Nomenclature: Kv1.3

Family: Voltage-gated potassium channels

Annotation status:  image of a green circle Annotated and expert reviewed. Please contact us if you can help with updates. 


Gene and Protein Information
Species TM P Loops AA Chromosomal Location Gene Symbol Gene Name Reference
Human 6 0 575 1p13.3 KCNA3 potassium voltage-gated channel, shaker-related subfamily, member 3 2,20,24
Mouse 6 0 528 3 F2.3 Kcna3 potassium voltage-gated channel, shaker-related subfamily, member 3 10
Rat 6 0 525 2q34 Kcna3 potassium voltage-gated channel, shaker-related subfamily, member 3 16,59
Previous and Unofficial Names
potassium voltage gated channel, shaker related subfamily, member 3
potassium voltage-gated channel subfamily A member 3
potassium voltage-gated channel, shaker-related subfamily, member 3
voltage-gated potassium channel subunit Kv1.3
voltage-gated potassium channel subunit Kv3
Database Links
ChEMBL Target
Ensembl Gene
Entrez Gene
GenitoUrinary Development Molecular Anatomy Project
Human Protein Reference Database
PharmGKB Gene
Protein Ontology (PRO)
RefSeq Nucleotide
RefSeq Protein
UniGene Hs.
Associated Proteins
Heteromeric Pore-forming Subunits
Name References
Kvβ2 6,44
Auxiliary Subunits
Name References
Not determined
Other Associated Proteins
Name References
SAP97 6,27
β1 integrin 6,36
Functional Characteristics
Ion Selectivity and Conductance
Species:  Human
Rank order:  K+ [18.0 - 9.0 (median: 13.0) pS] > Rb+ [10.0 pS] > NH4+ [1.3 pS] > Cs+ [0.26 pS]
References:  8
Species:  Human
Macroscopic current rectification:  Delayed Rectifier K+ current
References:  8
Voltage Dependence
  V0.5 (mV)  τ (msec)  Reference  Cell type  Species 
Activation  -33.0 2.6 6 T cells Rat
Inactivation  - -
  V0.5 (mV)  τ (msec)  Reference  Cell type  Species 
Activation  -14.1 - 16 T cells Rat
Inactivation  -33.0 612.0 16
  V0.5 (mV)  τ (msec)  Reference  Cell type  Species 
Activation  -30.0 - 24-25 Xenopus laevis oocyte Mouse
Inactivation  - 55.0 – 250.0 24
  V0.5 (mV)  τ (msec)  Reference  Cell type  Species 
Activation  -25.0 - 58 L929 Rat
Inactivation  -44.0 - 58
Associated subunits (Human)
Kv β1 and Kv β2
Channel Blockers
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Concentration range (M) Holding voltage (mV) Reference
charybdotoxin Hs - 7.5 – 9.7 (median: 8.7) pKd - - 2,23,52
pKd 7.5 – 9.7 (median: 8.7) [2,23,52]
charybdotoxin Rn - 8.6 pKd - - 25
pKd 8.6 [25]
5-(4-phenoxybutoxy)psoralen Mm - 8.7 pEC50 - - 55
pEC50 8.7 [55]
OSK1-K16-D20 Mm - 11.5 pIC50 - - 47
pIC50 11.5 [47]
ShK Toxin Rn - 12.0 – 9.9 (median: 11.0) pIC50 - - 31,46,50
pIC50 12.0 – 9.9 (median: 11.0) [31,46,50]
ShK(L5) Rn - 10.2 – 10.9 pIC50 - - 4
pIC50 10.2 – 10.9 [4]
margatoxin Hs - 10.3 – 10.0 pIC50 - - 22-23
pIC50 10.3 – 10.0 [22-23]
kaliotoxin Rn - 9.2 pIC50 - - 25
pIC50 9.2 [25]
correolide Hs - 7.1 pIC50 - - 19
pIC50 7.1 (IC50 8.6x10-8 M) [19]
View species-specific channel blocker tables
Channel Blocker Comments
No differences in activity of blockers reported between mouse, rat and human Kv1.3.

Kv1.3 is blocked by a large number of other scorpion and sea anemone toxins including HsTX1 (12 ρM), OSK1 (14 ρM), Pi2 (50 ρM), ShK-Dap22 (23 - 110 ρM), agiotoxin-2 (200 ρM), and BgK (39ηM). (Data in brackets are IC50 values). This is in addition to the classical K+ channel blockers such as 4-AP (195 μM), TEA (10 mM) and the small molecules Psora-4 (3 ηM), PAC (149 ηM), UK-78282 (200 ηM), and verapamil (6 μM). For extensive reviews of these and other blockers, see [9,11].
Tissue Distribution
T- and B- lymphocytes, alveolar macrophages, monocyte derived macrophages, prostate epithelium, platelets, cerebral cortical grey matter
Species:  Human
Technique:  Immunohistochemistry, RT-PCR, Electrophysiology, RNA : GNF / SymAtlas
References:  6,13-14,39,41-42,48,66
Olfactory bulb, peritoneal and bone marrow derived macrophages, osteoclasts
Species:  Mouse
Technique:  Northern Blot, Immunohistochemistry, Electrophysiology
References:  1,18,63,68
Brain synaptic membranes, olfactory bulb, hippocampal microglia, cultured microglia, osteoclasts, cultured oligodendrocyte progenitor cells, platelets, choroid plexus, testis
Species:  Rat
Technique:  Immunohistochemistry, Northern Blot, RT-PCR, Electrophysiology
References:  1,12,17,21,29-30,32,35,42,56
Kidney and colon epithelia
Species:  Rabbit
Technique:  Immunohistochemistry
References:  26
Tissue Distribution Comments
Two mouse knock-out studies report effects on adipocytes [38,67].
Functional Assays
86 Rb+ flux in CHO cells expressing Kv1.3 / T-lymphocytes
Species:  Human
Tissue:  CHO cells / T-lymphocytes
Response measured:  Rb+ efflux following depolarisation with high K+
References:  29
Patch clamp of T-lymphocytes
Species:  Mouse
Tissue:  Isolated T-cells
Response measured:  K+ current by patch clamp
References:  24,37,40
Patch clamp of T-lymphocytes
Species:  Rat
Tissue:  Isolated T-cells
Response measured:  K+ current by patch clamp
References:  5
Patch clamp of T-lymphocytes
Species:  Human
Tissue:  Isolated T-cells
Response measured:  K+ current by patch clamp
References:  2,6,8,14,20,36,65
125I-charybdotoxin or 125I-HgTX1 (A19Y / Y37F) binding assay
Species:  Human
Tissue:  T-lymphocytes
Response measured:  Displacement of 125I-charybdotoxin or 125I-HgTX1 (A19Y / Y37F)
References:  45,49,53
Kv1.3 clone expressed in L929 cells
Species:  Mouse
Tissue:  L929 cells
Response measured:  K+ current by patch clamp
References:  4,25,47,55
[3H] Dihydrocorreolide or [(3H)]-trans-NPCO-DSC binding assay in HEK293 cells expressing Kv1.3
Species:  Rat
Tissue:  HEK293 cells
Response measured:  Binding or Displacement
References:  28,54
Kv1.3 clone expression
Species:  Human
Tissue:  CHO or HEK293 cells
Response measured:  K+ current by patch clamp
References:  29,46
Kv1.3 clone expression
Species:  Rat
Tissue:  Xenopus laevis Oocytes
Response measured:  K+ current by patch clamp
References:  16,31,59
Physiological Functions
Homomeric Kv1.3 channels in the olfactory bulb neurons carry 60 - 80% of the Kv current in these cells which shows an involvement in signal transduction. Kv1.3 -/- mice have a "Super Smeller" phenotype with a lower threshold for smell detection.
Species:  Mouse
Tissue:  Olfactory neurons, olfactory cortex
References:  7,18
Kv1.3 is involved in rat oligodendrocyte progenitor proliferation and G1/S phase progression.
Species:  Rat
Tissue:  Oligodendrocyte progenitor cells
References:  1,12
Kv1.3 is involved in proliferation, oxidative burst and microglia mediated neuronal killing
Species:  Rat
Tissue:  Cultured rat microglia
References:  21,32,35
Kv1.3 is involved in T-lymphocyte volume regulation and possibly apoptosis.
Species:  Human
Tissue:  Jurkat T-lymphocytes
References:  57,60
Kv1.3 is involved in T-lymphocyte volume regulation and possibly apoptosis.
Species:  Mouse
Tissue:  T-lymphocytes (CTLL-2)
References:  15
Kv1.3 is a voltage gated potassium channel in human T-lymphocytes, and regulates membrane potential and calcium signalling. Kv1.3 blockade results in inhibition of T-cell proliferation and cytokine secretion. It is more important in CCR7-effector memory T-cells than in naive and central memory T-cells.
Species:  Human
Tissue:  T-lymphocytes
References:  6,9,11,14,23,43,65
Kv1.3 is involved in the translocation of the glucose transporter, GLUT4, to the plasma membrane in adipocytes (based on biophysical properties of current, probably heteromultimer of various Kv1 channels and not a homomultimer of Kv1.3). This suggests that it is important in insulin sensitivity.
Species:  Mouse
Tissue:  Mouse adipocytes
References:  7,38,67
In macrophages, Kv1.3 is probably found as a heteromultimer with Kv1.5.
Kv1.3 blockers suppress proliferation of mouse bone marrow derived macrophages.
Species:  Mouse
Tissue:  Macrophages
References:  63-64
Physiological Functions Comments
Studies have also been carried out in macaque monkeys [51] and swine [34].
Phenotypes, Alleles and Disease Models Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Kcna3tm1Gvd Kcna3tm1Gvd/Kcna3tm1Gvd
involves: 129S1/Sv * C57BL/6
MGI:96660  MP:0002078 abnormal glucose homeostasis PMID: 14981264 
Kcna3tm1Gvd Kcna3tm1Gvd/Kcna3tm1Gvd
involves: 129S1/Sv * C57BL/6
MGI:96660  MP:0004130 abnormal muscle cell glucose uptake PMID: 12588802 
Kcna3tm1Gvd Kcna3tm1Gvd/Kcna3tm1Gvd
involves: 129S1/Sv * C57BL/6
MGI:96660  MP:0001262 decreased body weight PMID: 12588802 
Kcna3tm1Gvd Kcna3tm1Gvd/Kcna3tm1Gvd
involves: 129S1/Sv * C57BL/6
MGI:96660  MP:0002727 decreased circulating insulin level PMID: 14981264 
Kcna3tm1Gvd Kcna3tm1Gvd/Kcna3tm1Gvd
involves: 129S1/Sv * C57BL/6
MGI:96660  MP:0008965 increased basal metabolism PMID: 12588802 
Kcna3tm1Gvd Kcna3tm1Gvd/Kcna3tm1Gvd
involves: 129S1/Sv * C57BL/6
MGI:96660  MP:0002891 increased insulin sensitivity PMID: 14981264 
Kcna3tm1Gvd Kcna3tm1Gvd/Kcna3tm1Gvd
involves: 129S1/Sv * C57BL/6
MGI:96660  MP:0005659 increased resistance to diet-induced obesity PMID: 12588802 
Kcna3tm1Lys Kcna3tm1Lys/Kcna3tm1Lys
involves: 129/Sv * C57BL/6
MGI:96660  MP:0002169 no abnormal phenotype detected PMID: 12878608 
Clinically-Relevant Mutations and Pathophysiology
Disease:  Multiple-Sclerosis, Type -1 Diabetes, Rheumatoid Arthritis, Psoriasis
OMIM:  126200, 222100, 604302, 177900
Side effects:  Inhibition of effector memory T-cells could potentially lead to reactivation of viral infections such as CMV.
Therapeutic use:  ShK derivative and PAP-1 are in clinical development
References:  3,5-6,34,62,65
Mutations not determined
Gene Expression and Pathophysiology
Kv1.3 expression is increased in activated effector memory T-cells and class-switched CD27+ memory B-cells. Naive and memory T-cells and IgD+ B-cells in contrast, up-regulate KCa3.1 following activation.
Tissue or cell type:  T-Lymphocytes
Pathophysiology:  Up-regulation of Kv1.3 has no real pathophysiological effect, but allows to selectively target effector memory T-cells.
Species:  Human
References:  6,65-66
Gene Expression and Pathophysiology Comments
Kv1.3 -/- mouse has no immune phenotype [33].
Biologically Significant Variants
Type:  Single nucleotide polymorphism
Species:  Human
Description:  T1645C is associated with imparied glucose tolerance and lower insulin sensitivity.
Amino acids:  1
References:  61
Biologically Significant Variant Comments
A total of 5 SNPs have been identified; T548C, G697T, A845G, T1645C, G2069A.
General Comments
Kv1.3 can coassemble with other members of the Kv1 family, in heteromultimers. It cannot, however, co-assemble with members of other Kv families.

Like other members of the family, it has an intronless coding region.


1. Arkett SA, Dixon J, Yang JN, Sakai DD, Minkin C, Sims SM. (1994) Mammalian osteoclasts express a transient potassium channel with properties of Kv1.3. Recept. Channels2 (4): 281-93. [PMID:7536610]

2. Attali B, Romey G, Honoré E, Schmid-Alliana A, Mattéi MG, Lesage F, Ricard P, Barhanin J, Lazdunski M. (1992) Cloning, functional expression, and regulation of two K+ channels in human T lymphocytes. J. Biol. Chem.267 (12): 8650-7. [PMID:1373731]

3. Beeton C, Barbaria J, Giraud P, Devaux J, Benoliel AM, Gola M, Sabatier JM, Bernard D, Crest M, Béraud E. (2001) Selective blocking of voltage-gated K+ channels improves experimental autoimmune encephalomyelitis and inhibits T cell activation. J. Immunol.166 (2): 936-44. [PMID:11145670]

4. Beeton C, Pennington MW, Wulff H, Singh S, Nugent D, Crossley G, Khaytin I, Calabresi PA, Chen CY, Gutman GA, Chandy KG. (2005) Targeting effector memory T cells with a selective peptide inhibitor of Kv1.3 channels for therapy of autoimmune diseases. Mol. Pharmacol.67 (4): 1369-81. [PMID:15665253]

5. Beeton C, Wulff H, Barbaria J, Clot-Faybesse O, Pennington M, Bernard D, Cahalan MD, Chandy KG, Béraud E. (2001) Selective blockade of T lymphocyte K(+) channels ameliorates experimental autoimmune encephalomyelitis, a model for multiple sclerosis. Proc. Natl. Acad. Sci. U.S.A.98 (24): 13942-7. [PMID:11717451]

6. Beeton C, Wulff H, Standifer NE, Azam P, Mullen KM, Pennington MW, Kolski-Andreaco A, Wei E, Grino A, Counts DR, Wang PH, LeeHealey CJ, S Andrews B, Sankaranarayanan A, Homerick D, Roeck WW, Tehranzadeh J, Stanhope KL, Zimin P, Havel PJ, Griffey S, Knaus HG, Nepom GT, Gutman GA, Calabresi PA, Chandy KG. (2006) Kv1.3 channels are a therapeutic target for T cell-mediated autoimmune diseases. Proc. Natl. Acad. Sci. U.S.A.103 (46): 17414-9. [PMID:17088564]

7. Biju KC, Marks DR, Mast TG, Fadool DA. (2008) Deletion of voltage-gated channel affects glomerular refinement and odorant receptor expression in the mouse olfactory system. J. Comp. Neurol.506 (2): 161-79. [PMID:18022950]

8. Cahalan MD, Chandy KG, DeCoursey TE, Gupta S. (1985) A voltage-gated potassium channel in human T lymphocytes. J. Physiol. (Lond.)358: 197-237. [PMID:2580081]

9. Chandy KG Wulff H Beeton C Calabresi P Gutman GA Pennington M. (2006) Kv1.3 Potassium Channel: Physiology, Pharmacology and Therapeutic Indications. in Voltage-gated Ion Channels as Drug Targets Edited by Triggle, D WILEY-VCH Weinheim. 214-272 [ISBN:3-527-31258-7]

10. Chandy KG, Williams CB, Spencer RH, Aguilar BA, Ghanshani S, Tempel BL, Gutman GA. (1990) A family of three mouse potassium channel genes with intronless coding regions. Science247 (4945): 973-5. [PMID:2305265]

11. Chandy KG, Wulff H, Beeton C, Pennington M, Gutman GA, Cahalan MD. (2004) K+ channels as targets for specific immunomodulation. Trends Pharmacol. Sci.25 (5): 280-9. [PMID:15120495]

12. Chittajallu R, Chen Y, Wang H, Yuan X, Ghiani CA, Heckman T, McBain CJ, Gallo V. (2002) Regulation of Kv1 subunit expression in oligodendrocyte progenitor cells and their role in G1/S phase progression of the cell cycle. Proc. Natl. Acad. Sci. U.S.A.99 (4): 2350-5. [PMID:11854528]

13. Coleman SK, Newcombe J, Pryke J, Dolly JO. (1999) Subunit composition of Kv1 channels in human CNS. J. Neurochem.73 (2): 849-58. [PMID:10428084]

14. DeCoursey TE, Chandy KG, Gupta S, Cahalan MD. (1984) Voltage-gated K+ channels in human T lymphocytes: a role in mitogenesis?. Nature307 (5950): 465-8. [PMID:6320007]

15. Deutsch C, Chen LQ. (1993) Heterologous expression of specific K+ channels in T lymphocytes: functional consequences for volume regulation. Proc. Natl. Acad. Sci. U.S.A.90 (21): 10036-40. [PMID:8234253]

16. Douglass J, Osborne PB, Cai YC, Wilkinson M, Christie MJ, Adelman JP. (1990) Characterization and functional expression of a rat genomic DNA clone encoding a lymphocyte potassium channel. J. Immunol.144 (12): 4841-50. [PMID:2351830]

17. Fadool DA, Levitan IB. (1998) Modulation of olfactory bulb neuron potassium current by tyrosine phosphorylation. J. Neurosci.18 (16): 6126-37. [PMID:9698307]

18. Fadool DA, Tucker K, Perkins R, Fasciani G, Thompson RN, Parsons AD, Overton JM, Koni PA, Flavell RA, Kaczmarek LK. (2004) Kv1.3 channel gene-targeted deletion produces "Super-Smeller Mice" with altered glomeruli, interacting scaffolding proteins, and biophysics. Neuron41 (3): 389-404. [PMID:14766178]

19. Felix JP, Bugianesi RM, Schmalhofer WA, Borris R, Goetz MA, Hensens OD, Bao JM, Kayser F, Parsons WH, Rupprecht K, Garcia ML, Kaczorowski GJ, Slaughter RS. (1999) Identification and biochemical characterization of a novel nortriterpene inhibitor of the human lymphocyte voltage-gated potassium channel, Kv1.3. Biochemistry38 (16): 4922-30. [PMID:10213593]

20. Folander K, Douglass J, Swanson R. (1994) Confirmation of the assignment of the gene encoding Kv1.3, a voltage-gated potassium channel (KCNA3) to the proximal short arm of human chromosome 1. Genomics23 (1): 295-6. [PMID:7829094]

21. Fordyce CB, Jagasia R, Zhu X, Schlichter LC. (2005) Microglia Kv1.3 channels contribute to their ability to kill neurons. J. Neurosci.25 (31): 7139-49. [PMID:16079396]

22. Garcia-Calvo M, Leonard RJ, Novick J, Stevens SP, Schmalhofer W, Kaczorowski GJ, Garcia ML. (1993) Purification, characterization, and biosynthesis of margatoxin, a component of Centruroides margaritatus venom that selectively inhibits voltage-dependent potassium channels. J. Biol. Chem.268 (25): 18866-74. [PMID:8360176]

23. Ghanshani S, Wulff H, Miller MJ, Rohm H, Neben A, Gutman GA, Cahalan MD, Chandy KG. (2000) Up-regulation of the IKCa1 potassium channel during T-cell activation. Molecular mechanism and functional consequences. J. Biol. Chem.275 (47): 37137-49. [PMID:10961988]

24. Grissmer S, Dethlefs B, Wasmuth JJ, Goldin AL, Gutman GA, Cahalan MD, Chandy KG. (1990) Expression and chromosomal localization of a lymphocyte K+ channel gene. Proc. Natl. Acad. Sci. U.S.A.87 (23): 9411-5. [PMID:2251283]

25. Grissmer S, Nguyen AN, Aiyar J, Hanson DC, Mather RJ, Gutman GA, Karmilowicz MJ, Auperin DD, Chandy KG. (1994) Pharmacological characterization of five cloned voltage-gated K+ channels, types Kv1.1, 1.2, 1.3, 1.5, and 3.1, stably expressed in mammalian cell lines. Mol. Pharmacol.45 (6): 1227-34. [PMID:7517498]

26. Grunnet M, Rasmussen HB, Hay-Schmidt A, Klaerke DA. (2003) The voltage-gated potassium channel subunit, Kv1.3, is expressed in epithelia. Biochim. Biophys. Acta1616 (1): 85-94. [PMID:14507422]

27. Hanada T, Lin L, Chandy KG, Oh SS, Chishti AH. (1997) Human homologue of the Drosophila discs large tumor suppressor binds to p56lck tyrosine kinase and Shaker type Kv1.3 potassium channel in T lymphocytes. J. Biol. Chem.272 (43): 26899-904. [PMID:9341123]

28. Hanner M, Schmalhofer WA, Green B, Bordallo C, Liu J, Slaughter RS, Kaczorowski GJ, Garcia ML. (1999) Binding of correolide to K(v)1 family potassium channels. Mapping the domains of high affinity interaction. J. Biol. Chem.274 (36): 25237-44. [PMID:10464244]

29. Helms LM, Felix JP, Bugianesi RM, Garcia ML, Stevens S, Leonard RJ, Knaus HG, Koch R, Wanner SG, Kaczorowski GJ, Slaughter RS. (1997) Margatoxin binds to a homomultimer of K(V)1.3 channels in Jurkat cells. Comparison with K(V)1.3 expressed in CHO cells. Biochemistry36 (12): 3737-44. [PMID:9132027]

30. Jacob A, Hurley IR, Goodwin LO, Cooper GW, Benoff S. (2000) Molecular characterization of a voltage-gated potassium channel expressed in rat testis. Mol. Hum. Reprod.6 (4): 303-13. [PMID:10729311]

31. Kalman K, Pennington MW, Lanigan MD, Nguyen A, Rauer H, Mahnir V, Paschetto K, Kem WR, Grissmer S, Gutman GA, Christian EP, Cahalan MD, Norton RS, Chandy KG. (1998) ShK-Dap22, a potent Kv1.3-specific immunosuppressive polypeptide. J. Biol. Chem.273 (49): 32697-707. [PMID:9830012]

32. Khanna R, Roy L, Zhu X, Schlichter LC. (2001) K+ channels and the microglial respiratory burst. Am. J. Physiol., Cell Physiol.280 (4): C796-806. [PMID:11245596]

33. Koni PA, Khanna R, Chang MC, Tang MD, Kaczmarek LK, Schlichter LC, Flavella RA. (2003) Compensatory anion currents in Kv1.3 channel-deficient thymocytes. J. Biol. Chem.278 (41): 39443-51. [PMID:12878608]

34. Koo GC, Blake JT, Talento A, Nguyen M, Lin S, Sirotina A, Shah K, Mulvany K, Hora D, Cunningham P, Wunderler DL, McManus OB, Slaughter R, Bugianesi R, Felix J, Garcia M, Williamson J, Kaczorowski G, Sigal NH, Springer MS, Feeney W. (1997) Blockade of the voltage-gated potassium channel Kv1.3 inhibits immune responses in vivo. J. Immunol.158 (11): 5120-8. [PMID:9164927]

35. Kotecha SA, Schlichter LC. (1999) A Kv1.5 to Kv1.3 switch in endogenous hippocampal microglia and a role in proliferation. J. Neurosci.19 (24): 10680-93. [PMID:10594052]

36. Levite M, Cahalon L, Peretz A, Hershkoviz R, Sobko A, Ariel A, Desai R, Attali B, Lider O. (2000) Extracellular K(+) and opening of voltage-gated potassium channels activate T cell integrin function: physical and functional association between Kv1.3 channels and beta1 integrins. J. Exp. Med.191 (7): 1167-76. [PMID:10748234]

37. Lewis RS, Cahalan MD. (1988) Subset-specific expression of potassium channels in developing murine T lymphocytes. Science239 (4841 Pt 1): 771-5. [PMID:2448877]

38. Li Y, Wang P, Xu J, Desir GV. (2006) Voltage-gated potassium channel Kv1.3 regulates GLUT4 trafficking to the plasma membrane via a Ca2+-dependent mechanism. Am. J. Physiol., Cell Physiol.290 (2): C345-51. [PMID:16403947]

39. Liang CZ, Guo QK, Hao ZY, Yang S, Wang DB, Wu LX, Liu C, Wang KX, Zhang XJ. (2006) K channel expression in prostate epithelium and its implications in men with chronic prostatitis. BJU Int.97 (1): 190-2. [PMID:16336354]

40. Liu QH, Fleischmann BK, Hondowicz B, Maier CC, Turka LA, Yui K, Kotlikoff MI, Wells AD, Freedman BD. (2002) Modulation of Kv channel expression and function by TCR and costimulatory signals during peripheral CD4(+) lymphocyte differentiation. J. Exp. Med.196 (7): 897-909. [PMID:12370252]

41. Mackenzie AB, Chirakkal H, North RA. (2003) Kv1.3 potassium channels in human alveolar macrophages. Am. J. Physiol. Lung Cell Mol. Physiol.285 (4): L862-8. [PMID:12909584]

42. Maruyama Y. (1987) A patch-clamp study of mammalian platelets and their voltage-gated potassium current. J. Physiol. (Lond.)391: 467-85. [PMID:2451010]

43. Matteson DR, Deutsch C. (1984) K channels in T lymphocytes: a patch clamp study using monoclonal antibody adhesion. Nature307 (5950): 468-71. [PMID:6320008]

44. McCormack K, McCormack T, Tanouye M, Rudy B, Stühmer W. (1995) Alternative splicing of the human Shaker K+ channel beta 1 gene and functional expression of the beta 2 gene product. FEBS Lett.370 (1-2): 32-6. [PMID:7649300]

45. Michne WF, Guiles JW, Treasurywala AM, Castonguay LA, Weigelt CA, Oconnor B, Volberg WA, Grant AM, Chadwick CC, Krafte DS. (1995) Novel inhibitors of potassium ion channels on human T lymphocytes. J. Med. Chem.38 (11): 1877-83. [PMID:7540207]

46. Middleton RE, Sanchez M, Linde AR, Bugianesi RM, Dai G, Felix JP, Koprak SL, Staruch MJ, Bruguera M, Cox R, Ghosh A, Hwang J, Jones S, Kohler M, Slaughter RS, McManus OB, Kaczorowski GJ, Garcia ML. (2003) Substitution of a single residue in Stichodactyla helianthus peptide, ShK-Dap22, reveals a novel pharmacological profile. Biochemistry42 (46): 13698-707. [PMID:14622016]

47. Mouhat S, Visan V, Ananthakrishnan S, Wulff H, Andreotti N, Grissmer S, Darbon H, De Waard M, Sabatier JM. (2005) K+ channel types targeted by synthetic OSK1, a toxin from Orthochirus scrobiculosus scorpion venom. Biochem. J.385 (Pt 1): 95-104. [PMID:15588251]

48. Nelson DJ, Jow B, Jow F. (1990) Whole-cell currents in macrophages: I. Human monocyte-derived macrophages. J. Membr. Biol.117 (1): 29-44. [PMID:2402007]

49. Nguyen A, Kath JC, Hanson DC, Biggers MS, Canniff PC, Donovan CB, Mather RJ, Bruns MJ, Rauer H, Aiyar J, Lepple-Wienhues A, Gutman GA, Grissmer S, Cahalan MD, Chandy KG. (1996) Novel nonpeptide agents potently block the C-type inactivated conformation of Kv1.3 and suppress T cell activation. Mol. Pharmacol.50 (6): 1672-9. [PMID:8967992]

50. Pennington MW, Byrnes ME, Zaydenberg I, Khaytin I, de Chastonay J, Krafte DS, Hill R, Mahnir VM, Volberg WA, Gorczyca W. (1995) Chemical synthesis and characterization of ShK toxin: a potent potassium channel inhibitor from a sea anemone. Int. J. Pept. Protein Res.46 (5): 354-8. [PMID:8567178]

51. Pereira LE, Villinger F, Wulff H, Sankaranarayanan A, Raman G, Ansari AA. (2007) Pharmacokinetics, toxicity, and functional studies of the selective Kv1.3 channel blocker 5-(4-phenoxybutoxy)psoralen in rhesus macaques. Exp. Biol. Med. (Maywood)232 (10): 1338-54. [PMID:17959847]

52. Sands SB, Lewis RS, Cahalan MD. (1989) Charybdotoxin blocks voltage-gated K+ channels in human and murine T lymphocytes. J. Gen. Physiol.93 (6): 1061-74. [PMID:2475579]

53. Schmalhofer WA, Bao J, McManus OB, Green B, Matyskiela M, Wunderler D, Bugianesi RM, Felix JP, Hanner M, Linde-Arias AR, Ponte CG, Velasco L, Koo G, Staruch MJ, Miao S, Parsons WH, Rupprecht K, Slaughter RS, Kaczorowski GJ, Garcia ML. (2002) Identification of a new class of inhibitors of the voltage-gated potassium channel, Kv1.3, with immunosuppressant properties. Biochemistry41 (24): 7781-94. [PMID:12056910]

54. Schmalhofer WA, Slaughter RS, Matyskiela M, Felix JP, Tang YS, Rupprecht K, Kaczorowski GJ, Garcia ML. (2003) Di-substituted cyclohexyl derivatives bind to two identical sites with positive cooperativity on the voltage-gated potassium channel, K(v)1.3. Biochemistry42 (16): 4733-43. [PMID:12705837]

55. Schmitz A, Sankaranarayanan A, Azam P, Schmidt-Lassen K, Homerick D, Hänsel W, Wulff H. (2005) Design of PAP-1, a selective small molecule Kv1.3 blocker, for the suppression of effector memory T cells in autoimmune diseases. Mol. Pharmacol.68 (5): 1254-70. [PMID:16099841]

56. Speake T, Kibble JD, Brown PD. (2004) Kv1.1 and Kv1.3 channels contribute to the delayed-rectifying K+ conductance in rat choroid plexus epithelial cells. Am. J. Physiol., Cell Physiol.286 (3): C611-20. [PMID:14602579]

57. Storey NM, Gómez-Angelats M, Bortner CD, Armstrong DL, Cidlowski JA. (2003) Stimulation of Kv1.3 potassium channels by death receptors during apoptosis in Jurkat T lymphocytes. J. Biol. Chem.278 (35): 33319-26. [PMID:12807917]

58. Stühmer W, Ruppersberg JP, Schröter KH, Sakmann B, Stocker M, Giese KP, Perschke A, Baumann A, Pongs O. (1989) Molecular basis of functional diversity of voltage-gated potassium channels in mammalian brain. EMBO J.8 (11): 3235-44. [PMID:2555158]

59. Swanson R, Marshall J, Smith JS, Williams JB, Boyle MB, Folander K, Luneau CJ, Antanavage J, Oliva C, Buhrow SA. (1990) Cloning and expression of cDNA and genomic clones encoding three delayed rectifier potassium channels in rat brain. Neuron4 (6): 929-39. [PMID:2361015]

60. Szabò I, Gulbins E, Apfel H, Zhang X, Barth P, Busch AE, Schlottmann K, Pongs O, Lang F. (1996) Tyrosine phosphorylation-dependent suppression of a voltage-gated K+ channel in T lymphocytes upon Fas stimulation. J. Biol. Chem.271 (34): 20465-9. [PMID:8702786]

61. Tschritter O, Machicao F, Stefan N, Schäfer S, Weigert C, Staiger H, Spieth C, Häring HU, Fritsche A. (2006) A new variant in the human Kv1.3 gene is associated with low insulin sensitivity and impaired glucose tolerance. J. Clin. Endocrinol. Metab.91 (2): 654-8. [PMID:16317062]

62. Valverde P, Kawai T, Taubman MA. (2004) Selective blockade of voltage-gated potassium channels reduces inflammatory bone resorption in experimental periodontal disease. J. Bone Miner. Res.19 (1): 155-64. [PMID:14753747]

63. Vicente R, Escalada A, Coma M, Fuster G, Sánchez-Tilló E, López-Iglesias C, Soler C, Solsona C, Celada A, Felipe A. (2003) Differential voltage-dependent K+ channel responses during proliferation and activation in macrophages. J. Biol. Chem.278 (47): 46307-20. [PMID:12923194]

64. Vicente R, Escalada A, Villalonga N, Texidó L, Roura-Ferrer M, Martín-Satué M, López-Iglesias C, Soler C, Solsona C, Tamkun MM, Felipe A. (2006) Association of Kv1.5 and Kv1.3 contributes to the major voltage-dependent K+ channel in macrophages. J. Biol. Chem.281 (49): 37675-85. [PMID:17038323]

65. Wulff H, Calabresi PA, Allie R, Yun S, Pennington M, Beeton C, Chandy KG. (2003) The voltage-gated Kv1.3 K(+) channel in effector memory T cells as new target for MS. J. Clin. Invest.111 (11): 1703-13. [PMID:12782673]

66. Wulff H, Knaus HG, Pennington M, Chandy KG. (2004) K+ channel expression during B cell differentiation: implications for immunomodulation and autoimmunity. J. Immunol.173 (2): 776-86. [PMID:15240664]

67. Xu J, Wang P, Li Y, Li G, Kaczmarek LK, Wu Y, Koni PA, Flavell RA, Desir GV. (2004) The voltage-gated potassium channel Kv1.3 regulates peripheral insulin sensitivity. Proc. Natl. Acad. Sci. U.S.A.101 (9): 3112-7. [PMID:14981264]

68. Ypey DL, Clapham DE. (1984) Development of a delayed outward-rectifying K+ conductance in cultured mouse peritoneal macrophages. Proc. Natl. Acad. Sci. U.S.A.81 (10): 3083-7. [PMID:6328495]

To cite this database page, please use the following:

K. George Chandy, Stephan Grissmer, George A. Gutman, Michel Lazdunski, David Mckinnon, Luis A. Pardo, Gail A. Robertson, Bernardo Rudy, Michael C. Sanguinetti, Walter Stühmer, Xiaoliang Wang.
Voltage-gated potassium channels: Kv1.3. Last modified on 11/02/2014. Accessed on 21/10/2014. IUPHAR database (IUPHAR-DB),

Contact us | Print | Back to top | Help
Copyright © 2014 IUPHAR