Nomenclature: M1 receptor

Family: Acetylcholine receptors (muscarinic)

Annotation status:  image of a green circle Annotated and expert reviewed. Please contact us if you can help with updates. 

Contents

Gene and Protein Information
class A G protein-coupled receptor
Species TM AA Chromosomal Location Gene Symbol Gene Name Reference
Human 7 460 11q13 CHRM1 cholinergic receptor, muscarinic 1 9,72
Mouse 7 460 19 A Chrm1 cholinergic receptor, muscarinic 1, CNS 62,80
Rat 7 460 1q43-q51 Chrm1 cholinergic receptor, muscarinic 1 45,70,85,90
Previous and Unofficial Names
m1
acetylcholine receptor, muscarinic 1
Cholinergic receptor muscarin 1
Cholinergic receptor, muscarin 1
M1 muscarinic acetylcholine receptor
cholinergic receptor, muscarinic 1
m1 muscarinic acetylcholine receptor protein
muscarinic acetylcholine receptor M1
muscarinic acetylcholine receptor 1
Chrm-1
M1R
AW495047
Database Links
ChEMBL Target
DrugBank Target
Ensembl Gene
Entrez Gene
GPCRDB
GeneCards
GenitoUrinary Development Molecular Anatomy Project
HomoloGene
Human Protein Reference Database
InterPro
KEGG Gene
OMIM
PharmGKB Gene
PhosphoSitePlus
Protein Ontology (PRO)
RefSeq Nucleotide
RefSeq Protein
TreeFam
UniGene Hs.
UniProtKB
Wikipedia
Natural/Endogenous Ligand(s)
acetylcholine
Agonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
NNC 11-1585 Hs Full agonist 9.9 pKi 17
pKi 9.9 [17]
pentylthio-TZTP Hs Full agonist 8.6 pKi 40
pKi 8.6 [40]
NNC 11-1607 Hs Full agonist 8.6 pKi 17
pKi 8.6 [17]
NNC 11-1314 Hs Full agonist 7.4 pKi 17
pKi 7.4 [17]
xanomeline Hs Partial agonist 6.7 – 7.9 pKi 18,41,97,107
pKi 6.7 – 7.9 [18,41,97,107]
sabcomeline Hs Partial agonist 6.7 pKi 107
pKi 6.7 [107]
arecaidine propargyl ester Hs Full agonist 6.4 pKi 40
pKi 6.4 [40]
AC-42 Hs Full agonist 6.2 pKi 48
pKi 6.2 [48]
oxotremorine Rn Partial agonist 6.0 pKi 64
pKi 6.0 [64]
arecoline Hs Full agonist 5.7 pKi 40
pKi 5.7 [40]
oxotremorine-M Rn Full agonist 5.6 pKi 64
pKi 5.6 [64]
oxotremorine Hs Partial agonist 5.5 pKi 40
pKi 5.5 [40]
arecoline Rn Partial agonist 5.3 pKi 64
pKi 5.3 [64]
pilocarpine Hs Partial agonist 5.1 pKi 40
pKi 5.1 [40]
oxotremorine-M Hs Full agonist 5.1 pKi 40
pKi 5.1 [40]
McN-A-343 Rn Partial agonist 5.1 pKi 64
pKi 5.1 [64]
acetylcholine Rn Full agonist 5.0 pKi 16
pKi 5.0 [16]
McN-A-343 Hs Partial agonist 4.8 – 5.2 pKi 76
pKi 4.8 – 5.2 [76]
pilocarpine Rn Partial agonist 4.9 pKi 64
pKi 4.9 [64]
milameline Hs Partial agonist 4.8 pKi 107
pKi 4.8 [107]
acetylcholine Hs Full agonist 4.3 – 4.9 pKi 40,50
pKi 4.3 – 4.9 [40,50]
methylfurmethide Hs Full agonist 4.6 pKi 40
pKi 4.6 [40]
(-)YM796 Hs Partial agonist 4.3 – 4.8 pKi 99
pKi 4.3 – 4.8 [99]
(±)YM796 Hs Partial agonist 4.1 – 4.7 pKi 99
pKi 4.1 – 4.7 [99]
carbachol Hs Full agonist 3.2 – 5.3 pKi 18,40,107
pKi 3.2 – 5.3 [18,40,107]
furmethide Hs Full agonist 4.1 pKi 40
pKi 4.1 [40]
bethanechol Hs Full agonist 4.0 pKi 40
pKi 4.0 [40]
carbachol Rn Full agonist 3.9 pKi 16
pKi 3.9 [16]
bethanechol Rn Full agonist 3.7 pKi 64
pKi 3.7 [64]
(+)aceclidine Hs Full agonist 5.4 pEC50 22
pEC50 5.4 [22]
(-)aceclidine Hs Partial agonist 5.0 pEC50 22
pEC50 5.0 [22]
View species-specific agonist tables
Agonist Comments
Please consult references [12,52,76,95,104] for further details of the activity of some of the ligands in this list.
Pilocarpine has been found to be a partial agonist [52,76,104] as well as a full agonist [95] at the M1 receptor.
Oxotremorine has been found to be a partial agonist [52,76,95] as well as a full agonist [76] at the M1 receptor.
Antagonists
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
[3H]QNB Hs Antagonist 10.6 – 10.8 pKd 19,72
pKd 10.6 – 10.8 (Kd 1.58x10-11 – 2.51x10-11 M) [19,72]
[3H]N-methyl scopolamine Rn Antagonist 9.7 pKd 16,95
pKd 9.7 [16,95]
[3H]N-methyl scopolamine Hs Antagonist 8.8 – 10.3 pKd 15,18-19,37,40-42,44,50
pKd 8.8 – 10.3 (Kd 5.01x10-11 – 1.58x10-9 M) [15,18-19,37,40-42,44,50]
biperiden Hs Antagonist 9.32 pKd 8
pKd 9.32 (Kd 4.8x10-10 M) [8]
[3H]darifenacin Hs Antagonist 8.8 pKd 83
pKd 8.8 [83]
[3H]pirenzepine Hs Antagonist 7.9 pKd 98
pKd 7.9 (Kd 1.4x10-8 M) [98]
MT7 Hs Antagonist 11.0 – 11.1 pKi 68
pKi 11.0 – 11.1 [68]
N-methyl scopolamine Hs Antagonist 9.9 pKi 25
pKi 9.9 [25]
propantheline Hs Antagonist 9.7 pKi 39
pKi 9.7 [39]
atropine Rn Antagonist 9.0 – 9.7 pKi 13,16,43
pKi 9.0 – 9.7 [13,16,43]
ipratropium Hs Antagonist 9.3 pKi 37
pKi 9.3 [37]
4-DAMP Hs Antagonist 9.2 pKi 21
pKi 9.2 [21]
atropine Hs Antagonist 8.5 – 9.6 pKi 18,25,37,39,72,83
pKi 8.5 – 9.6 [18,25,37,39,72,83]
scopolamine Hs Antagonist 9.0 pKi 39
pKi 9.0 [39]
4-DAMP Rn Antagonist 8.9 pKi 43
pKi 8.9 [43]
tripitramine Hs Antagonist 8.8 pKi 59
pKi 8.8 [59]
silahexocyclium Rn Antagonist 8.7 pKi 13
pKi 8.7 [13]
hexocyclium Rn Antagonist 8.6 pKi 13
pKi 8.6 [13]
darifenacin Hs Antagonist 8.3 pKi 37
pKi 8.3 [37]
hexahydrodifenidol Rn Antagonist 8.0 pKi 13
pKi 8.0 [13]
pirenzepine Rn Antagonist 7.8 – 7.9 pKi 13,43
pKi 7.8 – 7.9 [13,43]
methoctramine Rn Antagonist 7.8 pKi 13
pKi 7.8 [13]
VU0255035 Hs Antagonist 7.8 pKi 81
pKi 7.8 (Ki 1.487x10-8 M) [81]
HHSiD Hs Antagonist 7.7 pKi 23
pKi 7.7 [23]
HHSiD Rn Antagonist 7.4 – 7.9 pKi 13,43
pKi 7.4 – 7.9 [13,43]
AFDX384 Hs Antagonist 7.5 pKi 21
pKi 7.5 [21]
MT1 Hs Antagonist 7.3 – 7.6 pKi 25,34
pKi 7.3 – 7.6 [25,34]
p-F-HHSiD Hs Antagonist 7.1 – 7.8 pKi 23,39
pKi 7.1 – 7.8 [23,39]
guanylpirenzepine Rn Antagonist 7.3 – 7.6 pKi 1,94
pKi 7.3 – 7.6 [1,94]
pirenzepine Hs Antagonist 6.3 – 8.3 pKi 23,39,42,72
pKi 6.3 – 8.3 [23,39,42,72]
methoctramine Hs Antagonist 7.0 – 7.3 pKi 23,83
pKi 7.0 – 7.3 [23,83]
himbacine Hs Antagonist 6.7 – 7.1 pKi 42,66
pKi 6.7 – 7.1 [42,66]
MT3 Hs Antagonist 6.5 – 7.1 pKi 42
pKi 6.5 – 7.1 [42]
MT2 Hs Antagonist 6.4 pKi 34
pKi 6.4 [34]
otenzepad Hs Antagonist 6.2 pKi 23
pKi 6.2 [23]
otenzepad Rn Antagonist 5.9 – 6.3 pKi 13,43
pKi 5.9 – 6.3 [13,43]
lithocholylcholine Rn Antagonist 5.6 pKi 16
pKi 5.6 [16]
View species-specific antagonist tables
Antagonist Comments
Recombinant MT7 (rMT7) is often used for bioassays due to the limited availability of the M1 muscarinic receptor-selective mamba toxin MT7 or m1-toxin 1 (rMT7 has comparable affinity for M1[68]).

Biperiden is an approved drug antagonist of muscarinic acetylcholine receptors. We have tagged the M1 subtype as the drug's primary target as affinity is 10-fold higher at this receptor subtype [8].
Allosteric Regulators
Key to terms and symbols View all chemical structures Click column headers to sort
Ligand Sp. Action Affinity Units Reference
KT 5720 Hs Positive 6.4 pKd 54
pKd 6.4 [54]
staurosporine Hs Positive 5.9 pKd 54
pKd 5.9 [54]
Gö 7874 Hs Negative 5.8 pKd 54
pKd 5.8 [54]
WIN 51,708 Hs Negative 5.8 pKd 55
pKd 5.8 [55]
KT 5823 Hs Positive 5.7 pKd 54
pKd 5.7 [54]
WIN 62,577 Hs Negative 5.5 pKd 55
pKd 5.5 [55]
eburnamonine Hs Neutral 5.1 pKd 40
pKd 5.1 [40]
brucine Hs Positive 4.5 – 5.7 pKd 40,53
pKd 4.5 – 5.7 [40,53]
K-252a Hs Positive 5.1 pKd 54
pKd 5.1 [54]
alcuronium Hs Negative 5.0 pKd 40
pKd 5.0 [40]
strychnine Hs Neutral 4.9 – 5.0 pKd 40,50
pKd 4.9 – 5.0 [40,50]
strychnine Hs Negative 4.9 pKd 50
pKd 4.9 [50]
vincamine Hs Neutral 4.8 pKd 40
pKd 4.8 [40]
brucine Hs Neutral 4.5 pKd 53
pKd 4.5 [53]
N-benzyl brucine Hs Negative 4.4 pKd 53
pKd 4.4 [53]
N-chloromethyl-brucine Hs Negative 4.1 pKd 53
pKd 4.1 [53]
thiochrome Hs Neutral 4.1 pKd 51
pKd 4.1 [51]
brucine N-oxide Hs Neutral 3.2 pKd 53
pKd 3.2 [53]
brucine N-oxide Hs Positive 3.2 pKd 53
pKd 3.2 [53]
AC-42 Hs Negative 6.2 pKi 48
pKi 6.2 [48]
clozapine Hs Positive 7.9 pIC50 87
pIC50 7.9 [87]
clozapine Rn Positive 7.7 pIC50 84
pIC50 7.7 [84]
N-desmethylclozapine Hs Positive 7.3 pIC50 87
pIC50 7.3 [87]
N-desmethylclozapine Rn Positive 6.8 pIC50 84
pIC50 6.8 [84]
AC-260584 Rn Positive 5.9 pIC50 84
pIC50 5.9 [84]
KT 5720 Hs Positive - - 6
[6]
brucine Hs Positive - - 6
[6]
VU0090157 Hs Positive - - 61
[61]
ML169 Hs Positive - - 75
[75]
BQCA Hs Positive - - 58
[58]
VU0029767 Hs Positive - - 61
[61]
View species-specific allosteric regulator tables
Primary Transduction Mechanisms
Transducer Effector/Response
Gq/G11 family Phospholipase C stimulation
References:  5,11,71,78
Tissue Distribution
Bladder.
Species:  Human
Technique:  RT-PCR.
References:  91
CNS: cerebral cortex, basal ganglia, limbic areas.
Species:  Human
Technique:  Radioligand binding.
References:  20
Vestibular system.
Species:  Human
Technique:  RT-PCR.
References:  93
Esophageal smooth muscle.
Species:  Human
Technique:  Radioligand binding.
References:  74
CNS: forebrain.
Species:  Mouse
Technique:  immunocytochemistry.
References:  38
CNS: cerbral cortex, corpus striatum, hippocampus, thalamus.
Species:  Mouse
Technique:  Radioligand binding.
References:  69
CNS: caudate putamen, nucleus accumbens, olfactory tubercle.
Species:  Rat
Technique:  in situ hybridisation.
References:  100
CNS: hippocampus.
Species:  Rat
Technique:  immunocytochemistry.
References:  56
CNS: pons.
Species:  Rat
Technique:  Radioligand binding.
References:  3
Heart: intrinsic neurons.
Species:  Rat
Technique:  in situ hybridisation.
References:  35
Vestibular system.
Species:  Rat
Technique:  RT-PCR.
References:  93
CNS: cranial nerve nuclei.
Species:  Rat
Technique:  in situ hybridisation.
References:  92
CNS: cerebral cortex, hippocampus, corpus striatum, olfactory tubercle, midbrain, pons-medulla, cerebellum.
Species:  Rat
Technique:  Immunoprecipitation.
References:  109
Expression Datasets

Show »

Log average relative transcript abundance in mouse tissues measured by qPCR from Regard, J.B., Sato, I.T., and Coughlin, S.R. (2008). Anatomical profiling of G protein-coupled receptor expression. Cell, 135(3): 561-71. [PMID:18984166] [Raw data: website]

There should be a chart of expression data here, you may need to enable JavaScript!
Functional Assays
Measurement of PI levels in mouse Y1 adrenal cells transfected with the mouse M1 receptor.
Species:  Mouse
Tissue:  Y1 adrenal cells.
Response measured:  Stimulation of PI hydrolysis.
References:  80
Measurement of PI hydrolysis, Ca2+ mobilisation and [3H]arachidonic acid release in A9 L cells transfected with the human M1 receptor.
Species:  Human
Tissue:  A9 L cells.
Response measured:  Stimulation of PI hydrolysis, Ca2+ mobilisation and [3H]arachidonic acid release.
References:  4
Measurement of PI hydrolysis in CHO cells transfected with the human M1 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Stimulation of PI hydrolysis.
References:  17
Measurement of ERK1/2 activity in hippocampal cells endogenously expressing the M1 receptor.
Species:  Rat
Tissue:  Post-ischemic hippocampus.
Response measured:  Increase in ERK1/2 activity.
References:  89
Measurement of activation of ERK1/2 in PC12D cells endogeneously expressing the M1 receptor.
Species:  Rat
Tissue:  Neuronal PC12D cells.
Response measured:  Activation of ERK1/2.
References:  30
Measurement of activation of neuronal nitric oxide synthetase in chinese hamster overy cells transfected with the M1 receptor.
Species:  Human
Tissue:  CHO cells.
Response measured:  Activation of nitric oxide synthetase.
References:  96
Measurement of ERK1/2 activity in COS-7 cells transfected with the human M2 receptor.
Species:  Human
Tissue:  COS-7 cells.
Response measured:  Increase in ERK1/2 activity.
References:  77
Measurement of GIRK channel activity in Xenopus oocytes transfected with the human M1 receptor.
Species:  Human
Tissue:  Xenopus oocytes.
Response measured:  Inhibition of GIRK channels.
References:  36
Measurement of the effects of a ligand on the level, or rate, of binding of GTPγ35S to membranes.
Species:  Human
Tissue:  CHO cell membranes.
Response measured:  The binding of GTPγ35S to G proteins coupled to the receptor.
References:  7,49-52,54-55
Measurement of the effects of a ligand on the rate of hydrolysis of GTP by G proteins in membranes.
Species:  Human
Tissue:  CHO cells.
Response measured:  Generation of 32Pi from [γ-32P]GTP.
References:  52
Physiological Functions
Bronchoconstriction.
Species:  Human
Tissue:  In vivo.
References:  47
Vasodilation.
Species:  Rat
Tissue:  Lung.
References:  105
Modulation of NMDA receptor-meditated excitatory synaptic transmission.
Species:  Rat
Tissue:  Hippocampal CA1 pyramidal cells.
References:  60
Regulation of circadian rhythms.
Species:  Rat
Tissue:  Hypothalamic suprachiasmatic nucleus.
References:  29
Automaticity of the heart.
Species:  Mouse
Tissue:  Heart.
References:  106
Autoreceptor: modulation of ACh release.
Species:  Rat
Tissue:  Basal forebrain slices.
References:  88
Autoreceptor: modulation of ACh release.
Species:  Human
Tissue:  Neocortex slices.
References:  24
Stimulation of water consumption.
Species:  Rat
Tissue:  In vivo.
References:  73
Hypothermia.
Species:  Rat
Tissue:  In vivo.
References:  79
Spinal analgesia.
Species:  Rat
Tissue:  In vivo.
References:  28
Memory function.
Species:  Rat
Tissue:  In vivo.
References:  65
Stimulation of urination.
Species:  Rat
Tissue:  In vivo.
References:  46
Physiological Consequences of Altering Gene Expression
M1 receptor knockout mice exhibit increased dopamine levels in the striatum and increased locomotor activity.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  27
M1 receptor knockout mice exhibit reduced seizure activity in the pilocarpine model of epilepsy.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  33
M1 receptor knockout mice exhibit loss of regulation of M-current potassium channel activity.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  33
M1 receptor knockout mice exhibit a loss of the positive chronotropic and inotropic responses.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  32
M1 receptor knockout mice exhibit increased locomotor activity and hyperactivity under stress.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  67
M1 receptor knockout mice showed normal or even enhanced memory for tasks that involve matching-to-sample problems but significant impairments in non-matching-to-sample working memory and consolidation.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  2
M1 receptor knockout mice exhibit reduced salivary flow.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  26
M1 receptor knockout mice exhibit disrupted tonotopic organisation and frequency tuning in the auditory cortex.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  110-111
M1 receptor knockout mice exhibit reduced gastric pepsinogen secretion.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  108
Hippocampal slices from M1 receptor knockout mice do not exhibit carbachol-induced enhancement of LTP of excitatory synaptic transmission as seen in wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  82
M1 receptor knockout mice exhibit reduced carbachol-stimulated ion secretion in the colon compared to wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  31
Lung slices from M1 receptor knockout mice exhibit increased agonist-induced bronchoconstriction compared to wild-type mice.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  86
M1 receptor knockout mice exhibit an increased tidal volume of the lung at rest.
Species:  Mouse
Tissue: 
Technique:  Gene targeting in embryonic stem cells.
References:  10
Phenotypes, Alleles and Disease Models Mouse data from MGI

Show »

Allele Composition & genetic background Accession Phenotype Id Phenotype Reference
Chrm1tm1Nmn Chrm1tm1Nmn/Chrm1tm1Nmn
B6.129X1-Chrm1
MGI:88396  MP:0004631 abnormal auditory cortex morphology PMID: 15721569 
Chrm1tm1Nmn Chrm1tm1Nmn/Chrm1tm1Nmn
B6.129X1-Chrm1
MGI:88396  MP:0004788 abnormal auditory cortex tonotopy PMID: 15721569 
Chrm1tm1Nmn Chrm1tm1Nmn/Chrm1tm1Nmn
B6.129X1-Chrm1
MGI:88396  MP:0004996 abnormal CNS synapse formation PMID: 15721569 
Chrm1tm1Jwe|Chrm4tm1Jwe Chrm1tm1Jwe/Chrm1tm1Jwe,Chrm4tm1Jwe/Chrm4tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:88396  MGI:88399  MP:0002206 abnormal CNS synaptic transmission PMID: 15919709 
Chrm1tm2.1Stl|Emx1tm1.1(cre)Ito Chrm1tm2.1Stl/Chrm1tm2.1Stl,Emx1tm1.1(cre)Ito/0
involves: 129P2/OlaHsd
MGI:88396  MGI:95387  MP:0002910 abnormal excitatory postsynaptic currents PMID: 20080609 
Chrm1tm2.1Stl|Tg(Grik4-cre)G32-4Stl Chrm1tm2.1Stl/Chrm1tm2.1Stl,Tg(Grik4-cre)G32-4Stl/0
involves: 129P2/OlaHsd * C57BL/6
MGI:2448783  MGI:88396  MP:0002910 abnormal excitatory postsynaptic currents PMID: 20080609 
Chrm1tm1Stl Chrm1tm1Stl/Chrm1tm1Stl
involves: C57BL/6
MGI:88396  MP:0002912 abnormal excitatory postsynaptic potential PMID: 16290192 
Chrm1tm1Kano Chrm1tm1Kano/Chrm1tm1Kano
involves: 129X1/SvJ * C57BL/6
MGI:88396  MP:0002945 abnormal inhibitory postsynaptic currents PMID: 12859343 
Chrm1tm1Kano|Chrm3tm1Mmt Chrm1tm1Kano/Chrm1tm1Kano,Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88396  MGI:88398  MP:0002945 abnormal inhibitory postsynaptic currents PMID: 12859343 
Chrm1tm2.1Stl|Emx1tm1.1(cre)Ito Chrm1tm2.1Stl/Chrm1tm2.1Stl,Emx1tm1.1(cre)Ito/0
involves: 129P2/OlaHsd
MGI:88396  MGI:95387  MP:0001898 abnormal long term depression PMID: 20080609 
Chrm1tm2.1Stl|Tg(Grik4-cre)G32-4Stl Chrm1tm2.1Stl/Chrm1tm2.1Stl,Tg(Grik4-cre)G32-4Stl/0
involves: 129P2/OlaHsd * C57BL/6
MGI:2448783  MGI:88396  MP:0001898 abnormal long term depression PMID: 20080609 
Chrm1tm2.1Stl|Emx1tm1.1(cre)Ito Chrm1tm2.1Stl/Chrm1tm2.1Stl,Emx1tm1.1(cre)Ito/0
involves: 129P2/OlaHsd
MGI:88396  MGI:95387  MP:0004753 abnormal miniature excitatory postsynaptic currents PMID: 20080609 
Chrm1tm1Jwe Chrm1tm1Jwe/Chrm1tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:88396  MP:0002272 abnormal nervous system electrophysiology PMID: 11856534 
Chrm1tm1Kano|Chrm3tm1Mmt Chrm1tm1Kano/Chrm1tm1Kano,Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88396  MGI:88398  MP:0005310 abnormal salivary gland physiology PMID: 15146045 
Chrm1tm1Jwe Chrm1tm1Jwe/Chrm1tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:88396  MP:0001945 bronchoconstriction PMID: 14645675 
Chrm1tm1Kano|Chrm5tm1Minm Chrm1tm1Kano/Chrm1tm1Kano,Chrm5tm1Minm/Chrm5tm1Minm
involves: 129X1/SvJ * C57BL/6
MGI:109248  MGI:88396  MP:0000505 decreased digestive secretion PMID: 15691866 
Chrm1tm1Stl Chrm1tm1Stl/Chrm1tm1Stl
involves: C57BL/6
MGI:88396  MP:0002920 decreased paired-pulse facilitation PMID: 16290192 
Chrm1tm2.1Stl|Emx1tm1.1(cre)Ito Chrm1tm2.1Stl/Chrm1tm2.1Stl,Emx1tm1.1(cre)Ito/0
involves: 129P2/OlaHsd
MGI:88396  MGI:95387  MP:0002920 decreased paired-pulse facilitation PMID: 20080609 
Chrm1tm2.1Stl|Tg(Grik4-cre)G32-4Stl Chrm1tm2.1Stl/Chrm1tm2.1Stl,Tg(Grik4-cre)G32-4Stl/0
involves: 129P2/OlaHsd * C57BL/6
MGI:2448783  MGI:88396  MP:0002920 decreased paired-pulse facilitation PMID: 20080609 
Chrm1tm1Kano|Chrm3tm1Mmt Chrm1tm1Kano/Chrm1tm1Kano,Chrm3tm1Mmt/Chrm3tm1Mmt
involves: 129X1/SvJ * C57BL/6
MGI:88396  MGI:88398  MP:0000623 decreased salivation PMID: 15146045 
Chrm1tm1Jwe|Chrm4tm1Jwe Chrm1tm1Jwe/Chrm1tm1Jwe,Chrm4tm1Jwe/Chrm4tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:88396  MGI:88399  MP:0002917 decreased synaptic depression PMID: 15919709 
Chrm1tm1Jwe Chrm1tm1Jwe/Chrm1tm1Jwe
involves: 129S6/SvEvTac * CF-1
MGI:88396  MP:0005079 defective cytotoxic T cell cytolysis PMID: 15913791 
Chrm1tm1Stl Chrm1tm1Stl/Chrm1tm1Stl
C57BL/6-Chrm1
MGI:88396  MP:0001399 hyperactivity PMID: 11752469 
Chrm1+|Chrm1tm1Stl Chrm1tm1Stl/Chrm1+
C57BL/6-Chrm1
MGI:88396  MP:0001399 hyperactivity PMID: 11752469 
Chrm1tm1Stl Chrm1tm1Stl/Chrm1tm1Stl
C57BL/6-Chrm1
MGI:88396  MP:0001906 increased dopamine level PMID: 11752469 
Chrm1tm1Stl Chrm1tm1Stl/Chrm1tm1Stl
involves: C57BL/6
MGI:88396  MP:0001475 reduced long term depression PMID: 16290192 
Biologically Significant Variants
Type:  Single nucleotide polymorphism.
Species:  Human
Description:  Cys417 is a highly conserved residue in TM7 and is essential to receptor function. A rare Cys417 -> Arg mutation has been found in the human genome with possible physiological consequences.
References:  57
General Comments
For reviews on muscarinic receptor knockout mice see [14,63,101-103].
Available Assays
DiscoveRx PathHunter® eXpress CHRM1 U2OS β-Arrestin GPCR Assay (Cat no. 93-0859E3CP0M)
PathHunter® U2OS CHRM1 β-Arrestin Cell Line (Cat no. 93-0859C3)
more info

REFERENCES

1. Akbulut H, Gören Z, Iskender E, Eraslan A, Ozdemir O, Oktay S. (1999) Subtypes of muscarinic receptors in rat duodenum: a comparison with rabbit vas deferens, rat atria, guinea-pig ileum and gallbladder by using imperialine. Gen. Pharmacol.32 (4): 505-11. [PMID:10323493]

2. Anagnostaras SG, Murphy GG, Hamilton SE, Mitchell SL, Rahnama NP, Nathanson NM, Silva AJ. (2003) Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice. Nat Neurosci6: 51-58. [PMID:12483218]

3. Baghdoyan HA. (1997) Location and quantification of muscarinic receptor subtypes in rat pons: implications for REM sleep generation. Am J Physiol273: R896-R904. [PMID:9321865]

4. Baumgold J, Dyer K, Falcone JF, Bymaster FP. (1995) Comparison of second-messenger responses to muscarinic receptor stimulation in M1-transfected A9 L cells. Cell Signal7: 39-43. [PMID:7756109]

5. Biddlecome GH, Berstein G, Ross EM. (1996) Regulation of phospholipase C-beta1 by Gq and m1 muscarinic cholinergic receptor. Steady-state balance of receptor-mediated activation and GTPase-activating protein-promoted deactivation. J Biol Chem271: 7999-8007. [PMID:8626481]

6. Birdsall NJ, Lazareno S. (2005) Allosterism at muscarinic receptors: ligands and mechanisms. Mini Rev Med Chem5: 523-543. [PMID:15974931]

7. Birdsall NJM, Farries T, Gharagozloo P, Kobayashi S, Lazareno S, Sugimoto M. (1999) Subtype selective positive cooperative interactions between brucine analogues and acetylcholine at muscarinic receptors: functional studies. Mol. Pharmacol.55: 778-786. [PMID:10101037]

8. Bolden C, Cusack B, Richelson E. (1992) Antagonism by antimuscarinic and neuroleptic compounds at the five cloned human muscarinic cholinergic receptors expressed in Chinese hamster ovary cells. J. Pharmacol. Exp. Ther.260 (2): 576-80. [PMID:1346637]

9. Bonner TI, Modi WS, Seuanez HN, O'Brien SJ. (1991) Chromosomal mapping of the five human genes encoding muscarinic acetylcholine receptors. Cytogenet. Cell Genet.58: 1850-1851.

10. Boudinot E, Yamada M, Wess J, Champagnat J, Foutz AS. (2004) Ventilatory pattern and chemosensitivity in M1 and M3 muscarinic receptor knockout mice. Respir Physiol Neurobiol139: 237-245. [PMID:15122990]

11. Bräuner-Osborne H, Brann MR. (1996) Pharmacology of muscarinic acetylcholine receptor subtypes (m1-m5): high throughput assays in mammalian cells. Eur J Pharmacol295: 93-102. [PMID:8925880]

12. Bräuner-Osborne H, Ebert B, Brann MR, Falch E, Krogsgaard-Larsen P. (1996) Functional partial agonism at cloned human muscarinic acetylcholine receptors. Eur J Pharmacol313: 145-150. [PMID:8905341]

13. Buckley NJ, Bonner TI, Buckley CM, Brann MR. (1989) Antagonist binding properties of five cloned muscarinic receptors expressed in CHO-K1 cells. Mol Pharmacol35: 469-476. [PMID:2704370]

14. Bymaster FP, McKinzie DL, Felder CC, Wess J. (2003) Use of M1-M5 muscarinic receptor knockout mice as novel tools to delineate the physiological roles of the muscarinic cholinergic system. Neurochem Res28: 437-442. [PMID:12675128]

15. Cembala TM, Sherwin JD, Tidmarsh MD, Appadu BL, Lambert DG. (1998) Interaction of neuromuscular blocking drugs with recombinant human m1-m5 muscarinic receptors expressed in Chinese hamster ovary cells. Br J Pharmacol125: 1088-1094. [PMID:9846649]

16. Cheng K, Khurana S, Chen Y, Kennedy RH, Zimniak P, Raufman JP. (2002) Lithocholylcholine, a bile acid/acetylcholine hybrid, is a muscarinic receptor antagonist. J Pharmacol Exp Ther303: 29-35. [PMID:12235229]

17. Christopoulos A, Grant MK, Ayoubzadeh N, Kim ON, Sauerberg P, Jeppesen L, El-Fakahany EE. (2001) Synthesis and pharmacological evaluation of dimeric muscarinic acetylcholine receptor agonists. J Pharmacol Exp Ther298: 1260-1268. [PMID:11504829]

18. Christopoulos A, Pierce TL, Sorman JL, El-Fakahany EE. (1998) On the unique binding and activating properties of xanomeline at the M1 muscarinic acetylcholine receptor. Mol Pharmacol53: 1120-1130. [PMID:9614217]

19. Christopoulos A, Wilson K. (2001) Interaction of anandamide with the M(1) and M(4) muscarinic acetylcholine receptors. Brain Res915: 70-78. [PMID:11578621]

20. Cortes R, Probst A, Tobler HJ, Palacios JM. (1986) Muscarinic cholinergic receptor subtypes in the human brain. II. Quantitative autoradiographic studies. Brain Res362: 239-253. [PMID:3753655]

21. Dörje F, Wess J, Lambrecht G, Tacke R, Mutschler E, Brann MR. (1991) Antagonist binding profiles of five cloned human muscarinic receptor subtypes. J. Pharmacol. Exp. Ther.256 (2): 727-33. [PMID:1994002]

22. Ehlert FJ, Griffin MT, Glidden PF. (1996) The interaction of the enantiomers of aceclidine with subtypes of the muscarinic receptor. J Pharmacol Exp Ther279: 1335-1344. [PMID:8968358]

23. Esqueda EE, Gerstin EH, Griffin MT, Ehlert FJ. (1996) Stimulation of cyclic AMP accumulation and phosphoinositide hydrolysis by M3 muscarinic receptors in the rat peripheral lung. Biochem Pharmacol52: 643-658. [PMID:8759038]

24. Feuerstein TJ, Lehmann J, Sauermann W, van Velthoven V, Jackisch R. (1992) The autoinhibitory feedback control of acetylcholine release in human neocortex tissue. Brain Res572: 64-71. [PMID:1611539]

25. Fruchart-Gaillard C, Mourier G, Marquer C, Ménez A, Servent D. (2006) Identification of various allosteric interaction sites on M1 muscarinic receptor using 125I-Met35-oxidized muscarinic toxin 7. Mol Pharmacol69: 1641-1651. [PMID:16439611]

26. Gautam D, Heard TS, Cui Y, Miller G, Bloodworth L, Wess J. (2004) Cholinergic stimulation of salivary secretion studied with M1 and M3 muscarinic receptor single- and double-knockout mice. Mol Pharmacol66: 260-267. [PMID:15266016]

27. Gerber DJ, Sotnikova TD, Gainetdinov RR, Huang SY, Caron MG, Tonegawa S. (2001) Hyperactivity, elevated dopaminergic transmission, and response to amphetamine in M1 muscarinic acetylcholine receptor-deficient mice. Proc Natl Acad Sci U S A98: 15312-15317. [PMID:11752469]

28. Gillberg PG, Gordh T, Hartvig P, Jansson I, Pettersson J, Post C. (1989) Characterization of the antinociception induced by intrathecally administered carbachol. Pharmacol Toxicol64: 340-343. [PMID:2748539]

29. Gillette MU, Buchanan GF, Artinian L, Hamilton SE, Nathanson NM, Liu C. (2001) Role of the M1 receptor in regulating circadian rhythms. Life Sci68: 2467-2472. [PMID:11392614]

30. Guo FF, Kumahara E, Saffen D. (2001) A CalDAG-GEFI/Rap1/B-Raf cassette couples M(1) muscarinic acetylcholine receptors to the activation of ERK1/2. J Biol Chem276: 25568-25581. [PMID:11292831]

31. Haberberger R, Schultheiss G, Diener M. (2006) Epithelial muscarinic M1 receptors contribute to carbachol-induced ion secretion in mouse colon. Eur J Pharmacol530: 229-233. [PMID:16405887]

32. Hamilton SE, Hardouin SN, Anagnostaras SG, Murphy GG, Richmond KN, Silva AJ, Feigl EO, Nathanson NM. (2001) Alteration of cardiovascular and neuronal function in M1 knockout mice. Life Sci68: 2489-2493. [PMID:11392617]

33. Hamilton SE, Loose MD Qi M Levey AI, Hille B, McKnight GS, Idzerda RL, Nathanson NM. (1997) Disruption of the m1 receptor gene ablates muscarinic receptor-dependent M current regulation and seizure activity in mice. Proc. Natl. Acad. Sci. U.S.A.94: 13311-13316. [PMID:9371842]

34. Harvey AL, Kornisiuk E, Bradley KN, Cerveñansky C, Durán R, Adrover M, Sánchez G, Jerusalinsky D. (2002) Effects of muscarinic toxins MT1 and MT2 from green mamba on different muscarinic cholinoceptors. Neurochem Res27: 1543-1554. [PMID:12512959]

35. Hassall CJ, Stanford SC, Burnstock G, Buckley NJ. (1993) Co-expression of four muscarinic receptor genes by the intrinsic neurons of the rat and guinea-pig heart. Neuroscience56: 1041-1048. [PMID:8284034]

36. Hill JJ, Peralta EG. (2001) Inhibition of a Gi-activated potassium channel (GIRK1/4) by the Gq-coupled m1 muscarinic acetylcholine receptor. J Biol Chem276: 5505-5510. [PMID:11060307]

37. Hirose H, Aoki I, Kimura T, Fujikawa T, Numazawa T, Sasaki K, Sato A, Hasegawa T, Nishikibe M, Mitsuya M, Ohtake N, Mase T, Noguchi K. (2001) Pharmacological properties of (2R)-N-[1-(6-aminopyridin-2-ylmethyl)piperidin-4-yl]-2-[(1R)-3,3-difluorocyclopentyl]-2-hydroxy-2-phenylacetamide: a novel mucarinic antagonist with M(2)-sparing antagonistic activity. J Pharmacol Exp Ther297: 790-797. [PMID:11303071]

38. Hohmann CF, Potter ED, Levey AI. (1995) Development of muscarinic receptor subtypes in the forebrain of the mouse. J Comp Neurol358: 88-101. [PMID:7560279]

39. Huang F, Buchwald P, Browne CE, Farag HH, Wu WM, Ji F, Hochhaus G, Bodor N. (2001) Receptor binding studies of soft anticholinergic agents. AAPS PharmSci3: E30-E30. [PMID:12049493]

40. Jakubik J, Bacakova L, El-Fakahany EE, Tucek S. (1997) Positive cooperativity of acetylcholine and other agonists with allosteric ligands on muscarinic receptors. Mol. Pharmacol.52: 172-179. [PMID:9224827]

41. Jakubik J, El-Fakahany EE, Dolezal V. (2006) Differences in kinetics of xanomeline binding and selectivity of activation of G proteins at M(1) and M(2) muscarinic acetylcholine receptors. Mol Pharmacol70: 656-666. [PMID:16675658]

42. Jolkkonen M, Van Giersbergen PLM, Hellman U, Wernstedt C, Karlsson E. (1994) A toxin from the green mamba Dendroaspis angusticeps; amino acid sequence and selectivity for muscarinic m4 receptors. FEBS Lett.352: 91-94. [PMID:7925952]

43. Kashihara K, Varga EV, Waite SL, Roeske WR, Yamamura HI. (1992) Cloning of the rat M3, M4 and M5 muscarinic acetylcholine receptor genes by the polymerase chain reaction (PCR) and the pharmacological characterization of the expressed genes. Life Sci51: 955-971. [PMID:1325587]

44. Khattar SK, Bora RS, Priyadarsiny P, Gupta D, Khanna A, Narayanan KL, Babu V, Chugh A, Saini KS. (2006) High level stable expression of pharmacologically active human M1-M5 muscarinic receptor subtypes in mammalian cells. Biotechnol Lett28: 121-129. [PMID:16369696]

45. Klett CP, Zimonjic DB, Keck CL, Bonner TI. (1998) Localization of the rat M1 muscarinic receptor gene to chromosome 1q43-51. Mamm Genome9: 476-478. [PMID:9585439]

46. Kono M, Nakamura Y, Ishiura Y, Komatsu K, Kontani H, Namiki M. (2006) Central muscarinic receptor subtypes regulating voiding in rats. J Urol175: 353-357. [PMID:16406941]

47. Lammers JW, Minette P, McCusker M, Barnes PJ. (1989) The role of pirenzepine-sensitive (M1) muscarinic receptors in vagally mediated bronchoconstriction in humans. Am Rev Respir Dis139: 446-449. [PMID:2521552]

48. Langmead CJ, Fry VA, Forbes IT, Branch CL, Christopoulos A, Wood MD, Herdon HJ. (2006) Probing the molecular mechanism of interaction between 4-n-butyl-1-[4-(2-methylphenyl)-4-oxo-1-butyl]-piperidine (AC-42) and the muscarinic M(1) receptor: direct pharmacological evidence that AC-42 is an allosteric agonist. Mol Pharmacol69: 236-246. [PMID:16207821]

49. Lazareno S, Birdsall NJM. (1993) Pharmacological characterization of acetylcholine-stimulated [35S]-GTPγS binding mediated by human muscarinic m1-m4 receptors, antagonist studies. Br. J. Pharmacol.109: 1120-1127. [PMID:8401923]

50. Lazareno S, Birdsall NJM. (1995) Detection, quantitation and verification of allosteric interactions of agents with labelled and unlabelled ligands at G protein-coupled receptors, interactions of strychnine and acetylcholine at muscarinic receptors. Mol. Pharmacol.48: 362-378. [PMID:7651370]

51. Lazareno S, Dolezal V, Popham A, Birdsall NJ. (2004) Thiochrome enhances acetylcholine affinity at muscarinic M4 receptors: receptor subtype selectivity via cooperativity rather than affinity. Mol Pharmacol65: 257-266. [PMID:14722259]

52. Lazareno S, Farries T, Birdsall NJM. (1993) Pharmacological characterization of guanine nucleotide exchange reactions in membranes from CHO cells stably transfected with human muscarinic receptors M1 - M4. Life Sci.52: 449-456. [PMID:8441327]

53. Lazareno S, Gharagozloo P, Kuonen D, Popham A, Birdsall NJM. (1998) Subtype selective positive cooperative interactions between brucine analogues and acetylcholine at muscarinic receptors, radioligand binding studies. Mol. Pharmacol.53: 573-589. [PMID:9495826]

54. Lazareno S, Popham A, Birdsall NJ. (2000) Allosteric interactions of staurosporine and other indolocarbazoles with N-[methyl-(3)H]scopolamine and acetylcholine at muscarinic receptor subtypes: identification of a second allosteric site. Mol Pharmacol58: 194-207. [PMID:10860942]

55. Lazareno S, Popham A, Birdsall NJ. (2002) Analogs of WIN 62,577 define a second allosteric site on muscarinic receptors. Mol Pharmacol62: 1492-1505. [PMID:12435818]

56. Levey AI, Edmunds SM, Koliatsos V, Wiley RG, Heilman CJ. (1995) Expression of m1-m4 muscarinic acetylcholine receptor proteins in rat hippocampus and regulation by cholinergic innervation. J Neurosci15: 4077-4092. [PMID:7751967]

57. Lucas JL, DeYoung JA, Sadee W. (2001) Single nucleotide polymorphisms of the human M1 muscarinic acetylcholine receptor gene. AAPS PharmSci3: E31-E31. [PMID:12049494]

58. Ma L, Seager MA, Seager M, Wittmann M, Jacobson M, Bickel D, Burno M, Jones K, Graufelds VK, Xu G et al.. (2009) Selective activation of the M1 muscarinic acetylcholine receptor achieved by allosteric potentiation. Proc. Natl. Acad. Sci. U.S.A.106 (37): 15950-5. [PMID:19717450]

59. Maggio R, Barbier P, Bolognesi ML, Minarini A, Tedeschi D, Melchiorre C. (1994) Binding profile of the selective muscarinic receptor antagonist tripitramine. Eur J Pharmacol268: 459-462. [PMID:7805774]

60. Marino MJ, Rouse ST, Levey AI, Potter LT, Conn PJ. (1998) Activation of the genetically defined m1 muscarinic receptor potentiates N-methyl-D-aspartate (NMDA) receptor currents in hippocampal pyramidal cells. Proc Natl Acad Sci U S A95: 11465-11470. [PMID:9736760]

61. Marlo JE, Niswender CM, Days EL, Bridges TM, Xiang Y, Rodriguez AL, Shirey JK, Brady AE, Nalywajko T, Luo Q et al.. (2009) Discovery and characterization of novel allosteric potentiators of M1 muscarinic receptors reveals multiple modes of activity. Mol. Pharmacol.75 (3): 577-88. [PMID:19047481]

62. Matsui M, Araki Y, Karasawa H, Matsubara N, Taketo MM, Seldin MF. (1999) Mapping of five subtype genes for muscarinic acetylcholine receptor to mouse chromosomes. Genes Genet Syst74: 15-21. [PMID:10549128]

63. Matsui M, Yamada S, Oki T, Manabe T, Taketo MM, Ehlert FJ. (2004) Functional analysis of muscarinic acetylcholine receptors using knockout mice. Life Sci75: 2971-2981. [PMID:15474550]

64. Mei L, Lai J, Roeske WR, Fraser CM, Venter JC, Yamamura HI. (1989) Pharmacological characterization of the M1 muscarinic receptors expressed in murine fibroblast B82 cells. J Pharmacol Exp Ther248: 661-670. [PMID:2537406]

65. Messer WS, Bohnett M, Stibbe J. (1990) Evidence for a preferential involvement of M1 muscarinic receptors in representational memory. Neurosci Lett116: 184-189. [PMID:2259447]

66. Miller JH, Aagaard PJ, Gibson VA, McKinney M. (1992) Binding and functional selectivity of himbacine for cloned and neuronal muscarinic receptors. J Pharmacol Exp Ther263: 663-667. [PMID:1331410]

67. Miyakawa T, Yamada M, Duttaroy A, Wess J. (2001) Hyperactivity and intact hippocampus-dependent learning in mice lacking the M1 muscarinic acetylcholine receptor. J Neurosci21: 5239-5250. [PMID:11438599]

68. Näsman J, Jolkkonen M, Ammoun S, Karlsson E, Akerman KE. (2000) Recombinant expression of a selective blocker of M(1) muscarinic receptors. Biochem Biophys Res Commun271: 435-439. [PMID:10799315]

69. Oki T, Takagi Y, Inagaki S, Taketo MM, Manabe T, Matsui M, Yamada S. (2005) Quantitative analysis of binding parameters of [3H]N-methylscopolamine in central nervous system of muscarinic acetylcholine receptor knockout mice. Brain Res Mol Brain Res133: 6-11. [PMID:15661360]

70. Pepitoni S, Wood IC, Buckley NJ. (1997) Structure of the m1 muscarinic acetylcholine receptor gene and its promoter. J Biol Chem272: 17112-17117. [PMID:9202029]

71. Peralta EG, Ashkenazi A, Winslow JW, Ramachandran J, Capon DJ. (1988) Differential regulation of PI hydrolysis and adenylyl cyclase by muscarinic receptor subtypes. Nature334: 434-437. [PMID:2841607]

72. Peralta EG, Ashkenazi A, Winslow JW, Smith DH, Ramachandran J, Capon DJ. (1987) Distinct primary structures, ligand binding properties and tissue-specific expression of four human muscarinic acetylcholine receptors. EMBO J.6: 3923-3929. [PMID:3443095]

73. Polidori C, Massi M, Lambrecht G, Mutschler E, Tacke R, Melchiorre C. (1990) Selective antagonists provide evidence that M1 muscarinic receptors may mediate carbachol-induced drinking in the rat. Eur J Pharmacol179: 159-165. [PMID:2364977]

74. Preiksaitis HG, Krysiak PS, Chrones T, Rajgopal V, Laurier LG. (2000) Pharmacological and molecular characterization of muscarinic receptor subtypes in human esophageal smooth muscle. J Pharmacol Exp Ther295: 879-888. [PMID:11082420]

75. Reid PR, Bridges TM, Sheffler DJ, Cho HP, Lewis LM, Days E, Daniels JS, Jones CK, Niswender CM, Weaver CD et al.. (2011) Discovery and optimization of a novel, selective and brain penetrant M1 positive allosteric modulator (PAM): the development of ML169, an MLPCN probe. Bioorg. Med. Chem. Lett.21 (9): 2697-701. [PMID:21194936]

76. Richards MH, Van Giersbergen PL. (1995) Human muscarinic receptors expressed in A9L and CHO cells, activation by full and partial agonists. Br. J. Pharmacol.114: 1242-1249. [PMID:7620715]

77. Rosenblum K, Futter M, Jones M, Hulme EC, Bliss TV. (2000) ERKI/II regulation by the muscarinic acetylcholine receptors in neurons. J Neurosci20: 977-985. [PMID:10648702]

78. Ross EM, Berstein G. (1993) Regulation of the M1 muscarinic receptor-Gq-phospholipase C-beta pathway by nucleotide exchange and GTP hydrolysis. Life Sci52: 413-419. [PMID:8441322]

79. Sen AP, Bhattacharya SK. (1991) Thermic response of selective muscarinic agonists and antagonists in rat. Indian J Exp Biol29: 131-135. [PMID:1869296]

80. Shapiro RA, Scherer NM, Habecker BA, Subers EM, Nathanson NM. (1988) Isolation, sequence, and functional expression of the mouse M1 muscarinic acetylcholine receptor gene. J Biol Chem263: 18397-18403. [PMID:2848036]

81. Sheffler DJ, Williams R, Bridges TM, Xiang Z, Kane AS, Byun NE, Jadhav S, Mock MM, Zheng F, Lewis LM et al.. (2009) A novel selective muscarinic acetylcholine receptor subtype 1 antagonist reduces seizures without impairing hippocampus-dependent learning. Mol. Pharmacol.76 (2): 356-68. [PMID:19407080]

82. Shinoe T, Matsui M, Taketo MM, Manabe T. (2005) Modulation of synaptic plasticity by physiological activation of M1 muscarinic acetylcholine receptors in the mouse hippocampus. J Neurosci25: 11194-11200. [PMID:16319319]

83. Smith CM, Wallis RM. (1997) Characterisation of [3H]-darifenacin as a radioligand for the study of muscarinic M3 receptors. J. Recept. Signal Transduct. Res.17: 177-184. [PMID:9029489]

84. Spalding TA, Ma JN, Ott TR, Friberg M, Bajpai A, Bradley SR, Davis RE, Brann MR, Burstein ES. (2006) Structural requirements of transmembrane domain 3 for activation by the M1 muscarinic receptor agonists AC-42, AC-260584, clozapine, and N-desmethylclozapine: evidence for three distinct modes of receptor activation. Mol Pharmacol70: 1974-1983. [PMID:16959945]

85. Stein R, Pinkas-Kramarski R, Sokolovsky M. (1988) Cloned M1 muscarinic receptors mediate both adenylate cyclase inhibition and phosphoinositide turnover. EMBO J7: 3031-3035. [PMID:2846274]