Nomenclature: M3 receptor

Family: Acetylcholine receptors (muscarinic)

Annotation status:  image of a green circle Annotated and expert reviewed. Please contact us if you can help with updates. 

Contents

Gene and Protein Information
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 590 1q41-q44 CHRM3 cholinergic receptor, muscarinic 3 26
Mouse 7 589 13 A1 Chrm3 cholinergic receptor, muscarinic 3, cardiac 54
Rat 7 589 17q12.1 Chrm3 cholinergic receptor, muscarinic 3 36,79
Previous and Unofficial Names
Names References
m3
HM4 63-64
acetylcholine receptor, muscarinic 3
cholinergic receptor, muscarinic 3
cholinergic receptor, muscarinic 3, cardiac
muscarinic acetylcholine receptor M3
M3R
Chrm-3
muscarinic acetylcholine receptor 3
Database Links
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
GPCRDB
GeneCards
GenitoUrinary Development Molecular Anatomy Project
HomoloGene
Human Protein Reference Database
InterPro
KEGG Gene
OMIM
Orphanet Gene
PharmGKB Gene
PhosphoSitePlus
Protein Ontology (PRO)
RefSeq Nucleotide
RefSeq Protein
TreeFam
UniGene Hs.
UniProtKB
Wikipedia
Selected 3D Structures
Image of receptor 3D structure from RCSB PDB
Description:  Structure of the M3 Muscarinic Acetylcholine Receptor
PDB Id:  4DAJ
Ligand:  tiotropium
Resolution:  3.4Å
Species:  Rat
References:  41
Natural/Endogenous Ligand(s)
acetylcholine
Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
NNC 11-1585 Hs Full agonist 8.3 pKi 16
pKi 8.3 [16]
pentylthio-TZTP Hs Full agonist 8.1 pKi 34
pKi 8.1 [34]
NNC 11-1607 Hs Full agonist 8.1 pKi 16
pKi 8.1 [16]
NNC 11-1314 Hs Full agonist 7.1 – 7.7 pKi 16
pKi 7.1 – 7.7 [16]
xanomeline Hs Partial agonist 7.2 – 7.4 pKi 86,94
pKi 7.2 – 7.4 [86,94]
sabcomeline Hs Partial agonist 7.0 pKi 94
pKi 7.0 [94]
arecaidine propargyl ester Hs Full agonist 5.7 pKi 34
pKi 5.7 [34]
acetylcholine Rn Full agonist 5.6 pKi 15
pKi 5.6 [15]
arecoline Hs Full agonist 5.4 pKi 34
pKi 5.4 [34]
oxotremorine Hs Full agonist 5.3 pKi 34
pKi 5.3 [34]
McN-A-343 Hs Partial agonist 5.0 – 5.3 pKi 70
pKi 5.0 – 5.3 [70]
pilocarpine Hs Partial agonist 5.1 pKi 34
pKi 5.1 [34]
milameline Hs Partial agonist 5.1 pKi 94
pKi 5.1 [94]
oxotremorine-M Hs Full agonist 5.1 pKi 34
pKi 5.1 [34]
acetylcholine Hs Full agonist 4.5 – 5.4 pKi 15,34,44
pKi 4.5 – 5.4 [15,34,44]
methylfurmethide Hs Full agonist 4.6 pKi 34
pKi 4.6 [34]
bethanechol Hs Full agonist 4.2 pKi 34
pKi 4.2 [34]
carbachol Hs Full agonist 4.0 – 4.4 pKi 15,34,94
pKi 4.0 – 4.4 [15,34,94]
carbachol Rn Full agonist 4.2 pKi 15
pKi 4.2 [15]
furmethide Hs Full agonist 4.1 pKi 34
pKi 4.1 [34]
(+)aceclidine Hs Full agonist 5.7 pEC50 22
pEC50 5.7 [22]
(-)aceclidine Hs Partial agonist 5.1 pEC50 22
pEC50 5.1 [22]
View species-specific agonist tables
Agonist Comments
Please consult references [9,23,46,70,84,92] for further details of the activity of some of the ligands in this list.
McN-A-343 has been found to be a partial agonist at the M3 receptor [70,84]. However, in reference [46] it was found to be inactive in a study of GTPase activation.
Oxotremorine has been found to be a full agonist [23,70,84] and a partial agonist [46,70] at the M3 receptor.
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
[3H]QNB Hs Antagonist 10.4 pKd 64
pKd 10.4 (Kd 3.98x10-11 M) [64]
[3H]N-methyl scopolamine Rn Antagonist 10.0 pKd 15,84
pKd 10.0 [15,84]
[3H]N-methyl scopolamine Hs Antagonist 8.6 – 10.4 pKd 14-15,32-35,37,44
pKd 8.6 – 10.4 (Kd 3.98x10-11 – 2.51x10-9 M) [14-15,32-35,37,44]
[3H]darifenacin Hs Antagonist 9.5 pKd 74
pKd 9.5 (Kd 3.16x10-10 M) [74]
biperiden Hs Antagonist 8.41 pKd 6
pKd 8.41 (Kd 3.9x10-9 M) [6]
tiotropium Hs Antagonist 11.1 pKi 18
pKi 11.1 [18]
N-methyl scopolamine Hs Antagonist 10.4 pKi 18
pKi 10.4 [18]
propantheline Hs Antagonist 10.0 pKi 33
pKi 10.0 [33]
clidinium Hs Antagonist 9.6 pKi 18
pKi 9.6 [18]
ipratropium Hs Antagonist 9.3 – 9.8 pKi 18,32
pKi 9.3 – 9.8 [18,32]
scopolamine Hs Antagonist 9.4 pKi 33
pKi 9.4 [33]
atropine Hs Antagonist 8.9 – 9.8 pKi 10,18,32-33,64,74
pKi 8.9 – 9.8 [10,18,32-33,64,74]
4-DAMP Hs Antagonist 9.3 pKi 20
pKi 9.3 [20]
4-DAMP Rn Antagonist 9.2 pKi 36
pKi 9.2 [36]
darifenacin Hs Antagonist 9.1 pKi 32
pKi 9.1 [32]
atropine Rn Antagonist 8.7 – 9.3 pKi 15,36
pKi 8.7 – 9.3 [15,36]
silahexocyclium Hs Antagonist 8.9 pKi 10
pKi 8.9 [10]
hexocyclium Hs Antagonist 8.9 pKi 10
pKi 8.9 [10]
p-F-HHSiD Rn Antagonist 8.0 pKi 36
pKi 8.0 [36]
HHSiD Hs Antagonist 7.7 – 8.0 pKi 10,24
pKi 7.7 – 8.0 [10,24]
hexahydrodifenidol Hs Antagonist 7.8 pKi 10
pKi 7.8 [10]
p-F-HHSiD Hs Antagonist 7.3 – 7.9 pKi 24,33
pKi 7.3 – 7.9 [24,33]
AFDX384 Hs Antagonist 7.2 pKi 20
pKi 7.2 [20]
himbacine Hs Antagonist 6.9 – 7.2 pKi 35,58
pKi 6.9 – 7.2 [35,58]
pirenzepine Rn Antagonist 6.7 pKi 36
pKi 6.7 [36]
methoctramine Hs Antagonist 6.3 – 6.9 pKi 10,24,74
pKi 6.3 – 6.9 [10,24,74]
guanylpirenzepine Rn Antagonist 6.2 pKi 83
pKi 6.2 [83]
pirenzepine Hs Antagonist 5.6 – 6.7 pKi 10,24,33,35,64
pKi 5.6 – 6.7 [10,24,33,35,64]
otenzepad Hs Antagonist 6.1 pKi 10,24
pKi 6.1 [10,24]
VU0255035 Hs Antagonist 6.1 pKi 72
pKi 6.1 [72]
lithocholylcholine Hs Antagonist 6.0 pKi 15
pKi 6.0 [15]
lithocholylcholine Rn Antagonist 6.0 pKi 15
pKi 6.0 [15]
otenzepad Rn Antagonist 6.0 pKi 36
pKi 6.0 [36]
MT3 Hs Antagonist <6.0 pKi 35
pKi <6.0 [35]
View species-specific antagonist tables
Antagonist Comments
Biperiden is an approved drug antagonist of muscarinic acetylcholine receptors. We have tagged the M1 subtype as the drug's primary target as affinity is 10-fold higher at this receptor subtype [6].
Allosteric Regulators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
alcuronium Hs Negative 5.8 pKd 34
pKd 5.8 [34]
vincamine Hs Neutral 5.7 pKd 34
pKd 5.7 [34]
WIN 51,708 Hs Negative 5.5 pKd 49
pKd 5.5 [49]
eburnamonine Hs Neutral 5.2 pKd 34
pKd 5.2 [34]
WIN 62,577 Hs Positive 5.1 pKd 49
pKd 5.1 [49]
Gö 7874 Hs Negative 5.1 pKd 48
pKd 5.1 [48]
strychnine Hs Negative 4.2 – 5.7 pKd 34,44
pKd 4.2 – 5.7 [34,44]
thiochrome Hs Neutral 4.4 pKd 45
pKd 4.4 [45]
brucine Hs Negative 3.6 – 4.0 pKd 34,47
pKd 3.6 – 4.0 [34,47]
N-benzyl brucine Hs Negative 3.8 pKd 47
pKd 3.8 [47]
N-benzyl brucine Hs Positive 3.8 pKd 47
pKd 3.8 [47]
N-chloromethyl-brucine Hs Negative 3.3 pKd 47
pKd 3.3 [47]
N-chloromethyl-brucine Hs Positive 3.3 pKd 47
pKd 3.3 [47]
brucine N-oxide Hs Neutral 2.5 pKd 47
pKd 2.5 [47]
brucine N-oxide Hs Positive 2.5 pKd 47
pKd 2.5 [47]
WIN 62,577 Hs Positive - - 4
[4]
N-chloromethyl-brucine Hs Positive - - 4
[4]
Primary Transduction Mechanisms
Transducer Effector/Response
Gq/G11 family Phospholipase C stimulation
References:  8,63
Tissue Distribution
Lung.
Species:  Human
Technique:  Radioligand binding.
References:  53
Ciliary muscle.
Species:  Human
Technique:  In situ hybridisation and Northern blotting.
References:  100
Esophageal smooth muscle.
Species:  Human
Technique:  Radioligand binding.
References:  67
Bladder.
Species:  Human
Technique:  RT-PCR.
References:  80
CNS: cerebral cortex, corpus striatum, hippocampus, thalamus, hypothalamus, midbrain, pons-medulla.
Species:  Mouse
Technique:  Radioligand binding.
References:  60
Intestinal smooth muscle.
Species:  Rat
Technique:  Radioligand binding.
References:  13
Heart: intrinsic neurons.
Species:  Rat
Technique:  in situ hybridisation.
References:  31
Gastric smooth muscle.
Species:  Rat
Technique:  RT-PCR.
References:  52
CNS: pons.
Species:  Rat
Technique:  Radioligand binding.
References:  3
CNS: basal forebrain, parabigeminal nucleus, pedunculopontine and laterodorsal tegmental nuclei, cranial nerve nuclei.
Species:  Rat
Technique:  in situ hybridisation.
References:  81
CNS: cerebral cortex, hippocampu, corpus striatum, olfactory tubercle, midbrain, pons-medulla, cerebellum.
Species:  Rat
Technique:  Immunoprecipitation.
References:  97
CNS: hippocampus.
Species:  Rat
Technique:  immunocytochemistry.
References:  51
CNS: limbic cortical regions, striatum, hippocampus, anterior thalamic nuclei, superior colliculus, pontine nuclei.
Species:  Rat
Technique:  immunocytochemistry.
References:  50
Vestibular system.
Species:  Rat
Technique:  RT-PCR.
References:  82
Salivary gland: striated and interlobular duct cells.
Species:  Rat
Technique:  Immunohistochemistry.
References:  73
Expression Datasets

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays
Measurement of PI hydrolysis in CHO cells transfected with the human M3 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Stimulation of PI hydrolysis.
References:  16
Measurement of IP3 levels in CHO cells transfected with the rat M3 receptor.
Species:  Rat
Tissue:  CHO cells.
Response measured:  Stimulation of IP3 accumulation.
References:  15
Measurement of IP1 levels in murine fibroblast cells (B82) transfected with the rat M3 receptor.
Species:  Rat
Tissue:  B82 cells.
Response measured:  Stimulation of IP1 accumulation.
References:  36
Measurement of cAMP and Ca2+ levels in rat parotid cells endogenously expressing the M3 receptor.
Species:  Rat
Tissue:  Parotid cells.
Response measured:  Inhibition of cAMP accumulation and stimulation of Ca2+ mobilisation.
References:  61
Measurement of IP levels in CHO cells transfected with the human M3 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Stimulation of IP accumulation.
References:  70,87
Measurement of IP levels in human right atrial slices.
Species:  Human
Tissue:  Atrial slices.
Response measured:  Stimulation of IP formation.
References:  93
Measurement of IP levels in isolated rat ventricular cardiomyocytes.
Species:  Rat
Tissue:  Isolated ventricular cardiomyocytes.
Response measured:  Stimulation of IP formation.
References:  68
Measurement of neuronal nitric oxide synthetase activity in CHO cells transfected with the M3 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Increase in NO synthetase activity.
References:  85
Measurement of ERK1/2 activity in COS-7 cells transfected with the human M3 receptor.
Species:  Human
Tissue:  COS-7 cells.
Response measured:  Increase in ERK1/2 activity.
References:  71
Measurement of ERK1/2 activity in CHO cells transfected with the human M3 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Increase in ERK1/2 activity.
References:  11
Measurement of ERK1/2 activity in human SK-N-BE2(C) cells endogenously expressing the M3 receptor.
Species:  Human
Tissue:  SK-N-BE2(C) cells.
Response measured:  Increase in ERK1/2 activity.
References:  39
Measurement of the effects of a ligand on the level, or rate, of binding of GTPγ35S to membranes.
Species:  Human
Tissue:  CHO cells.
Response measured:  The binding of GTPγ35S to G proteins coupled to the receptor.
References:  5,43-46,48-49
Measurement of the effects of a ligand on the rate of hydrolysis of GTP by G proteins in membranes.
Species:  Human
Tissue:  CHO cell membranes.
Response measured:  Generation of 32Pi from [γ-32P]GTP.
References:  46
Physiological Functions
Vasodilation.
Species:  Rat
Tissue:  Thoracic aortic rings.
References:  38
Vasodilation
Species:  Mouse
Tissue:  Thoracic aortic rings.
References:  38
Stimulation of pancreatic insulin and glucagon release.
Species:  Mouse
Tissue:  In vivo.
References:  19
Bronchoconstriction.
Species:  Rat
Tissue:  Isolated lung.
References:  66
Modulation of salivary gland function.
Species:  Rat
Tissue:  In vivo.
References:  78
Modulation of excitatory transmission.
Species:  Rat
Tissue:  Mesencephalic slices.
References:  30
Gastric acid secretion.
Species:  Rat
Tissue:  Gastric parietal cells.
References:  65
Modulation of insulin secretion.
Species:  Rat
Tissue:  Isolated pancreatic islets.
References:  69
Vasodilation.
Species:  Rat
Tissue:  Pulmonary artery.
References:  57
Stimulation of urination.
Species:  Rat
Tissue:  In vivo.
References:  40
Contraction.
Species:  Human
Tissue:  Urinary bladder detrusor muscle.
References:  17
Contraction.
Species:  Rat
Tissue:  Urinary bladder detrusor muscle.
References:  62
Contraction.
Species:  Human
Tissue:  Esophageal smooth muscle.
References:  67
Contraction.
Species:  Rat
Tissue:  Ileum.
References:  13
Physiological Consequences of Altering Gene Expression
M3 receptor knockout mice exhibit impaired gastric acid secretion.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  1-2
M3 receptor knockout mice exhibit reduced gastric pepsinogen secretion.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  95
Thoracic aortic rings from M3 receptor knockout mice exhibit reduced agonist-induced relaxation compared to those from wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  38
Smooth muscle preparations (gallbladder, urinary bladder, stomach fundus, trachea, ileum) from M3 receptor knockout mice exhibit reduced agonist-induced contractions compared to wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  21,55,75-76
M3 receptor knockout mice show reduced adiposity and serum insulin and leptin levels, and exhibit reduced food intake.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  96
Lung slices from M3 receptor knockout mice exhibit reduced agonist-induced bronchoconstriction compared to wild-type mice.
This bronchoconstriction is completely abolished in M2/M3 double knockout mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  77
M3 receptor knockout mice exhibit abolished agonist-induced or vagally-stimulated bronchoconstriction in vivo.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  25
Isolated coronary arteries and aortic rings from M3 receptor knockout mice exhibit a reduction in agonist-induced dilation compared to wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  42
M3 receptor knockout mice exhibit alterations in paradoxical sleep.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  29
M3 receptor knockout mice exhibit growth retardation, increased pupil size and reduced salivary secretion.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  55
Striatal slices from M3 receptor knockout mice exhibit an increase in muscarinic agonist-induced potentiation of dopamine release.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  99
M3 receptor knockout mice exhibit abolished agonist-induced PLC activation and insulin secretion from pancreatic islets.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  98
M3 receptor knockout mice exhibit altered ventilatory pattern and chemosensitivity.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  7
M3 receptor knockout mice exhibit impaired salivation.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  59
M3 receptor knockout mice exhibit abolished agonist-induced pancreatic insulin and glucagon release as seen in wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  19
Transgenic mice overexpressing the M3 receptor in pancreatic β-cells exhibit increased glucose tolerance and insulin release. They are resistant to diet-induced glucose intolerance and hyperglycemia.
Species:  Mouse
Tissue: 
Technique:  Transgenesis.
References:  28
Mice that selectively lack the M3 receptor in pancreatic β-cells exhibit decreased glucose tolerance and impaired insulin release.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  28
M3 receptor knockout mice express an increase in basal and total energy expenditure.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  27
Smooth muscle preparations (gallbladder, urinary bladder, stomach fundus, trachea) from M3 receptor knockout mice exhibit reduced agonist-induced contractions compared to wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  55,75-76
Phenotypes, Alleles and Disease Models Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:88398  MP:0004994 abnormal brain wave pattern PMID: 16110248 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac
MGI:88398  MP:0001663 abnormal digestive system physiology PMID: 11959688 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:88398  MP:0003194 abnormal frequency of paradoxical sleep PMID: 16110248 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:88398  MP:0005085 abnormal gallbladder physiology PMID: 11961069 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0002078 abnormal glucose homeostasis PMID: 11242080 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
B6.129X1-Chrm3
MGI:88398  MP:0002503 abnormal histamine physiology PMID: 15691866 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ
MGI:88398  MP:0002945 abnormal inhibitory postsynaptic currents PMID: 12859343 
Chrm1tm1Kano|Chrm3tm1Mmt Chrm1tm1Kano/Chrm1tm1Kano,Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88396  MGI:88398  MP:0002945 abnormal inhibitory postsynaptic currents PMID: 12859343 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac
MGI:88398  MP:0002133 abnormal respiratory system physiology PMID: 11959688 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ
MGI:88398  MP:0005310 abnormal salivary gland physiology PMID: 15146045 
Chrm1tm1Kano|Chrm3tm1Mmt Chrm1tm1Kano/Chrm1tm1Kano,Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88396  MGI:88398  MP:0005310 abnormal salivary gland physiology PMID: 15146045 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88398  MP:0000538 abnormal urinary bladder morphology PMID: 10944224 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac
MGI:88398  MP:0010386 abnormal urinary bladder physiology PMID: 11959688 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:88398  MP:0001945 bronchoconstriction PMID: 14645675 
Chrm2tm1Jwe|Chrm3tm1Jwe Chrm2tm1Jwe/Chrm2tm1Jwe,Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S4/SvJae * 129S6/SvEvTac * CF-1
MGI:88397  MGI:88398  MP:0001945 bronchoconstriction PMID: 14645675 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88398  MP:0001265 decreased body size PMID: 10944224 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0005534 decreased body temperature PMID: 11242080 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88398  MP:0001262 decreased body weight PMID: 10944224 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0001262 decreased body weight PMID: 11242080  15220195 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
129S6/SvEvTac-Chrm3
MGI:88398  MP:0001262 decreased body weight PMID: 11242080 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac
MGI:88398  MP:0001262 decreased body weight PMID: 11959688 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0002696 decreased circulating glucagon level PMID: 15220195 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0005560 decreased circulating glucose level PMID: 15220195 
Chrm3tm2.1Jwe|Tg(Alb-cre)21Mgn Chrm3tm2.1Jwe/Chrm3tm2.1Jwe,Tg(Alb-cre)21Mgn/0
involves: 129S6/SvEvTac * C57BL/6 * DBA * FVB/N
MGI:2176226  MGI:88398  MP:0005560 decreased circulating glucose level PMID: 19752163 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0002727 decreased circulating insulin level PMID: 11242080  15220195 
Chrm3+|Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3+
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0002727 decreased circulating insulin level PMID: 15220195 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0005668 decreased circulating leptin level PMID: 11242080 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0002644 decreased circulating triglyceride level PMID: 11242080 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
B6.129X1-Chrm3
MGI:88398  MP:0000505 decreased digestive secretion PMID: 15691866 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0003910 decreased eating behavior PMID: 11242080 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0002711 decreased glucagon secretion PMID: 15220195 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0009283 decreased gonadal fat pad weight PMID: 11242080 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
129S6/SvEvTac-Chrm3
MGI:88398  MP:0009283 decreased gonadal fat pad weight PMID: 11242080 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0003059 decreased insulin secretion PMID: 15220195 
Chrm3tm2Jwe|Tg(Ins2-cre)25Mgn Chrm3tm2Jwe/Chrm3tm2Jwe,Tg(Ins2-cre)25Mgn/0
involves: 129S6/SvEvTac * C57BL/6 * DBA
MGI:2176225  MGI:88398  MP:0003059 decreased insulin secretion PMID: 16753580 
Chrm3+|Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3+
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0003059 decreased insulin secretion PMID: 15220195 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ
MGI:88398  MP:0000623 decreased salivation PMID: 15146045 
Chrm1tm1Kano|Chrm3tm1Mmt Chrm1tm1Kano/Chrm1tm1Kano,Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88396  MGI:88398  MP:0000623 decreased salivation PMID: 15146045 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88398  MP:0000623 decreased salivation PMID: 10944224 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:88398  MP:0005591 decreased vasodilation PMID: 15130910 
Chrm2tm1Minm|Chrm3tm1Mmt Chrm2tm1Minm/Chrm2tm1Minm,Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88397  MGI:88398  MP:0000539 distended urinary bladder PMID: 12486155 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88398  MP:0000539 distended urinary bladder PMID: 10944224 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88398  MP:0000519 hydronephrosis PMID: 10944224 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:88398  MP:0009454 impaired contextual conditioning behavior PMID: 20439723 
Chrm3tm1Abt Chrm3tm1Abt/Chrm3tm1Abt
involves: 129X1/SvJ * C57BL/6
MGI:88398  MP:0009454 impaired contextual conditioning behavior PMID: 20439723 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88398  MP:0000741 impaired contractility of detrusor smooth muscle PMID: 10944224 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ
MGI:88398  MP:0000742 impaired contractility of ileal smooth muscle PMID: 12486155 
Chrm2tm1Minm|Chrm3tm1Mmt Chrm2tm1Minm/Chrm2tm1Minm,Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88397  MGI:88398  MP:0000742 impaired contractility of ileal smooth muscle PMID: 12486155 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88398  MP:0000742 impaired contractility of ileal smooth muscle PMID: 10944224 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:88398  MP:0009456 impaired cued conditioning behavior PMID: 20439723 
Chrm3tm1Abt Chrm3tm1Abt/Chrm3tm1Abt
involves: 129X1/SvJ * C57BL/6
MGI:88398  MP:0009456 impaired cued conditioning behavior PMID: 20439723 
Chrm3tm2Jwe|Tg(Ins2-cre)25Mgn Chrm3tm2Jwe/Chrm3tm2Jwe,Tg(Ins2-cre)25Mgn/0
involves: 129S6/SvEvTac * C57BL/6 * DBA
MGI:2176225  MGI:88398  MP:0005293 impaired glucose tolerance PMID: 16753580 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ
MGI:88398  MP:0000740 impaired smooth muscle contractility PMID: 12486155 
Chrm2tm1Minm|Chrm3tm1Mmt Chrm2tm1Minm/Chrm2tm1Minm,Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88397  MGI:88398  MP:0000740 impaired smooth muscle contractility PMID: 12486155 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:88398  MP:0000740 impaired smooth muscle contractility PMID: 11961069 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac
MGI:88398  MP:0000740 impaired smooth muscle contractility PMID: 11959688 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0005292 improved glucose tolerance PMID: 15220195 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ
MGI:88398  MP:0003911 increased drinking behavior PMID: 15146045 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0002891 increased insulin sensitivity PMID: 11242080 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ
MGI:88398  MP:0002546 mydriasis PMID: 12486155 
Chrm2tm1Minm|Chrm3tm1Mmt Chrm2tm1Minm/Chrm2tm1Minm,Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88397  MGI:88398  MP:0002546 mydriasis PMID: 12486155 
Chrm3tm1Mmt Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88398  MP:0002546 mydriasis PMID: 10944224 
Chrm2tm1Minm|Chrm3tm1Mmt Chrm2tm1Minm/Chrm2tm1Minm,Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88397  MGI:88398  MP:0001732 postnatal growth retardation PMID: 12486155 
Chrm3tm1Jwe Chrm3tm1Jwe/Chrm3tm1Jwe
involves: 129S6/SvEvTac * C57BL/6J
MGI:88398  MP:0001263 weight loss PMID: 11242080 
Clinically-Relevant Mutations and Pathophysiology
Disease:  Eagle-Barrett syndrome
OMIM:  100100
Orphanet:  2970
References:  88
Mutations not determined
General Comments
For reviews on muscarinic receptor knockout mice see [12,56,89-91].
Available Assays
DiscoveRx PathHunter® eXpress CHRM3 U2OS β-Arrestin GPCR Assay (Cat no. 93-0860E3CP0M)
PathHunter® U2OS CHRM3 β-Arrestin Cell Line (Cat no. 93-0860C3)
more info

REFERENCES

1. Aihara T, Fujishita T, Kanatani K, Furutani K, Nakamura E, Taketo MM, Matsui M, Chen D, Okabe S. (2003) Impaired gastric secretion and lack of trophic responses to hypergastrinemia in M3 muscarinic receptor knockout mice. Gastroenterology125: 1774-1784. [PMID:14724830]

2. Aihara T, Nakamura Y, Taketo MM, Matsui M, Okabe S. (2005) Cholinergically stimulated gastric acid secretion is mediated by M(3) and M(5) but not M(1) muscarinic acetylcholine receptors in mice. Am J Physiol Gastrointest Liver Physiol288: G1199-G1207. [PMID:15691866]

3. Baghdoyan HA. (1997) Location and quantification of muscarinic receptor subtypes in rat pons: implications for REM sleep generation. Am J Physiol273: R896-R904. [PMID:9321865]

4. Birdsall NJ, Lazareno S. (2005) Allosterism at muscarinic receptors: ligands and mechanisms. Mini Rev Med Chem5: 523-543. [PMID:15974931]

5. Birdsall NJM, Farries T, Gharagozloo P, Kobayashi S, Lazareno S, Sugimoto M. (1999) Subtype selective positive cooperative interactions between brucine analogues and acetylcholine at muscarinic receptors: functional studies. Mol. Pharmacol.55: 778-786. [PMID:10101037]

6. Bolden C, Cusack B, Richelson E. (1992) Antagonism by antimuscarinic and neuroleptic compounds at the five cloned human muscarinic cholinergic receptors expressed in Chinese hamster ovary cells. J. Pharmacol. Exp. Ther.260 (2): 576-80. [PMID:1346637]

7. Boudinot E, Yamada M, Wess J, Champagnat J, Foutz AS. (2004) Ventilatory pattern and chemosensitivity in M1 and M3 muscarinic receptor knockout mice. Respir Physiol Neurobiol139: 237-245. [PMID:15122990]

8. Bräuner-Osborne H, Brann MR. (1996) Pharmacology of muscarinic acetylcholine receptor subtypes (m1-m5): high throughput assays in mammalian cells. Eur J Pharmacol295: 93-102. [PMID:8925880]

9. Bräuner-Osborne H, Ebert B, Brann MR, Falch E, Krogsgaard-Larsen P. (1996) Functional partial agonism at cloned human muscarinic acetylcholine receptors. Eur J Pharmacol313: 145-150. [PMID:8905341]

10. Buckley NJ, Bonner TI, Buckley CM, Brann MR. (1989) Antagonist binding properties of five cloned muscarinic receptors expressed in CHO-K1 cells. Mol Pharmacol35: 469-476. [PMID:2704370]

11. Budd DC, Rae A, Tobin AB. (1999) Activation of the mitogen-activated protein kinase pathway by a Gq/11-coupled muscarinic receptor is independent of receptor internalization. J Biol Chem274: 12355-12360. [PMID:10212206]

12. Bymaster FP, McKinzie DL, Felder CC, Wess J. (2003) Use of M1-M5 muscarinic receptor knockout mice as novel tools to delineate the physiological roles of the muscarinic cholinergic system. Neurochem Res28: 437-442. [PMID:12675128]

13. Candell LM, Yun SH, Tran LL, Ehlert FJ. (1990) Differential coupling of subtypes of the muscarinic receptor to adenylate cyclase and phosphoinositide hydrolysis in the longitudinal muscle of the rat ileum. Mol Pharmacol38: 689-697. [PMID:2172776]

14. Cembala TM, Sherwin JD, Tidmarsh MD, Appadu BL, Lambert DG. (1998) Interaction of neuromuscular blocking drugs with recombinant human m1-m5 muscarinic receptors expressed in Chinese hamster ovary cells. Br J Pharmacol125: 1088-1094. [PMID:9846649]

15. Cheng K, Khurana S, Chen Y, Kennedy RH, Zimniak P, Raufman JP. (2002) Lithocholylcholine, a bile acid/acetylcholine hybrid, is a muscarinic receptor antagonist. J Pharmacol Exp Ther303: 29-35. [PMID:12235229]

16. Christopoulos A, Grant MK, Ayoubzadeh N, Kim ON, Sauerberg P, Jeppesen L, El-Fakahany EE. (2001) Synthesis and pharmacological evaluation of dimeric muscarinic acetylcholine receptor agonists. J Pharmacol Exp Ther298: 1260-1268. [PMID:11504829]

17. D'Agostino G, Bolognesi ML, Lucchelli A, Vicini D, Balestra B, Spelta V, Melchiorre C, Tonini M. (2000) Prejunctional muscarinic inhibitory control of acetylcholine release in the human isolated detrusor: involvement of the M4 subtype. Br. J. Pharmacol.129: 493-500. [PMID:10711347]

18. Dowling MR, Charlton SJ. (2006) Quantifying the association and dissociation rates of unlabelled antagonists at the muscarinic M(3) receptor. Br J Pharmacol148: 927-937. [PMID:16847442]

19. Duttaroy A, Zimliki CL, Gautam D, Cui Y, Mears D, Wess J. (2004) Muscarinic stimulation of pancreatic insulin and glucagon release is abolished in m3 muscarinic acetylcholine receptor-deficient mice. Diabetes53: 1714-1720. [PMID:15220195]

20. Dörje F, Wess J, Lambrecht G, Tacke R, Mutschler E, Brann MR. (1991) Antagonist binding profiles of five cloned human muscarinic receptor subtypes. J. Pharmacol. Exp. Ther.256 (2): 727-33. [PMID:1994002]

21. Ehlert FJ, Griffin MT, Abe DM, Vo TH, Taketo MM, Manabe T, Matsui M. (2005) The M2 muscarinic receptor mediates contraction through indirect mechanisms in mouse urinary bladder. J Pharmacol Exp Ther313: 368-378. [PMID:15608083]

22. Ehlert FJ, Griffin MT, Glidden PF. (1996) The interaction of the enantiomers of aceclidine with subtypes of the muscarinic receptor. J Pharmacol Exp Ther279: 1335-1344. [PMID:8968358]

23. Ehlert FJ, Griffin MT, Sawyer GW, Bailon R. (1999) A simple method for estimation of agonist activity at receptor subtypes: comparison of native and cloned M3 muscarinic receptors in guinea pig ileum and transfected cells. J Pharmacol Exp Ther289: 981-992. [PMID:10215678]

24. Esqueda EE, Gerstin EH, Griffin MT, Ehlert FJ. (1996) Stimulation of cyclic AMP accumulation and phosphoinositide hydrolysis by M3 muscarinic receptors in the rat peripheral lung. Biochem Pharmacol52: 643-658. [PMID:8759038]

25. Fisher JT, Vincent SG, Gomeza J, Yamada M, Wess J. (2004) Loss of vagally mediated bradycardia and bronchoconstriction in mice lacking M2 or M3 muscarinic acetylcholine receptors. FASEB J18: 711-713. [PMID:14977875]

26. Forsythe SM, Kogut PC, McConville JF, Fu Y, McCauley JA, Halayko AJ, Liu HW, Kao A, Fernandes DJ, Bellam S, Fuchs E, Sinha S, Bell GI, Camoretti-Mercado B, Solway J. (2002) Structure and transcription of the human m3 muscarinic receptor gene. Am J Respir Cell Mol Biol26: 298-305. [PMID:11867338]

27. Gautam D, Gavrilova O, Jeon J, Pack S, Jou W, Cui Y, Li JH, Wess J. (2006) Beneficial metabolic effects of M(3) muscarinic acetylcholine receptor deficiency. Cell Metab4: 363-375. [PMID:17084710]

28. Gautam D, Han SJ, Hamdan FF, Jeon J, Li B, Li JH, Cui Y, Mears D, Lu H, Deng C, Heard T, Wess J. (2006) A critical role for beta cell M3 muscarinic acetylcholine receptors in regulating insulin release and blood glucose homeostasis in vivo. Cell Metab3: 449-461. [PMID:16753580]

29. Goutagny R, Comte JC, Salvert D, Gomeza J, Yamada M, Wess J, Luppi PH, Fort P. (2005) Paradoxical sleep in mice lacking M3 and M2/M4 muscarinic receptors. Neuropsychobiology52: 140-146. [PMID:16110248]

30. Grillner P, Bonci A, Svensson TH, Bernardi G, Mercuri NB. (1999) Presynaptic muscarinic (M3) receptors reduce excitatory transmission in dopamine neurons of the rat mesencephalon. Neuroscience91: 557-565. [PMID:10366013]

31. Hassall CJ, Stanford SC, Burnstock G, Buckley NJ. (1993) Co-expression of four muscarinic receptor genes by the intrinsic neurons of the rat and guinea-pig heart. Neuroscience56: 1041-1048. [PMID:8284034]

32. Hirose H, Aoki I, Kimura T, Fujikawa T, Numazawa T, Sasaki K, Sato A, Hasegawa T, Nishikibe M, Mitsuya M, Ohtake N, Mase T, Noguchi K. (2001) Pharmacological properties of (2R)-N-[1-(6-aminopyridin-2-ylmethyl)piperidin-4-yl]-2-[(1R)-3,3-difluorocyclopentyl]-2-hydroxy-2-phenylacetamide: a novel mucarinic antagonist with M(2)-sparing antagonistic activity. J Pharmacol Exp Ther297: 790-797. [PMID:11303071]

33. Huang F, Buchwald P, Browne CE, Farag HH, Wu WM, Ji F, Hochhaus G, Bodor N. (2001) Receptor binding studies of soft anticholinergic agents. AAPS PharmSci3: E30-E30. [PMID:12049493]

34. Jakubik J, Bacakova L, El-Fakahany EE, Tucek S. (1997) Positive cooperativity of acetylcholine and other agonists with allosteric ligands on muscarinic receptors. Mol. Pharmacol.52: 172-179. [PMID:9224827]

35. Jolkkonen M, Van Giersbergen PLM, Hellman U, Wernstedt C, Karlsson E. (1994) A toxin from the green mamba Dendroaspis angusticeps; amino acid sequence and selectivity for muscarinic m4 receptors. FEBS Lett.352: 91-94. [PMID:7925952]

36. Kashihara K, Varga EV, Waite SL, Roeske WR, Yamamura HI. (1992) Cloning of the rat M3, M4 and M5 muscarinic acetylcholine receptor genes by the polymerase chain reaction (PCR) and the pharmacological characterization of the expressed genes. Life Sci51: 955-971. [PMID:1325587]

37. Khattar SK, Bora RS, Priyadarsiny P, Gupta D, Khanna A, Narayanan KL, Babu V, Chugh A, Saini KS. (2006) High level stable expression of pharmacologically active human M1-M5 muscarinic receptor subtypes in mammalian cells. Biotechnol Lett28: 121-129. [PMID:16369696]

38. Khurana S, Yamada M, Wess J, Kennedy RH, Raufman JP. (2005) Deoxycholyltaurine-induced vasodilation of rodent aorta is nitric oxide- and muscarinic M(3) receptor-dependent. Eur J Pharmacol517: 103-110. [PMID:15964566]

39. Kim JY, Yang MS, Oh CD, Kim KT, Ha MJ, Kang SS, Chun JS. (1999) Signalling pathway leading to an activation of mitogen-activated protein kinase by stimulating M3 muscarinic receptor. Biochem J337: 275-280. [PMID:9882625]

40. Kono M, Nakamura Y, Ishiura Y, Komatsu K, Kontani H, Namiki M. (2006) Central muscarinic receptor subtypes regulating voiding in rats. J Urol175: 353-357. [PMID:16406941]

41. Kruse AC, Hu J, Pan AC, Arlow DH, Rosenbaum DM, Rosemond E, Green HF, Liu T, Chae PS, Dror RO et al.. (2012) Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature482 (7386): 552-6. [PMID:22358844]

42. Lamping KG, Wess J, Cui Y, Nuno DW, Faraci FM. (2004) Muscarinic (M) receptors in coronary circulation: gene-targeted mice define the role of M2 and M3 receptors in response to acetylcholine. Arterioscler Thromb Vasc Biol24: 1253-1258. [PMID:15130910]

43. Lazareno S, Birdsall NJM. (1993) Pharmacological characterization of acetylcholine-stimulated [35S]-GTPγS binding mediated by human muscarinic m1-m4 receptors, antagonist studies. Br. J. Pharmacol.109: 1120-1127. [PMID:8401923]

44. Lazareno S, Birdsall NJM. (1995) Detection, quantitation and verification of allosteric interactions of agents with labelled and unlabelled ligands at G protein-coupled receptors, interactions of strychnine and acetylcholine at muscarinic receptors. Mol. Pharmacol.48: 362-378. [PMID:7651370]

45. Lazareno S, Dolezal V, Popham A, Birdsall NJ. (2004) Thiochrome enhances acetylcholine affinity at muscarinic M4 receptors: receptor subtype selectivity via cooperativity rather than affinity. Mol Pharmacol65: 257-266. [PMID:14722259]

46. Lazareno S, Farries T, Birdsall NJM. (1993) Pharmacological characterization of guanine nucleotide exchange reactions in membranes from CHO cells stably transfected with human muscarinic receptors M1 - M4. Life Sci.52: 449-456. [PMID:8441327]

47. Lazareno S, Gharagozloo P, Kuonen D, Popham A, Birdsall NJM. (1998) Subtype selective positive cooperative interactions between brucine analogues and acetylcholine at muscarinic receptors, radioligand binding studies. Mol. Pharmacol.53: 573-589. [PMID:9495826]

48. Lazareno S, Popham A, Birdsall NJ. (2000) Allosteric interactions of staurosporine and other indolocarbazoles with N-[methyl-(3)H]scopolamine and acetylcholine at muscarinic receptor subtypes: identification of a second allosteric site. Mol Pharmacol58: 194-207. [PMID:10860942]

49. Lazareno S, Popham A, Birdsall NJ. (2002) Analogs of WIN 62,577 define a second allosteric site on muscarinic receptors. Mol Pharmacol62: 1492-1505. [PMID:12435818]

50. Levey AI, Edmunds SM, Heilman CJ, Desmond TJ, Frey KA. (1994) Localization of muscarinic m3 receptor protein and M3 receptor binding in rat brain. Neuroscience63: 207-221. [PMID:7898649]

51. Levey AI, Edmunds SM, Koliatsos V, Wiley RG, Heilman CJ. (1995) Expression of m1-m4 muscarinic acetylcholine receptor proteins in rat hippocampus and regulation by cholinergic innervation. J Neurosci15: 4077-4092. [PMID:7751967]

52. Lin S, Kajimura M, Takeuchi K, Kodaira M, Hanai H, Kaneko E. (1997) Expression of muscarinic receptor subtypes in rat gastric smooth muscle: effect of M3 selective antagonist on gastric motility and emptying. Dig Dis Sci42: 907-914. [PMID:9149041]

53. Mak JC, Barnes PJ. (1989) Muscarinic receptor subtypes in human and guinea pig lung. Eur J Pharmacol164: 223-230. [PMID:2759174]

54. Matsui M, Araki Y, Karasawa H, Matsubara N, Taketo MM, Seldin MF. (1999) Mapping of five subtype genes for muscarinic acetylcholine receptor to mouse chromosomes. Genes Genet Syst74: 15-21. [PMID:10549128]

55. Matsui M, Motomura D, Karasawa H, Fujikawa T, Jiang J, Komiya Y, Takahashi S, Taketo MM. (2000) Multiple functional defects in peripheral autonomic organs in mice lacking muscarinic acetylcholine receptor gene for the M3 subtype. Proc Natl Acad Sci U S A97: 9579-9584. [PMID:10944224]

56. Matsui M, Yamada S, Oki T, Manabe T, Taketo MM, Ehlert FJ. (2004) Functional analysis of muscarinic acetylcholine receptors using knockout mice. Life Sci75: 2971-2981. [PMID:15474550]

57. McCormack DG, Mak JC, Minette P, Barnes PJ. (1988) Muscarinic receptor subtypes mediating vasodilation in the pulmonary artery. Eur J Pharmacol158: 293-297. [PMID:3253104]

58. Miller JH, Aagaard PJ, Gibson VA, McKinney M. (1992) Binding and functional selectivity of himbacine for cloned and neuronal muscarinic receptors. J Pharmacol Exp Ther263: 663-667. [PMID:1331410]

59. Nakamura T, Matsui M, Uchida K, Futatsugi A, Kusakawa S, Matsumoto N, Nakamura K, Manabe T, Taketo MM, Mikoshiba K. (2004) M(3) muscarinic acetylcholine receptor plays a critical role in parasympathetic control of salivation in mice. J Physiol558: 561-575. [PMID:15146045]

60. Oki T, Takagi Y, Inagaki S, Taketo MM, Manabe T, Matsui M, Yamada S. (2005) Quantitative analysis of binding parameters of [3H]N-methylscopolamine in central nervous system of muscarinic acetylcholine receptor knockout mice. Brain Res Mol Brain Res133: 6-11. [PMID:15661360]

61. Olianas MC, Ingianni A, Maullu C, Adem A, Karlsson E, Onali P. (1999) Selectivity profile of muscarinic toxin 3 in functional assays of cloned and native receptors. J Pharmacol Exp Ther288: 164-170. [PMID:9862767]

62. Orman B, Sterin-Borda L, Reina S, Borda ES. (2005) Neuronal nitric oxide synthase activity in rat urinary bladder detrusor: participation in M3 and M4 muscarinic receptor function. Auton Autacoid Pharmacol25: 93-100. [PMID:15955028]

63. Peralta EG, Ashkenazi A, Winslow JW, Ramachandran J, Capon DJ. (1988) Differential regulation of PI hydrolysis and adenylyl cyclase by muscarinic receptor subtypes. Nature334: 434-437. [PMID:2841607]

64. Peralta EG, Ashkenazi A, Winslow JW, Smith DH, Ramachandran J, Capon DJ. (1987) Distinct primary structures, ligand binding properties and tissue-specific expression of four human muscarinic acetylcholine receptors. EMBO J.6: 3923-3929. [PMID:3443095]

65. Pfeiffer A, Rochlitz H, Noelke B, Tacke R, Moser U, Mutschler E, Lambrecht G. (1990) Muscarinic receptors mediating acid secretion in isolated rat gastric parietal cells are of M3 type. Gastroenterology98: 218-222. [PMID:2293581]

66. Post MJ, Te Biesebeek JD, Doods HN, Wemer J, Van Rooji HH, Porsius AJ. (1991) Functional characterization of the muscarinic receptor in rat lungs. Eur J Pharmacol202: 67-72. [PMID:1723953]

67. Preiksaitis HG, Krysiak PS, Chrones T, Rajgopal V, Laurier LG. (2000) Pharmacological and molecular characterization of muscarinic receptor subtypes in human esophageal smooth muscle. J Pharmacol Exp Ther295: 879-888. [PMID:11082420]

68. Pönicke K, Heinroth-Hoffmann I, Brodde OE. (2003) Demonstration of functional M3-muscarinic receptors in ventricular cardiomyocytes of adult rats. Br J Pharmacol138: 156-160. [PMID:12522085]

69. Renuka TR, Robinson R, Paulose CS. (2006) Increased Insulin Secretion by Muscarinic M1 and M3 Receptor Function from Rat Pancreatic Islets in vitro. Neurochem Res31: 313-320. [PMID:16733808]

70. Richards MH, Van Giersbergen PL. (1995) Human muscarinic receptors expressed in A9L and CHO cells, activation by full and partial agonists. Br. J. Pharmacol.114: 1242-1249. [PMID:7620715]

71. Rosenblum K, Futter M, Jones M, Hulme EC, Bliss TV. (2000) ERKI/II regulation by the muscarinic acetylcholine receptors in neurons. J Neurosci20: 977-985. [PMID:10648702]

72. Sheffler DJ, Williams R, Bridges TM, Xiang Z, Kane AS, Byun NE, Jadhav S, Mock MM, Zheng F, Lewis LM et al.. (2009) A novel selective muscarinic acetylcholine receptor subtype 1 antagonist reduces seizures without impairing hippocampus-dependent learning. Mol. Pharmacol.76 (2): 356-68. [PMID:19407080]

73. Shida T, Tokunaga A, Kondo E, Ueda Y, Ohno K, Saika T, Kiyama H, Tohyama M. (1993) Expression of muscarinic and nicotinic receptor mRNA in the salivary gland of rats: a study by in situ hybridization histochemistry. Brain Res Mol Brain Res17: 335-339. [PMID:8510505]

74. Smith CM, Wallis RM. (1997) Characterisation of [3H]-darifenacin as a radioligand for the study of muscarinic M3 receptors. J. Recept. Signal Transduct. Res.17: 177-184. [PMID:9029489]

75. Stengel PW, Cohen ML. (2002) Muscarinic receptor knockout mice: role of muscarinic acetylcholine receptors M(2), M(3), and M(4) in carbamylcholine-induced gallbladder contractility. J Pharmacol Exp Ther301: 643-650. [PMID:11961069]

76. Stengel PW, Yamada M, Wess J, Cohen ML. (2002) M(3)-receptor knockout mice: muscarinic receptor function in atria, stomach fundus, urinary bladder, and trachea. Am J Physiol Regul Integr Comp Physiol282: R1443-R1449. [PMID:11959688]

77. Struckmann N, Schwering S, Wiegand S, Gschnell A, Yamada M, Kummer W, Wess J, Haberberger RV. (2003) Role of muscarinic receptor subtypes in the constriction of peripheral airways: studies on receptor-deficient mice. Mol Pharmacol64: 1444-1451. [PMID:14645675]

78. Tobin G, Giglio D, Götrick B. (2002) Studies of muscarinic receptor subtypes in salivary gland function in anaesthetized rats. Auton Neurosci100: 1-9. [PMID:12422954]

79. Tseng J, Erbe CB, Kwitek AE, Jacob HJ, Popper P, Wackym PA. (2002) Radiation hybrid mapping of five muscarinic acetylcholine receptor subtype genes in Rattus norvegicus. Hear Res174: 86-92. [PMID:12433399]

80. Tyagi S, Tyagi P, Van-le S, Yoshimura N, Chancellor MB, de Miguel F. (2006) Qualitative and quantitative expression profile of muscarinic receptors in human urothelium and detrusor. J Urol176: 1673-1678. [PMID:16952712]

81. Vilaro MT, Palacios JM, Mengod G. (1994) Multiplicity of muscarinic autoreceptor subtypes? Comparison of the distribution of cholinergic cells and cells containing mRNA for five subtypes of muscarinic receptors in the brain. Brain Res. Mol. Brain Res.21: 30-46. [PMID:8164520]

82. Wackym PA, Chen CT, Ishiyama A, Pettis RM, López IA, Hoffman L. (1996) Muscarinic acetylcholine receptor subtype mRNAs in the human and rat vestibular periphery. Cell Biol Int20: 187-192. [PMID:8673067]

83. Waelbroeck M, De Neef P, Domenach V, Vandermeers-Piret MC, Vandermeers A. (1996) Binding of the labelled muscarinic toxin 125I-MT1 to rat brain muscarinic M1 receptors. Eur. J. Pharmacol.305 (1-3): 187-92. [PMID:8813552]

84. Wang SZ, El-Fakahany EE. (1993) Application of transfected cell lines in studies of functional receptor subtype selectivity of muscarinic agonists. J Pharmacol Exp Ther266: 237-243. [PMID:7687290]

85. Wang SZ, Lee SY, Zhu SZ, El-Fakahany EE. (1996) Differential coupling of m1, m3, and m5 muscarinic receptors to activation of neuronal nitric oxide synthase. Pharmacology53: 271-280. [PMID:8990485]

86. Watson J, Brough S, Coldwell MC, Gager T, Ho M, Hunter AJ, Jerman J, Middlemiss DN, Riley GJ, Brown AM. (1998) Functional effects of the muscarinic receptor agonist, xanomeline, at 5-HT1 and 5-HT2 receptors. Br J Pharmacol125: 1413-1420. [PMID:9884068]

87. Watson N, Daniels DV, Ford APDW, Eglen RM, Hegde SS. (1999) Comparative pharmacology of recombinant human M3 and M5 muscarinic receptors expressed in CHO-K1 cells. Br. J. Pharmacol.127: 590-596. [PMID:10385263]

88. Weber S, Thiele H, Mir S, Toliat MR, Sozeri B, Reutter H, Draaken M, Ludwig M, Altmüller J, Frommolt P et al.. (2011) Muscarinic Acetylcholine Receptor M3 Mutation Causes Urinary Bladder Disease and a Prune-Belly-like Syndrome. Am. J. Hum. Genet.89 (5): 668-74. [PMID:22077972]

89. Wess J. (2003) Novel insights into muscarinic acetylcholine receptor function using gene targeting technology. Trends Pharmacol Sci24: 414-420. [PMID:12915051]

90. Wess J. (2004) Muscarinic acetylcholine receptor knockout mice: novel phenotypes and clinical implications. Annu Rev Pharmacol Toxicol44: 423-450. [PMID:14744253]

91. Wess J, Duttaroy A, Zhang W, Gomeza J, Cui Y, Miyakawa T, Bymaster FP, McKinzie L, Felder CC, Lamping KG, Faraci FM, Deng C, Yamada M. (2003) M1-M5 muscarinic receptor knockout mice as novel tools to study the physiological roles of the muscarinic cholinergic system. Receptors Channels9: 279-290. [PMID:12893539]

92. Widzowski DV, Bialobok P, Kucera KE, Mihut R, Sitar S, Knowles M, Stagnitto M, Howell A, McCreedy S, Machulskis A, Gordon J, Marler M, Wu ESC, Mullen G, Triggle DJ, Blosser J. (1997) Development of a pharmacological target profile for muscarinic agonists. Drug development research40: 117-132.

93. Willmy-Matthes P, Leineweber K, Wangemann T, Silber RE, Brodde OE. (2003) Existence of functional M3-muscarinic receptors in the human heart. Naunyn Schmiedebergs Arch Pharmacol368: 316-319. [PMID:14520506]

94. Wood MD, Murkitt KL, Ho M, Watson JM, Brown F, Hunter AJ, Middlemiss DN. (1999) Functional comparison of muscarinic partial agonists at muscarinic receptor subtypes hM1, hM2, hM3, hM4 and hM5 using microphysiometry. Br J Pharmacol126: 1620-1624. [PMID:10323594]

95. Xie G, Drachenberg C, Yamada M, Wess J, Raufman JP. (2005) Cholinergic agonist-induced pepsinogen secretion from murine gastric chief cells is mediated by M1 and M3 muscarinic receptors. Am J Physiol Gastrointest Liver Physiol289: G521-G529. [PMID:15933222]

96. Yamada M, Miyakawa T, Duttaroy A, Yamanaka A, Moriguchi T, Makita R, Ogawa M, Chou CJ, Xia B, Crawley JN, Felder CC, Deng CX, Wess J. (2001) Mice lacking the M3 muscarinic acetylcholine receptor are hypophagic and lean. Nature410: 207-212. [PMID:11242080]

97. Yasuda RP, Ciesla W, Flores LR, Wall SJ, Li M, Satkus SA, Weisstein JS, Spagnola BV, Wolfe BB. (1993) Development of antisera selective for m4 and m5 muscarinic cholinergic receptors: distribution of m4 and m5 receptors in rat brain. Mol Pharmacol43: 149-157. [PMID:8429821]

98. Zawalich WS, Zawalich KC, Tesz GJ, Taketo MM, Sterpka J, Philbrick W, Matsui M. (2004) Effects of muscarinic receptor type 3 knockout on mouse islet secretory responses. Biochem Biophys Res Commun315: 872-876. [PMID:14985093]

99. Zhang W, Yamada M, Gomeza J, Basile AS, Wess J. (2002) Multiple muscarinic acetylcholine receptor subtypes modulate striatal dopamine release, as studied with M1-M5 muscarinic receptor knock-out mice. J Neurosci22: 6347-6352. [PMID:12151512]

100. Zhang X, Hernandez MR, Yang H, Erickson K. (1995) Expression of muscarinic receptor subtype mRNA in the human ciliary muscle. Invest Ophthalmol Vis Sci36: 1645-1657. [PMID:7541396]

To cite this database page, please use the following:

Nigel J. M. Birdsall, David A. Brown, Noel J. Buckley, Arthur Christopoulos, Richard M. Eglen, Frederick Ehlert, Rudolf Hammer, Heinz J. Kilbinger, Günter Lambrecht, Fred Mitchelson, Ernst Mutschler, Neil M. Nathanson, Roy D. Schwarz, Andrew B. Tobin, Jurgen Wess.
Acetylcholine receptors (muscarinic): M3 receptor. Last modified on 31/03/2014. Accessed on 18/04/2014. IUPHAR database (IUPHAR-DB), http://www.iuphar-db.org/DATABASE/ObjectDisplayForward?objectId=15.

Contact us | Print | Back to top | Help
Copyright © 2014 IUPHAR