) Receptor binding studies of soft anticholinergic agents. AAPS PharmSci3: E30-E30. [PMID:12049493]

37. Jakubik J, Bacakova L, El-Fakahany EE, Tucek S. (1997) Positive cooperativity of acetylcholine and other agonists with allosteric ligands on muscarinic receptors. Mol. Pharmacol.52: 172-179. [PMID:9224827]

38. Jolkkonen M, Van Giersbergen PLM, Hellman U, Wernstedt C, Karlsson E. (1994) A toxin from the green mamba Dendroaspis angusticeps; amino acid sequence and selectivity for muscarinic m4 receptors. FEBS Lett.352: 91-94. [PMID:7925952]

39. Kashihara K, Varga EV, Waite SL, Roeske WR, Yamamura HI. (1992) Cloning of the rat M3, M4 and M5 muscarinic acetylcholine receptor genes by the polymerase chain reaction (PCR) and the pharmacological characterization of the expressed genes. Life Sci51: 955-971. [PMID:1325587]

40. Khattar SK, Bora RS, Priyadarsiny P, Gupta D, Khanna A, Narayanan KL, Babu V, Chugh A, Saini KS. (2006) High level stable expression of pharmacologically active human M1-M5 muscarinic receptor subtypes in mammalian cells. Biotechnol Lett28: 121-129. [PMID:16369696]

41. Khurana S, Yamada M, Wess J, Kennedy RH, Raufman JP. (2005) Deoxycholyltaurine-induced vasodilation of rodent aorta is nitric oxide- and muscarinic M(3) receptor-dependent. Eur J Pharmacol517: 103-110. [PMID:15964566]

42. Kim JY, Yang MS, Oh CD, Kim KT, Ha MJ, Kang SS, Chun JS. (1999) Signalling pathway leading to an activation of mitogen-activated protein kinase by stimulating M3 muscarinic receptor. Biochem J337: 275-280. [PMID:9882625]

43. Kono M, Nakamura Y, Ishiura Y, Komatsu K, Kontani H, Namiki M. (2006) Central muscarinic receptor subtypes regulating voiding in rats. J Urol175: 353-357. [PMID:16406941]

44. Kruse AC, Hu J, Pan AC, Arlow DH, Rosenbaum DM, Rosemond E, Green HF, Liu T, Chae PS, Dror RO et al.. (2012) Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature482 (7386): 552-6. [PMID:22358844]

45. Lainé DI, McCleland B, Thomas S, Neipp C, Underwood B, Dufour J, Widdowson KL, Palovich MR, Blaney FE, Foley JJ et al.. (2009) Discovery of novel 1-azoniabicyclo[2.2.2]octane muscarinic acetylcholine receptor antagonists. J. Med. Chem.52 (8): 2493-505. [PMID:19317446]

46. Lamping KG, Wess J, Cui Y, Nuno DW, Faraci FM. (2004) Muscarinic (M) receptors in coronary circulation: gene-targeted mice define the role of M2 and M3 receptors in response to acetylcholine. Arterioscler Thromb Vasc Biol24: 1253-1258. [PMID:15130910]

47. Lazareno S, Birdsall NJM.&